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Preface

The present volume contains 24 papers based on the 33 contributions presented at the / 0”7 National
Conference on Computational Mechanics -MekIT’19 held at The Norwegian University of Science
and Technology (NTNU) in Trondheim (Norway) June 3 and June 4 , 2019.

The series of national conferences on Computational Mechanics dates back to MekIT 01,
which was arranged at NTNU in Trondheim early May 2001. The motivation of the first MekIT-
conference was to bring together those involved in Computational Mechanics in Norway, both in
industry and academia, to share their experiences and report on their research in an informal and
friendly setting. At that time, an arena where those involved with rather different applications of
Computational Mechanics, as well as scientists developing new computational methods of more
generic nature, could meet was non-existing in Norway.

The conferences have from the very beginning aimed to cover all sub-areas of Computational
Mechanics and not only computational solid mechanics and computational fluid dynamics. In spite of
distinctions in approach and methodology the difficulties faced by the researchers are often of similar
nature and problems can perhaps be remedied in the same way irrespective of the actual application.
It has all the time been our hope that the conference series will demonstrate that Computational
Mechanics is a viable research tool by which both human curiosity and industrial needs can be
satisfied by scrutinizing the laws of classical mechanics, provided that adequate numerical methods
are implemented in reliable software, and efficient computers are available.

A particular mission has been to offer a stimulating environment in which doctoral students
and other young researchers can present results of their own project work, perhaps for the first time,
and at the same time get an impression of the multifaceted research which takes place in other research
groups and at other institutions in Norway.

In addition to the contributed talks, keynote lectures are delivered by carefully selected
scientists, normally recruited from the other Scandinavian countries, to give an impression of state-
of-the art in Computational Mechanics. This year, however, we were delighted that Professor Robert
M. McMeeking (Department of Mechanical Engineering & Materials Department, University of
California at Santa Barbara, USA) and Professor Eric Lamballais (Institut P>, CNRS -Université
de Poitiers, France) shared their vast expertise with us in fascinating lectures on computational
biomechanics and large-eddy simulations, respectively.

The regular contributions have primarily been written by PhD students and other young
researchers together with their supervisor(s) or project leader(s) and always in English. The manuscripts
were submitted before the start of the conference. Each manuscript has been subjected to reviewing
by at least one member of the Scientific Committee and in some cases also by a peer outside of the
Scientific Committee. The authors were thereafter asked to revise their manuscripts in accordance
with the comments and suggestions made by the reviewers. The majority of the authors accepted
our invitation to prepare a carefully revised version of their manuscript, which now is included in
the printed conference proceedings. Following the contributions by the two invited lecturers, the 22
contributed papers appear alphabetically according to the family name of the first author and are
listed in the Table of Contents. The names of all authors and co-authors of the contributed papers are
included in the Author Index.

Earlier proceedings have been published by Tapir Academic Press and Akademika
Publishing just prior to the conference. For the first time in 2015 the conference proceedings were
published by CIMNE and not until a couple of months after the conference. This new scheme enables
a more thorough reviewing process and contributes to the quality of this collection of 2+22 papers.

We, as the organizers of the series of ten MekIT-conferences, could instead have arranged
separate conferences in computational fluid dynamics (CFD) and computational solid mechanics
(CSM). But we realized that there are a number of common challenges in CFD and CSM, although
there are also differences like fractures/cracks and shocks.

In common, however, CFD and CSM are based on Newtonian mechanics and continuum
theory, although different material models are used. Water, for example, is an isotropic and Newtonian
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fluid, but sediments or polymer additives will i) change the viscosity and ii) induce anisotropy. The
material model (the rheological model) is an essential issue both in CFD and CSM.

Also in common is the fact that the fundamental equations are partial differential equations
(PDEs) which depend on the material or fluid properties. The PDEs are often non-linear and have to
be solved by means of numerical methods: finite-element, finite-difference, finite-volume, spectral
element methods etc.

Also in common is that the governing PDEs have to be discretized into grid cells or finite
or spectral elements. The solutions will therefore be discrete rather than continuous and resolution
refinement is required to handle cracks in CSM and shocks in CFD.

Also in common is that initial conditions are needed at the beginning of the simulation and
boundary conditions are required in space. Like in weather forecasting, for instance, the solution may
depend crucially on the initial conditions.

After a simulation has been performed, quality assessment is required both in CFD and
CMS. This includes validation, namely to justify that the right equations are solved, and verification,
namely to assure that the equations are solved right. The latter includes grid independency testing.

The majority of problems in CFD and CSM are non-linear. Therefore, although a problem
is perfectly symmetric, an asymmetric solution may develop as a result of a bifurcation that sets in
above a certain parameter value which makes the symmetric solution asymmetric due to a competition
between two stable but asymmetric solutions. Such bifurcations are sensitive to the choice of initial
conditions as well as to proper discretization and resolution.

Also after the simulation is ready and the quality has been assessed, post-processing (to get
out the data your sponsor asked for) and 3D visualizations (to convince your sponsor and politicians
what you talk about) are required and represent an integral part of Computational Mechanic.

During the years of MekIT, we as the organizers have observed a couple of trends since the
start-up back in 2001:

* A move from mostly steady problems to time-dependent problems.

* A move from mostly 2D to 3D problems, which implies much larger computations.

* A move from linear to non-linear problems, which implies more challenging computations.

* A move from simple physics towards multi-physics and coupled problems.

* A move from mono-scale to multi-scale problems.

* An improving quality of the oral presentations at the conference and the written
contributions to the proceedings.

The latest conference, MekIT’19, was hosted by NTNU’s Faculty of Engineering and arranged
jointly by Department of Energy and Process Engineering and Department of Structural Engineering.
The Editors appreciate the willingness of the authors to stick to the time schedule for paper
submission and revision. We are particularly thankful to the members of the Scientific Committee and
their peers for reviewing the submitted papers and thereby assure the quality of these Proceedings.
Administrative assistance from Departent of Energy and Process Engineering and financial support
from Faculty of Engineering are gratefully acknowledged.

We, as the organizers of the ten MekIT-conferences and editors of the ten MekITproceedings,
appreciate the long-lasting interest in this biennial event and the willingness of present and former
PhD-students and colleagues to contribute parts of their research work to the MekIT conferences.

September 2019
Helge Andersson

Bjorn Skallerud
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FROM EXPLICIT TO IMPLICIT SUBGRID-SCALE AND
WALL MODELLING IN LARGE-EDDY SIMULATION

ERIC LAMBALLAIS AND RODRIGO VICENTE CRUZ

Incompressible Turbulence and Control Group, Pprime Institute, CNRS - University of
Poitiers - ISAE/ENSMA, France

Key words: Turbulence, Large-Eddy Simulation, Subgrid-Scale Modelling, Wall-layer
Modelling, Implicit Modelling.

Abstract. In this paper, the concept of implicit modelling via the numerical error is
exemplified in the context of large-eddy simulation. It is shown how the control of numer-
ical errors at small scales can be an ersatz of subgrid-scale modelling while playing even
the role of wall-layer model in functional terms. Despite the lack of rigorous formalism,
implicit large-eddy simulation is found to be more accurate than conventional large-eddy
simulation based on explicit subgrid-scale modelling. To illustrate these features, two
academic turbulent flows are investigated by direct and large-eddy simulation: (i) the
Taylor-Green vortex problem; (ii) the pipe flow. It is shown that the crucial quality of
implicit subgrid-scale modelling lies in its ability to damp the smallest scales allowed by
the computational mesh. This feature is beneficial for the two flow configurations in-
vestigated, with a remarkable improvement of the near-wall turbulent statistics for the
pipe. On the contrary, the very popular Smagorinsky model is found to be unable to
control this type of spurious oscillations with a structural difficulty to ensure numerical
convergence in the Taylor-Green vortex problem. Even if implicit large-eddy simulation
is always found more accurate than conventional large-eddy simulation for this flow, a
limitation of the approach is clearly exhibited for a challenging computational configura-
tion where the mesh is very coarse by comparison with direct numerical simulation. In
this situation, the fundamental assumption that very large scales are not subjected to
subgrid-scale effects is shown to be erroneous. Because this assumption is inherent to
implicit large-eddy simulation, it is suggested that a specific explicit modelling should be
developed to correctly model the influence of subgrid-scales on very large scales.

1 INTRODUCTION

In large-eddy simulation (LES), the purpose is to compute a reduced solution less
demanding in terms of number of degrees of freedom in order to save computational
resources. Naturally, this reduction has to preserve the most important features of the
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“full” solution to enable reliable predictions. In this work, the full solution is assumed to
satisfy the incompressible Navier-Stokes equations while being assimilated to its highly-
accurate numerical approximation obtained by direct numerical simulation (DNS). The
reliability of the prediction is then connected to the ability of LES to provide mean velocity
and basic turbulent statistics with accuracy close to DNS.

The strategy of conventional LES is to derive the governing equations of the reduced
solution through the definition of the reduction procedure. Typically, a low-pass filter
is invoked to establish the governing equations without specifying the exact form of the
filter but referring to a separation scale A to split the solution into its large-scale (LS)
and subgrid-scale (SGS) components. Non-linearities of Navier-Stokes equations introduce
new unknowns leading to a closure problem. The most popular way to close the equations
is to use a constitutive relation of Boussinesq-type by defining a SGS eddy viscosity with
in particular the well-known Smagorinsky model which is a physical closure designed
to match the expected SGS dissipation. Unfortunately, the formalism to establish the
governing equations suffers from severe shortcomings with in particular the commutation
error between the filter and the spatial differentiation [15, 14, 13, 30]. Another important
weakness is the sensitivity of the equations to numerical errors. To ensure numerical
convergence, a discretization clearly finer than the separation scale A should be employed.
This requirement is fully recognized (see for instance [5, 29, 1, 26, 27, 28]) but almost
never fulfilled by LES users who normally use a computational mesh with a cell size simply
adjusted on the separation scale A, a practice which is clearly against the numerical
accuracy. Naturally, it has to be recognized that the requirement of mesh refinement
makes LES less computationally attractive by comparison to DNS, especially if the slow
numerical convergence of the solution is considered, as shown by [9] for the Smagorinsky
model.

A more pragmatic approach of LES is to renounce to well defined governing equations
by discretizing the Navier-Stokes equations on a coarser mesh than in DNS and without
any explicit modelling terms. In this strategy, a regularization effect is expected from nu-
merics in order to automatically provide the reduced/filtered solution. This idea started
with the development of the MILES approach [2]. Here, following the more recent termi-
nology, we refer to implicit LES when the regularization provided by the numerical error
is used as a substitute of subgrid-scale (SGS) modelling, irrespective of the techniques
used to apply the resulting artificial dissipation. In this paper, we investigate the concept
of implicit LES using a generic solver of Navier-Stokes equations in which the numerical
dissipation can be expressed as an implicit spectral vanishing viscosity (SVV) which can
be easily controlled while ensuring high-order accuracy. To have an overview of the diver-
sity of approaches in implicit LES, the reader is referred to the collective book [16] where
connections with explicit SGS modelling are also discussed. Note that the distinction
between conventional and implicit LES is not so clear because some techniques can be
based on a mixed strategy. For instance, a controlled regularization can be obtained by
making scale selective an explicit model (Variational Multiscale Model, see [17, 3]).
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The aim of the present contribution is to explain why and to what extent implicit LES
can be successful despite the lack of clear formalism. This investigation is based on a
particular technique of regularization but the main conclusions of the present study can
be related to any implicit SGS modelling provided that it is highly accurate (in terms of
numerical convergence) and scale selective (concentration of numerical dissipation at small
scales). Two academic flow configurations are considered with the Taylor-Green vortex
problem and the turbulent pipe flow. The former is a prototype of flow in transition up
to fully developed turbulence whereas the latter is a generic flow with wall turbulence.
Both flow configurations are analysed by DNS and LES at high Reynolds number.

Thanks to the new generation of massively parallel computers, it has become possible to
generate DNS database at typical Reynolds numbers of LES applications. This is a major
advantage for the development of SGS modelling which can be based on reliable data
at realistic turbulent regimes and with a representative reduction of degrees of freedom
associated with the LES filtering. This is particularly true for the Taylor-Green vortex
problem considered here at the Reynolds number Re = 40000. To the best of the authors’
knowledge, a DNS at this high value has never been documented. It is an unprecedented
opportunity to assess very challenging LES while investigating rigorously the LS-SGS
interactions as it was done by [9, 23] at lower Reynolds number. For the pipe flow, a DNS
of reference at the same Reynolds number as considered here has already been reported
in the literature [18]. The originality of present results lies in the use of very coarse mesh
in the near-wall region and in the development of a robust method to estimate filtered
turbulent statistics from DNS data obtained at marginal resolution. The possibility to
compare with relevance turbulent statistics from implicit LES and DNS will enable us to
rigorously confirm trends reported in [8] at lower Reynolds number.

The paper is organized as follows. First, the whole methodology is presented in section
2. Then, results from DNS/LES of the Taylor-Green vortex problem are discussed in
section 3 through a posteriori and a priori analyses of the SGS modelling. The turbulent
pipe flow is investigated in section 4 by DNS and LES to exhibit an unexpected feature of
implicit wall-layer modelling. The main conclusions of the study are reported in section
5 while discussing prospects for further developments.

2 METHODOLOGY
2.1 Governing equations

For a fluid of constant density p and kinematic molecular viscosity v, the governing
equations

(9ui T 1 8uz 4 auﬂ” 1 8p n 82ui 6T7jj (1)
= s —_—J = = v —
(9u,-
= 2
o, ~ (2)
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correspond to the Navier-Stokes equations with an extra-term 7;; designed to model the
influence of subgrid-scale (SGS) stresses. In DNS mode, pressure p(x;,t) and velocity
fields w;(z;,t) are assumed to be captured up to their smallest significant scales enabling
to assume 7;; = 0. In LES mode, p(z;,t) and w;(x;,t) are interpreted as only the LS
component of pressure and velocity respectively by reference to a separation scale A
which is the lower bound of LS and the upper bound of SGS. In implicit LES, no explicit
SGS modelling is used with 7;; = 0. In conventional LES, a constitutive relation is used
to express 7;; as a function of p(x;,t) and u;(z;,1).
For the present study, only the very popular Smagorinsky model [31] is used with

7 = —2(C,A)*|5]Sy (3)
where 1 /9 5
w; u;
Sii=5| 5 . 4
is the strain rate tensor and |S| its magnitude with |S| = /25;;5;;. This SGS model

is considered in its simplest version where the constant Cs = 0.1 is actually a constant
without any attempt to adjust it through a dynamic procedure as originally proposed
in [12, 11]. For comparison between standard and dynamic Smagorinsky models in the
context of section 3, the reader is referred to [9], where it is shown that these two versions
have similar drawbacks for the type of analysis carried out here.

An obvious but important remark is that the governing equations of LES based on the
Smagorinsky model are continuous, as well as for DNS, without any need to refer to the
spatial discretization. The single extra parameter is the separation scale A which is only
present in the constitutive relation (3). On the contrary, since implicit LES is based on
artificial dissipation coming from numerical errors, discretization has to be introduced in
this alternative technique.

2.2 Numerical methods

To solve equations (1,2), the massively parallel code Incompact3d is used. This solver
has a spatial differentiation entirely based on centered compact finite difference schemes
of sixth-order accuracy when free-slip or periodic boundary conditions are used as in the
present study. Its mesh is Cartesian with n, X n, x n, nodes regularly distributed in
the computational domain L, x L, x L,'. For a detailed presentation of this code, see
20, 21, 22).

In Incompact3d, the spatial differentiation of the convective term is kinetic energy
conserving up to the time integration error. This crucial feature is ensured thanks to
the use of the skew-symmetric form in equation (1). The only sources of dissipation are
the viscous and the explicit SGS modelling terms. As a consequence, in the inviscid case
free from any SGS modelling with periodic or free-slip boundary conditions, the kinetic

IThe mesh refinement in one direction, enabled by Incompact3d, is not used here.
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energy is trapped inside the computational domain at any mesh resolution. This property,
observed in practice (as illustrated in section 3), is particularly convenient for the separate
analysis of viscous/artificial and SGS dissipations.

Finally, it must be mentioned that a customised immersed boundary method has been
developed in Incompact3d to enable the treatment of complex geometry despite the use of
a Cartesian mesh [10]. This feature is used in section 4 to consider a cylindrical geometry.

2.3 Implicit SGS modelling

In Incompact3d, as a technique to perform implicit LES, a targeted numerical dissipa-
tion can be introduced by artificially boosting at small scales the computation of second
derivatives in the viscous term while keeping the sixth-order accuracy. This particular
technique makes hyperviscous the corresponding numerical errors with a scale-selectivity
which leaves LS virtually free from any artificial dissipation. It can be shown that this
approach is the discrete counterpart of SVV? leading to the concept of implicit SVV. The
vanishing feature refers to the lack of any significant effect at LS. For instance, in the
wavenumber range k € [0, k. with k. = 7/Axz where Az is the cell size, the artificial
dissipation is only active in the range k € [k./2, k.] while being highly concentrated near
the cutoff wavenumber & < k.. For more details about this way to introduce numerical
dissipation, the reader is referred to [24, 7, 9].

The advantage of the present technique is its flexibility through an easy control of
numerical dissipation in terms of intensity and scale selectivity. In particular, the value
of the implicit SVV at the cutoff wavenumber can be imposed through the free choice
of the numerical viscosity defined as vy = (k). To make this choice consistently with
the implicit LES methodology, [9] have proposed a very simple spectral closure of the Lin
equation which provides a Pao-like solution as a prediction of the influence of the numerical
dissipation on the kinetic energy spectrum in the context of homogeneous and isotropic
turbulence. In this tool, the input is the ratio of LES and DNS cell sizes Azpps/Axpns
and the output is value of vy that should ensure satisfactory numerical convergence of the
LES solution through an efficient damping of the kinetic energy at small scales. In section
3, only two values of this ratio are considered with Azpps/Azpys = (10,25) leading to
vy = (89,351) respectively as predicted by the Pao-like closure.

3 LES OF THE TAYLOR-GREEN VORTEX PROBLEM
3.1 Flow configuration and DNS of reference

The solution of the Taylor-Green vortex problem is periodic in the three directions
of space in a cubic domain (2m)3. The initial condition has only one harmonic in every

2Spectral meaning as a function of the wavenumber k with v, (k).



Eric Lamballais and Rodrigo Vicente Cruz

direction and one zero velocity component with

u(x;, 0) = sin(x) cos(y) cos(z)
v(x;,0) = — cos(z)sin(y) cos(z)
w(zy,0) = 0. (5)

This generates a flow subjected to a strong turbulent breakdown up to a fully developed
state close to turbulence at equilibrium. It is a free evolving flow where the kinetic energy

1 wU;U;
Ey = —dx® 6
= G Sy T )
can only decrease through the effect of molecular dissipation
1 Ou; Ou; .
= L o—dx? 7
(27T)5 \/(271.)3 Val'j axj x ( )
with the simple equation
dE},
-k _ e 8
p € (8)

In this paper, only one Reynolds number Re = 1/v is reported with Re = 40000. This
high value has required a mesh of 5400% nodes to reach the DNS accuracy. Using some
symmetries of the problem, the number of degrees of freedom actually considered has
been reduced by a factor 8 by limiting the calculation to the impermeable sub-box 73.
The flow has been simulated from ¢ = 0 to ¢ = 20 while generating a database composed
of instantaneous fields and turbulent statistics. The state of the flow at two characteristic
times is illustrated in figure 1 by visualization of the Q-criterion.

3.2 A posteriori analysis

To assess the various LES performed for this study, two mesh resolutions have been
addressed. The High Resolution (HR) and Low Resolution (LR) terms refer to the use
of 5403 and 216 mesh nodes respectively. This corresponds to ratios Azpps/ATpng =
(10,25) which are associated to a reduction of the computational cost by 10? (0.01%) and
25 (0.000256%) respectively. In view of these drastic computational savings, both cases
can be seen as very challenging while enabling LES to potentially capture more than 97%
(HR) and 92% (LR) of the kinetic energy throughout the simulation. The time evolution
of the unfiltered/filtered kinetic energy and their associated dissipation are presented in
figure 2. Filtered data are obtained using the prediction of the Pao-like solver as explained
in [23].

In order to assess that kinetic energy conservation is ensured by the convective term
discretization, two preliminary calculations have been performed by removing the viscous
term at high and low resolution (HR-LR). These type of calculations can be designated as
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Figure 1: Isosurface of Q-criterion at ¢t = 10 (left) and ¢ = 15 (right). DNS data in the sub-box 7% with
Q=4

solving the truncated Euler equations. For the time sequence 0 < ¢ < 20 considered while
choosing a timestep At close to the CFL limit at LR, the deviation from Ej = 0.125 is less
than 1%. Additionally, it has been checked that the loss of kinetic energy approximately
scales on At? as expected for the third-order time advancement scheme used here. The
analysis of kinetic energy spectra E(k) clearly shows that the flow progressively evolves as
a white noise with E(k) ~ k? corresponding to fully thermalized state [6]. This behaviour
is illustrated in figure 3.

Two additional preliminary calculations have been carried out by solving the Navier-
Stokes equations at HR/LR but without any attempt to model SGS effects, neither ex-
plicitly nor implicitly. The kinetic energy spectra obtained for these “no-model LES” are
presented in figure 4. At LR, a thermalization can be observed on more than 80% of
wavenumbers with a spectacular pile-up of F(k) near the cutoff wavenumber k. as soon
as t = 5. As expected, the extension of this pile-up is more limited at HR thanks to
the molecular dissipation which prevents the establishment of a wide thermalized zone
in the wavenumber range considered. However, the examination of instantaneous fields
clearly shows that the solution is subjected to spurious numerical oscillations in the whole
computational domain similarly to the LR case (see figure 7 for an illustration based on
the @Q-criterion). The lack of physical realism of this type of no-model solutions can be
confirmed by comparing the time evolution of the resulting total dissipation & = —dFE},/dt
with its filtered DNS counterpart. This comparison is presented in figure 5. It can clearly
observed that the lack of any SGS modelling leads to completely wrong prediction with
a dramatic overestimation of the dissipation during the turbulence breakdown due to the
partial thermalization which magnifies the viscous friction phenomena. This paradoxi-
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Figure 2: Time evolution of the unfiltered and filtered kinetic energy and its associated dissipation.

10 K 100 10 100

Figure 3: Energy spectra E(k,t) at t = 5,10, 15,20 when solving the truncated Euler equations. Left:
HR case. Right: LR case.

cal situation, in which a subdissipative operator leads eventually to an overdissipative
behaviour, has already been reported by [9]. These two no-model LES lead to two impor-
tant conclusions. First, when free from numerical dissipation, the discretization itself has
no implicit filtering effect on any scale captured by the LES mesh. This implicit filtering
effect of the mesh, sometimes claimed in the LES community, is not at all recovered here
due to the feature of kinetic energy conservation. The second conclusion is that a relevant
SGS modelling is required to expect realistic results.

Figure 5 compares the time evolution of the dissipation & for the Smagorinsky model
and for the present technique of implicit SVV at HR and LR. For the Smagorinsky model
at HR, two options are tested: (i) standard condition where the separation scale is adjusted
on the cell size A = Agz; (i) improved condition where this adjustment is designed to
better ensure the numerical convergence A = 2.5Az. Although it is fully recognized
that only the improved condition is numerically meaningful (see for instance [13]), it is
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Figure 4: Energy spectra E(k,t) at t = 5,10, 15,20 obtained by no-model LES. Left: HR case. Right:
LR case.

almost never used by the LES community. The effect of using a cell size Az smaller
than the separation scale A has been investigated by [9] by considering the Taylor-Green
vortex problem at lower Reynolds number Re = 5000. It was shown that the standard
condition A = Az leads to a solution that is far from numerical convergence while being
subjected to spurious oscillations. The increase of the ratio A/Ax was found to restore
the numerical convergence but only slowly (see [9] for more details). Here, this type of
sensitivity is examined at significantly higher Reynolds number.

The quality of the present LES predictions can be evaluated through their deviation
from the ideal curve obtained by filtering the DNS data. At HR (see figure 5-left), by
reference to the no-model LES, the improvement provided by the Smagorinsky model is
significant but the best prediction is obtained by the implicit LES. For the latter, the
dissipation curve is found to match closely its DNS reference with only a slight overes-
timation of the peak. Omnce the turbulence breakdown completed (at ¢ = 11), a very
good agreement with filtered DNS is recovered. Interestingly, it can be observed that
the improved condition A = 2.5Ax makes the Smagorinsky model clearly more accurate.
However, it cannot outperform the implicit SVV while requiring an extra computational
cost connected to the calculation of the divergence of (3) in the governing equation (1). At
LR (see figure 5-right), the results given by the Smagorinsky model becomes completely
unrealistic with a marginal improvement by comparison to the no-model case. This very
poor prediction can be again interpreted as the consequence of the use of the standard
condition A = Az for which no numerical accuracy should be expected. The use of HR
mesh with Az = A/2.5 while keeping constant A clearly confirms the complete inade-
quacy of the standard condition A = Az for which the solution is far from numerical
convergence, especially for the present high Reynolds number.

By comparison to HR, implicit SVV is less efficient at LR with a significant loss of
accuracy. From the early transition ¢ 2 6, this implicit SGS model is found underdis-
sipative while missing the dissipation peak and with also the erroneous prediction of a
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Figure 5: Time evolution of the total dissipation & predicted by LES. Left: HR cases. Right: LR cases.
(except Smag. Az = A/2.5). The cases Smag. A = 2.5Az (left-top) and Smag. Az = A/2.5 (right-top)
correspond to the same calculation.

secondary peak at ¢t &~ 10. The overall agreement with filtered DNS is clearly better than
for the Smagorinsky model, but it cannot be considered as fully satisfactory, especially
during the transition. The fundamental reason of this discrepancy is the main subject of
subsection 3.3.

Before going further in this analysis, it is worth comparing the spectra obtained using
the Smagorinsky model with their counterparts using the implicit SVV as presented in
figure 6. It can observed that the Smagorinsky model in standard condition A = Az
is unable to control the pile-up of kinetic energy near the cutoff wavenumber k.. As for
the no-model LES, this partial thermalization corresponds to the development of small-
scale spurious oscillations everywhere in the computational domain. This pile-up is less
pronounced than for the no-model LES (see figure 4 for comparison), especially at HR
for which the improvement provided by the Smagorinsky model is significant. On the
contrary, the use of implicit SVV is found to remarkably damp E(k) in the wavenumber
range k./2 < k S k. for both HR and LR. This ability to prevent any thermalization
is interpreted as the most important condition of present implicit LES to enable the
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Figure 6: Energy spectra E(k,t) at t = 5,10, 15,20. Left: HR cases. Right: LR cases.
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production of realistic and accurate results. Even the improved condition A = 2.5Azx
with the Smagorinsky model cannot remove correctly the thermalization, especially at
the early transition ¢ = 5 where a clear pile-up of kinetic energy can be observed in figure
6. This is the confirmation of the poor filtering effect of the Smagorinsky model which is
against the numerical accuracy as already observed by [9] at lower Reynolds number.

The loss of physical realism of the vortical structures in presence of spurious oscillations
can also be clearly exhibited by instantaneous visualization based on Q)-criterion as shown
in figure 7 for ¢t = 10. Numerical noise completely hides the large-scale organisation of the
flow for the no-model case at LR. For the Smagorinsky model with A = Az, unrealistic
small-scale oscillations can be seen at LR and also at HR to a lesser extent. The use of
A = 2.5Ax at HR with this model seems to fix this problem but it must be mentioned that
spurious oscillations are visible at the start of the turbulence breakdown (not shown). For
the LES based on implicit SVV, vortical structures are not polluted by numerical noise.
Their characteristic scale is consistent to what can expected from a filtered solution with
a smoothing that is logically more pronounced at LR by comparison to HR.

3.3 A priori analysis

The DNS database can be more extensively used to understand why implicit LES is
found to be underdissipative at LR. Because implicit SVV can fully prevents partial ther-
malization for both HR and LR, the reason of its underdissipative behaviour at LR must
be found elsewhere. As explained in subsection 2.2, a filter consistent with the implicit
SVV can be obtained by solving the Lin equation using a simplified Pao-like spectral
closure [9]. The application of this filter in every spatial direction on the DNS solution
enables a consistent definition of the targeted LES solution that can be used as reference
as it was done in section 3.2 to provide the “filtered DNS” data. This methodology can
be extended to compute various LS and SGS contributions. The resulting decomposition
is illustrated in figure 8 where the total dissipation € associated with the filtered kinetic
energy L is compared with the dissipation e, the LS dissipation e.¢ and the SGS dissi-
pation eggg with & = 9 + €sgs. It can be observed that the main contribution to the
dissipation comes from SGS with a ratio eggs/€ up to 77% at HR and 93% at LR. These
ratios clearly emphasize the major role that must be played by the SGS modelling for this
high Reynolds number case.

Although the expected dissipation £ggs is already a precious information, the know-
ledge of its distribution through scales is essential to determine the scale selectivity of an
ideal SGS modelling. As shown by [23], this scale by scale analysis can be based on the
LS Lin equation written in the following form

(% + 21/]4:2) E(k,t) = T(k,t) + Tsas(k,t) )

where E(k,t) is the kinetic energy spectrum of the filtered solution, T'(k,t) the transfer
term involving only the filtered solution and Tsgg(k,t) the remaining term that describes
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Figure 7: Isosurface of Q-criterion at ¢t = 10. LES data in the sub-box 7% with Q = 4.
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Figure 8: Time evolution of the viscous LS, SGS, SGS for k£ < k./4, filtered DNS and full DNS
dissipations (ers, €5a5s, £5G5_,, 45 & €)- Left: HR case. Right: LR case.

transfers between the supergrid and subgrid scales. Tsgs(k,t) corresponds, in absolute
value, to the spectral density of esgg with

ke
£8GSs — */ TSGS(k,t) dk. (10)
0

Equivalently, it is common to introduce the spectral eddy viscosity

 Tsas(k 1)

vi(k,t) = 2k2E (k. t)

(11)
that makes easier comparison with molecular and eddy viscosity, even if the latter is based
on Boussinesq’s hypothesis whereas the definition of v4(k,t) is exact in the framework of
Fourier analysis.

Using the present DNS database, the spectral eddy viscosity associated with the im-
plicit SVV filtering at HR and LR is presented in figure 9 at four characteristic times
t = 5,10, 15 and 20 and using a normalization with the molecular viscosity v. At HR as
well as at LR, vy(k,t)/v is maximum at the cutoff wave number k. with a k-dependency
corresponding qualitatively to a hyperviscous behaviour. This ”cusp” behaviour, pre-
dicted by two-point closure theories at high Reynolds number [19, 4, 25] and with a
sharp scale separation in the Fourier space, is recovered here despite the use of a more
progressive decomposition between LS and SGS. It is the signature of triad interactions
between the subgrid and the smallest supergrid scales. An important remark is that after
the early transition, the levels of 14(k., t)/v are about one order of magnitude lower than
the predicted values of vy for the considered ratios Azpps/Axpns = (10,25) associated
with HR and LR. Another difference with the implicit SVV is that v;(k.,t)/v is actu-
ally non-vanishing at small wavenumbers. Time evolving “plateau” values, to use the
terminology employed by [19, 4, 25], can be clearly observed in figure 9, with spectral
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Figure 9: Spectral eddy viscosity v;(k,t) at t = 5,10, 15 and 20. Left: HR case. Right: LR case.

eddy viscosity more than 10 times the molecular viscosity at ¢ = 10 (when the turbulence
breakdown is maximum) for the LR case. For the HR case, a similar plateau in the range
10 < k < 100 can be observed but with a spectral eddy viscosity only about twice the
molecular viscosity. Considering this drastic change of v4(k,t) levels depending on the
ratio Azxpps/Azpng, it can be understood why implicit SVV is found to be underdissi-
pative at LR. The lack of any SGS dissipation at very LS, as a fundamental assumption
in implicit LES, is not compatible with the major role of distant triad interactions.
The fraction of SGS dissipation at very LS

ke/4
ESGS<kC/4 = —A Tscs(k,t) dk (12)

is presented in figure 8. It can be more than 14%-24% of esqs for the HR-LR cases
respectively, during the turbulence breakdown, with a strong decrease thereafter for the
HR case (about 1.5% at ¢ = 20) but a non-negligible contribution until the end of the
calculation for the LR case (about 15% at ¢ = 20). This is the clear indication that
the assumption of zero SGS influence at very LS can be accepted for moderate ratios
Axpps/Azpys (i-e. highly resolved LES) while being unrealistic for more challenging
situation where the LES is performed using a very coarse mesh by comparison to DNS.
Implicit SGS modelling is essentially inactive at very LS while concentrating its in-
fluence on the smallest scales potentially captured by the LES. This scale selectivity is
an attractive feature through the ability to efficiently damp spurious oscillations at small
scale as a way to control numerical errors. However, it is known that a too selective
dissipative operator has the potential to interfere with the turbulent cascade through a
too strong interruption of the kinetic energy flux from large to small scales. In that case,
a pile-up of energy is observed at the smallest scales free from extra dissipation. This
phenomenon, refereed to as "bottleneck effect”, can be observed in figure 10 through the
presence of bumps on the present implicit LES spectra. The extension of these bumps is
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Figure 10: Energy spectra E(k,t) at t = 10 and 15. Left: HR case. Right: LR case.

within the wavenumber range k./6 < k < k./2 while being more marked at LR. At HR,
once the turbulent breakdown completed, it is worth noting that the bump is damped
(see figure 10-left/bottom) with only a very slight bottleneck effect. These observations
confirm that the framework of implicit LES should be restricted to situations where the
computational mesh is not too coarse by comparison to DNS.

It could be thought that the combination of the Smagorinsky model with the implicit
SVV is a way to both prevent the development of spurious oscillations at small scale
while applying an explicit SGS at very LS. This mixed explicit/implicit SGS modelling
has been tried but was unsuccessful. The resulting time evolution of the total dissipation
€ is shown in figure 5. Schematically, it can be considered that the dominant influence
comes from the implicit SVV component without any ability of the Smagorinsky model
component to increase £ during the transition. The only significant difference with the
purely implicit LES is that the spurious secondary peak is removed. Even if this change
moves in the direction of improving the agreement with filtered DNS data, it is difficult
to identify the origin of this phenomenon which could be only an artefact free from any
physical meaning.
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4 LES OF PIPE FLOW
4.1 Flow configuration and DNS of reference

To consider the pipe geometry, as already mentioned in section 2.2, an immersed bound-
ary technique is used to ensure the no-slip boundary condition at the wall while using
a regular Cartesian mesh. This approach avoids the need for near-wall mesh refinement
while providing an irregular mesh node distribution in terms of wall distance. A simi-
lar computational configuration has already been used by [8] and accurate basic statistics
have been obtained despite the use of a coarse mesh in terms of wall units in the transverse
directions: Azt = Ayt = 5.5. These unexpected results, against the usual recommen-
dation of near-wall refinement to capture small-scale structures close to the wall, were
obtained at the global Reynolds number Rep = 19000, where D is the pipe diameter.

Here, the goal is to similarly investigate a higher Reynolds number case Rep = 37700
for which Re, = 1000 is the nominal value of the Reynolds number based on the friction
velocity u, and the radius R = D/2. For this particular flow configuration, accurate
DNS results are documented in [18]. As a first step, a quasi-DNS has been performed
with a mesh of ny x n, x n, = 768 x 768 x 1920 nodes, in a computational domain
of Ly x Ly x L, = 1.12D x 1.12D x 12.5D, with periodic boundary conditions for the
three directions of space. The pipe length L, = 12.5D is the same as in [18] and the
computational domain is slightly oversized in the (z,y) directions for improved accuracy
of the immersed boundary technique. The resulting mesh resolution in the transverse
directions Azt = Ay™ &~ 2.9 is finer in wall units than in [8] but remains beyond the
typical recommandation for DNS/LES that suggests a cell size Az for which the minimal
scale computed with accuracy L, = 4Axz may capture the thickness of the viscous
sublayer, i.e., L. < 5. For the present resolution, we have instead L. = 11.6. Despite
the resulting bypass of the viscous sublayer, it can be seen in figure 11 that a remarkable
agreement with the reference DNS results of [18] is obtained for the mean velocity and
Reynolds stress profiles. We refer here to quasi-DNS because this agreement is achieved
by using a slight amount of numerical dissipation highly concentrated at small scales.
As far as these basic statistics are concerned, it can be concluded that the ability of the
computational mesh to capture the viscous sublayer is not mandatory. Thanks to this, it
is estimated that the computational cost of the present quasi-DNS is reduced by about
two orders of magnitude by comparison to the DNS of [18].

The main purpose of this quasi-DNS was the generation of an easy-to-handle database,
in which results can be freely post-processed and filtered DNS data can be easily estimated
consistently with the implicit SVV. Thanks to the use of periodic conditions, together with
the solution reconstruction provided by the immersed boundary as explained in [10, 8], the
same filtering technique as in section 3 is employed here to enable rigorous comparison
between implicit LES and filtered-DNS results for the present pipe flow configuration.
This comparison is the subject of the next section.
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Figure 11: Mean velocity (left) and Reynolds stress (right) profiles. Comparison of the present quasi-
DNS data with the reference DNS data of [18].

4.2 Results

The present LES results have been obtained using a mesh of n, x n, x n, = 320 x
320 x 960 nodes in a computational domain of L, X L, X L, = 1.44D x 1.44D x 12.5D3,
corresponding to ratios of Azgs/Az,pns =~ 3.1 and Azpps/Az;pns = 2. In terms of
cost, these ratios represent a least computational saving when compared to the Taylor-
Green vortex cases in section 3. Such a limitation is inherent to LES of wall turbulence
given the near-wall scaling of statistics in wall units. However, it is interesting to highlight
that, by comparison to a conventional DNS based on a distorted mesh with near-wall
refinement, the actual computational cost is about 0.03%.

The near-wall mesh resolution of the present LES is particularly coarse: Azt = Ayt ~
9 corresponding to Lt. = 36. With such a cell size in the wall-normal direction, for
which not only the viscous sublayer but even the turbulent production region is bypassed
in terms of scale, it is highly questionable to refer to an explicit calculation of near-wall
turbulence. This critical point is confirmed by the no-model LES for which the obtained
turbulent statistics are completely unrealistic as shown in figure 12. Note that for the sake
of simplicity, only the turbulent kinetic energy profiles are presented to assess the quality
of the velocity fluctuations. The corresponding friction velocity u, is overestimated by
15%, as a clear indication that the predicted turbulent dynamics in the near-wall region
is unphysical. This point can be confirmed by the instantaneous axial velocity view in
figure 13 where spurious phenomena at small scales can be identified for the no-model
LES, especially in the neighbourhood of the wall. This numerical noise seems to distort the
large-scale dynamics of the near-wall structures. For the present pipe flow and similarly to
the Taylor-Green vortex problem, it can be concluded that without any SGS modelling, a
spurious partial thermalization artificially magnifies the friction phenomena without any
link to physics.

3The use of a slightly extended domain in (z,y) is for improving the reconstruction of the solution
inside the immersed boundary as explained in [8].
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Figure 12: Mean velocity (left) and turbulent kinetic energy (right) profiles. Comparison between
no-model and implicit LES.

The use of implicit SVV leads to a remarkable improvement of the LES results. First,
the friction velocity w, is estimated with an accuracy of about 1%. However, it must be
recognized that this prediction of u, is somewhat sensitive to the choice of v and the
scale selectivity of the implicit modelling. Here, we have used the value predicted by the
Pao-like solver for Az;pns/Azpps = 2 while concentrating the numerical dissipation near
the cutoff wave number in order to reduce the influence of implicit SVV at LS. Naturally,
the prediction from the Pao-like solver, based on the assumption of homogeneous isotropic
turbulence, should be considered as only indicative for the present pipe flow, especially
in the near-wall zone. Despite this rough approximation, convincing statistics can be
obtained as shown in figure 12. By comparison to the no-model case, the improvement
achieved with the implicit SVV is spectacular. Since the computational grid is strictly
identical for the no-model and implicit LES, and keeping in mind that L, = 36 is the
minimal scale captured with accuracy in this context, it can be stated that the implicit
SVV behaves as a wall-layer model.

The fundamental reason of this unexpected wall-layer modelling feature remains to be
clarified. Similarly to the Taylor-Green vortex problem, the ability of numerical dissipa-
tion to control the development of numerical noise seems to be a necessary condition for a
successful prediction of basic statistics. This ability is illustrated in figure 13 where it can
be seen that the smoothness of the longitudinal velocity fluctuations is restored by the
implicit SVV in agreement with the patterns obtained by quasi-DNS. Because no vortical
structure smaller than the thickness of the turbulent production zone can be captured by
the present LES mesh, it cannot be referred to any explicit calculation of near-wall tur-
bulence. Since the only source of modelling comes from the extra numerical dissipation,
an interpretation in terms of implicit wall-layer modelling seems to be reasonable.

Before proceeding to the conclusion, it should be mentioned that the value of the
kinetic energy in the very near-wall region is estimated from the mesh nodes very close
to the wall through the data projection from the Cartesian to the cylindrical coordinate
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Figure 13: Visualisation of the instantaneous axial velocity. Left: quasi-DNS. Centre: no-model LES.
Right: implicit LES.

systems (see [8] for more explanations). A careful examination of each node contribution
shows that the resulting azimuthal average associated with this projection contains error
compensations that are related to the azimuthal location of the nodes and are caused by
the immersed boundary method. An improvement of this technique is under progress to
reduce the phenomenon and hopefully achieve more accurate turbulent statistics.

5 CONCLUSION

Implicit LES is a fuzzy concept in the sense that it is not based on well defined governing
equations with a wide variety of techniques to obtain the expected regularization. The
bet is that solving Navier-Stokes equations using a coarse mesh (by comparison with
DNS) can provide a physically acceptable solution when the numerical errors are scale
selective with high accuracy at LS and artificial dissipation at small scales. In this study,
by considering two academic flows representative of turbulence with and without wall, it
is shown that this pragmatic strategy can give more accurate results than conventional
LES based on explicit SGS modelling, at least for the Smagorinsky model considered here.

The main message of this paper is that numerical accuracy is the most important
condition to obtain reliable results by LES. The notion of numerical accuracy can be
easily defined in the context of DNS through the feature of numerical convergence. In
conventional LES based on explicit SGS modelling, this feature is preserved if the cell size
Az goes to zero while keeping constant the separation scale A. In marginal conditions
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where Az is only adjusted on A, as does the vast majority of LES users, it is shown that the
solution is far from numerical convergence while being highly corrupted by spurious small-
scale oscillations, a situation that corresponds to partial thermalization. The use of a more
refined mesh can reduce these numerical errors but the numerical convergence is found to
be very slow because even the condition Az = A /2.5 is not enough to completely prevent
partial thermalization. Moreover, even when the numerical convergence is reached, the
Smagorinsky model has only a weak filtering effect with a resulting low potential for
reduction of the number of degrees of freedom of the problem [9].

In implicit LES, the assessment of numerical convergence is more difficult because this
approach is essentially discrete. The choice of the computational mesh determines the
implicit LES solution without any other reference than Az to estimate the separation
scale A. Note however that [9] have shown that, thanks to the ability of implicit LES
to control the development of spurious small-scale oscillations, the resulting solution can
be considered as numerically converged. This control is probably the main quality of
any implicit LES. In this study, it is observed that the quality of LES predictions mainly
depends on the ability of the SGS modelling to prevent thermalization. The more this
thermalization is extended, the less accurate the results are. Since implicit LES is designed
to avoid any thermalization, it has a natural advantage over conventional LES based on
explicit SGS modelling.

One original conclusion of this work is that avoiding thermalization is also highly ben-
eficial for the computation of wall turbulence, enabling the use of a very coarse mesh in
the near-wall region. In this sense, the concept of implicit SGS modelling can be extended
to wall-layer modelling with the ability to capture realistically near-wall dynamics, with,
in particular, the correct prediction of basic turbulent statistics. The useful recommen-
dation of mesh refinement near the wall can be overcome through a bypass of the viscous
sublayer, a bypass that can be even extended beyond the turbulent production region.
This unexpected feature needs to be further investigated to accurately determine what
is missed by this straightforward implicit wall-layer modelling depending on the turbu-
lent statistics considered. In particular, it would be interesting to compare the near-wall
numerical dissipation with its molecular counterpart in the framework of a priori and a
posteriori analysis as it is done here for the Taylor-Green vortex problem.

Finally, it has to be recognized that when the number of degrees of freedom of LES is
strongly reduced by comparison to DNS, the implicit SGS modelling strategy is incom-
plete. The modelling of distant interactions between very LS and SGS is clearly missing
because implicit SGS modelling is essentially inactive at very LS (vanishing feature of
the numerical dissipation). Further development is required to ensure this specific mod-
elling. Because by construction, numerical errors are minimum at very LS, it can be
anticipated that the modelling of SGS effects on this range of scales has to be explicit.
Then, a favourable option could be a mixed implicit/explicit SGS modelling. Thanks to
the scale selectivity of the implicit modelling, which makes it inactive at LS, it can be
simply superimposed on the explicit modelling. In the spectral range where both implicit
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and explicit modelling are active (i.e. at small scale), it can be foreseen that implicit dis-
sipation will dominate its explicit counterpart thanks to the hyperviscous feature. This
straightforward implementation is tested in this study with the Smagorinsky model. No
significant improvement has been observed for the reason that the Smagorinsky model is
not a good candidate for SGS modelling at very LS. Further investigation is needed to
establish the physical scaling of SGS dissipation at very LS and then propose a specific
modelling term.
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Abstract

When molecular motors are present in the solvent of a polymer gel composed of
DNA strands, it is observed that, when the motors are active, the gel shrinks. This
is caused by the molecular motors attaching to the DNA strands and reeling them
in. The power generated by these motors is obtained by ATP hydrolysis reaction,
which transduces chemical energy into mechanical work. The process is controlled
by signals of an electrochemical nature that trigger motor activity. Gel shrinkage
is accompanied by a significant stiffening of its elastic modulus. The molecular
motors separate into two families; one family remains permanently attached to the
DNA chains and cause a steady-state shrinkage and stiffening. The other family of
motors attaches to DNA chains, causes transient shrinkage and stiffening, and then
detaches. We propose a theory based on non-equilibrium thermodynamics to
describe this mechanical behavior. The phenomena are considered to occur due to
the molecular motors increasing the effective cross-link density in the polymer
network, thereby reducing system entropy. This outcome is shown to both shrink
the gel and stiffen it. The theory is then applied to a swollen polymer network, with
solvent diffusion and neo-Hookean elastic behavior used to describe the transient
passive response of the gel. Results from simulation of active uniaxial contraction
of a slab of gel is compared with experimental results for the behavior of a bead
embedded in a gel. Good agreement is found.
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Abstract. In this paper, a patient-specific finite element (FE) model is created for a
mitral valve diagnosed with Barlow disease. The FE model is constructed from three-
dimensional (3D) echocardiographic data. The mitral valve leaflets and the chordae
tendineae are modelled with hyperelastic materials. Patient-specific annular and pap-
illary muscle motions are used as boundary conditions in the analyses. The FE model of
this Barlow mitral valve is used to predict the location of mitral regurgitation.

The global response of the mitral valve model is compared with echocardiographic mea-
surements, and with the patients lesions observed pre- and intraoperatively. The re-
sults showed regurgitation at both commissures, and the FE model aligned well with the
echocardiographic measurements at peak systole.

1 Introduction

The mitral valve is a complex structure that separates the left atrium from the left
ventricle, ensuring one-way blood flow between the two heart chambers. This valvular
structure consists of several components: the anterior and posterior leaflets, the annulus,
chordae tendineae and the papillary muscles. The annulus is situated at the intersection
between the left atrium and the left ventricle, and functions as an attachment ring for the
two leaflets. Moreover, from the ventricular wall, the papillary muscles originate. From
the papillary muscles, the chordae tendineae branches out and insert into the posterior

27



Hans Martin Dahl Aguilera, Victorien Prot, Bjorn Skallerud and Stig Urheim

and anterior leaflets. During the cardiac cycle, the components of the mitral valve work
in concert in order to achieve proper closure at systole, enabling unidirectional blood
flow. Furthermore, Carpentier et al.[1] divided the posterior and anterior leaflets into six
different segments described in figure 1.

PC
AC .
s Anterior leaflet

P2 | r ‘[!Er“

Figure 1: Atrial view of the mitral valve with leaflet segmentation. Anterolateral
Commissure (AC), posteromedial Commissure (PC). Taken from [1].

The second most common valvular heart disease in European countries is mitral regur-
gitation [2]. Mitral regurgitation is predominantly caused by degenerative diseases such
as Fibroelastic Deficiency or Barlow disease (BD), where the latter is the topic of this
paper. BD affects the entire mitral valve apparatus, where a severely dilated annulus,
excessive leaflet tissue, billowing or prolapse of the leaflets, myxomatous degeneration
and chordae alterations are characteristic lesions. Another characteristic feature related
to BD is that the annular saddle shape flattens, and overstretches at end systole[3]. Fur-
thermore, Barlow disease is mainly observed in patients younger than the age of 60 [4].
The work by Hjortnaes et al.[5] studied the histological changes in the mitral valve due
to Barlow’s disease. It was observed that the thickening of the mitral valve leaflets was
caused by gathering of water absorbent proteins (proteoglycans) in the spongiosa layer,
and intimal thickening of the fibrosa and atrialis.

Repairing a Barlow mitral valve is a complex procedure, and often the whole mitral
apparatus must be assessed. Reconstructive surgery of the mitral valve may include
annuloplasty, different sliding and resection techniques and artificial chordal insertions.
Sophisticated imaging techniques have in recent years become available, leading to a
greater understanding of the mitral valve dynamics. The motivation for this paper is to
develop a patient-specific finite element model of a Barlow mitral valve before surgical
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treatment. The development of such a model will hopefully enable us to predict the
location of mitral regurgitation. Furthermore, with a realistic model it should be possible
to perform surgical procedures in silico, optimizing and creating a patient-specific repair
procedure. To the authors’ knowledge, this is the first time a Barlow mitral valve has
been studied using a finite element model.

This paper is organized as follows. First, the patient’s pathology is presented. Then
the material models, the FE geometry and boundary conditions are described. Thereafter,
the results are presented and discussed. Finally, conclusions from the study are given.

2 Methods
2.1 Patient and echocardiographic measurement

In this section the studied patient, his lesions and the surgical procedures performed
are briefly described.

The patient is a 45 year old male who was diagnosed with Barlow’s disease and operated
in 2017 with mitral valve repair. The patient had a severely dilated annulus with excessive
leaflet tissue and mitral regurgitation. From echocardiographic findings, multiple jets of
mitral regurgitation in mid to late systole were observed. The most severe regurgitation
was located in the posteromedial region with billowing (A2-A3-P3) and prolapse of the
P3 segment. A less severe regurgitation jet was observed in the anterolateral region due
to prolapse of P1. Mitral annular disjunction (MAD) of 10 mm was observed in the P1-P2
region.

The patient received an annuloplasty ring of size 38, triangular resection and sliding
of P2 in order to reduce the height of the P2 segment. Furthermore, there was inserted
2x4 neo chordae (Goretex 5-0) from each papillary muscle and to the edge of the A2 and
P2 segment. Lastly, there was performed a transposition of secondary P2 chordae to the
free edge of the P2 segment.

2.2 Continuum mechanical framework and constitutive models
Kinematics

We consider a deformable body in two different instantaneous configurations €2y and
), representing the reference and current configuration, respectively. A particle in the
reference configuration g is defined by the position vector X. The position of the same
particle in the current configuration € is further defined by the the vector x. The rela-
tionship between the two configurations is described by the deformation map relationship

x = x(X,t). The deformation gradient F is defined as
ox
F=—. 1
X (1)

The volume ratio is defined as J = detF, where J = 1 describes an isochoric transforma-
tion. Furthermore, the right and left Cauchy-Green tensors are defined as C = FTF and
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b = FFT respectively. Furthermore, the distortional part of the right and left Cauchy-
Green can be written as C = J 3FTF and b = J 3FFT

For an anisotropic material reinforced by a family of fibres, the fibre direction in the
reference configuration is defined by the unit vector ag. The mapping of the fibre direction
from the reference configuration to the current configuration is expressed as a = Fay.

Strain-energy function and stress tensors

For hyperelastic materials a strain-energy function V¥ is introduced in order to describe
the response of the material. The strain-energy function ¥ for incompressible materials
can be expressed in terms of five invariants, Iy, I, J, Iy, I5 as,

\II:@(117127]47]5)+p(1_'])7 (2)

where the principal invariants of C (i.e., I1, I5, J) are related to isotropic elasticity and
defined as,

L —tr(C), I — %Uf — 4 (C2)], J = \/det(C). 3)

For an incompressible material the third invariant can be written as J = 1. The invariants
14, I describe the transversely isotropic properties of the material, expressed by the fibre
direction in the reference configuration ay and the right Cauchy-Green tensor C,

Iy=ay-Cay, Is=ap- C2ao» (4)

and p is the Lagrange multiplier. The second Piola-Kirchhoff stress tensor S can be
derived from 2 giving,

LI )

-2y =
S £ 31, 9C

+pCL, (5)

where the scalar p can be determined from the plane stress condition. In this work, we
apply this constitutive model to mitral leaflets that may be considered as thin sheets,
thus assuming that the stress in the out of plane direction (denoded 3-direction) Sss is
zero leads to:

NN )

T4 01, 0Css
23

Cs. (6)

p:

Lastly the second Piola-Kirchhoff stress tensor S can be transformed to the Cauchy stress
tensor o= %FSFT by the push-forward operation of S [6]. This was used for material
parameter fitting presented in section 2.3.
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2.3 Material models and parameters

The constitutive model used to analyse the response of the leaflets, is a hyperelastic
anisotropic material model, which is available through the material library in Abaqus.
The material model was originally developed in order to model the mechanical response of
arterial layers with a distributed collagen fibre orientation [7]. The strain-energy function
W is defined in terms of the deviatoric strain invariants I; and I, which are defined as,

Il :tTC7 14 = Qq ~6~a0. (7)
Thus,
o , 1 /(%) -1 ki
L.0) = Coll, —3) 4+ — (1= 2 P 2@ _ 1
W( 1, 4) 010( 1 3) + D ( 9 ln(J)> + 2k2 (Pl’p ), (8)
with,

where Cg, D, ki, ko and k are temperature-dependent material parameters. Cq and ky
have the dimension MPa, while k5 is dimensionless. Furthermore, D is a material constant
that controls compressibility[8]. The dispersion parameter  describes the distribution of
the fibres. When x = 0, there is no dispersion of the fibres, while, kK = % describes an
isotropic material where the fibres are randomly distributed [9].

In order to describe the mechanical response of the mitral valve leaflets, the constitutive
model presented by [7] had to be fitted to experimental data. In the paper published by
May-Newman and Yin [10], a strain-energy function derived from experimental data with
corresponding material parameters is presented. The suggested model in [10] has an
exponential form in terms of the invariants I; and Ij.

(I, 1) = co[expcl(l173)2+02(\/ﬁfl)1 — 1] +p(J — 1), (10)

where ¢;, i=0,1,2, are material parameters, and p is the Lagrange-multiplier.

The Isgnonlin function from the Optimization Toolbox of Matlab was used to perform
a nonlinear least square fitting. In table 1, the acquired material parameters from the
non-linear regression is presented. Furthermore, figures 2 and 2.3 show the stress-stretch
relationship, comparing the obtained material parameters with the ones presented by
May-Newman and Yin[10]. The leaflets were modelled with a density of 1000 kg/m?®.

Table 1: Material parameters obtained from nonlinear data-fitting of experimental data
provided by [10]

cm(MPa) kl(MPa) kz K
Anterior leaflet | 0.001 0.0240 50.92 | 0.1728
Posterior leaflet | 0.001 0.0207 52.35 | 0.2669
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Figure 2: Cauchy-stress vs stretch curves for the anterior leaflet. Experimental data

provided by [10] and nonlinear data-fitting of the constitutive model described by [7].

Note that the 1-direction is aligned with the collagen fiber. a) equibaxial (A\; = A2), b)
strip biaxial (A2 = 1.1), ¢) off-biaxial (A;/Ae = 1.5), d) strip biaxial (A; = 1.1).

Table 2: Ogden model material parameters for modelling of chordae tendinae. Anterior
Marginal(AM), Anterior Strut(AS) and Posterior Marginal(PM). Human and ovine
material parameters.

Human Ovine

AM | AS PM | AM | AS PM
i (MPa) | 891 | 9.61 |9.57 |0.37 | 085 |0.66
oy 27.02 | 30.86 | 22.78 | 11.70 | 28.03 | 29.67
ua(MPa) | 12.19 | 7.99 |10.61 | 1.79 | 0.21 | 1.37
Qi 20.91 | 27.65 | 21.68 | 5.00 | 5.47 | 18.25
us(MPa) | 12.78 | 7.81 | 10.65 | 0.33 | 0.16 | 1.46
a3 20.89 | 30.00 | 21.35 | 34.06 | 25.06 | 19.45
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Figure 3: Cauchy-stress vs stretch curves for the posterior leaflet. Experimental data

provided by [10] and nonlinear data-fitting of the constitutive model described by [7].

Note that the 1-direction is aligned with the collagen fiber. a) equibaxial (A\; = A2), b)
strip biaxial (A = 1.1), ¢) off-biaxial (A;/A\s = 1.5), d) strip biaxial (A\; = 1.1).

Lastly, the Ogden strain-energy function is used in order to describe the chordae
tendineae. When assumed incompressible, the strain-energy function is,

N
2M’L (a7 (a7} o
xI/:Za2 (AT AT+ AG - 3), (11)
i=1 g

where p; and «; are material constants and /\?7 (j=1,2,3) are the principal stretches. The
material parameters used for the chordae are provided by Zuo et al.[11], and describe
the response of human chordae tendineae. Material parameters provided by [11] of ovine
chordae tendineae were also implemented in another analysis. Human chordae were shown
to be significantly stiffer than ovine chordae [11], and myxomatous chordae were found
to be 50% less stiff compared to human chordae [12]. Thus, ovine material parameters
were studied to compare the global response between the two. In table 2, the material
parameters for the marginal chordae and the strut chordae are presented. Lastly, the
mechanical response of human and ovine marginal chordae are plotted in figure 4.
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Figure 4: Nominal Stress vs Nominal Strain curves. Human and ovine chordae
material parameteres implemented in the Ogden material model.

2.4 Geometry

The patient-specific geometry was created from 3D echocardiographic data of a patient
diagnosed with Barlow disease. The recordings were imported into a Matlab GUI which
enables manual extraction of geometrical points. At the end-diastolic configuration the
annulus, leaflet edges and papillary muscle tips were identified (Figure 5).

The annulus was created by extracting points around the annular perimeter and per-
forming a cubic spline interpolation. The anterior and posterior leaflets were constructed
by identifying the leaflet edges and the tissue points as shown in figure 5, where the tissue
points (white circles in figure 5) are defined as the points between the annulus and the
free edge. For the free edge, a cubic interpolation is also performed, creating a continuous
line at the margin (figure 6). The extracted points were then imported into the CAD
software Rhino, where a non-uniform rational B-spline (NURBS) surface is created by
using the tissue points to guide the surface between the annulus and the free edge lines.
Furthermore, the papillary muscle tips are identified, and serve as the attachment points
for the chordae.

2.5 Chordae modelling

The chordae tendineae originate from the papillary muscles and insert into either the
leaflet edge, rough zone or the basal portion of the mitral valve leaflets. However, in this
paper the basal chordae are not considered, hence only the marginal and strut chordae
are modelled. The marginal chordae insert into the free edge of both the anterior and
posterior leaflets, while the strut chordae insert into the anterior leaflet only.

Twelve marginal chordae were modelled to originate from each papillary muscle. Each
marginal chordae was then split in a fan-like manner, inserting into the leaflet edge with
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Figure 5: Explanation of the anatomical components on an echocardiographic image,
end-diastolic configuration. Papillary Muscle Tips (stars), Posterior leaflet edge (left
triangle), Anterior leaflet edge (right triangle), Annulus (squares). White circles
represent the tissue points, extracted from the middle of the leaflets.

about five different insertion points as described by [13]. The branching was mainly done
in order to simulate a more anatomically correct model, where the branch origin was
set between the papillary muscle and the free edge (figure 7a). Moreover, the branching
led to a redistribution of stress on the leaflet edge, hence preventing excessive distorted
elements in the analysis. Lastly, the strut chordae is inserted into the rough zone of the
anterior leaflet, which is situated between the annulus and the free edge. As with the
marginal chordae, the strut chordae branches out in a fan-like manner. The branching is
distributed to the nearby nodes of the main insertion point (figure 7a).

The cross-sectional areas for human marginal and strut chordae was modelled to be
0.25 mm? and 1.27 mm? respectively. While, for the ovine chordae the cross-sectional
areas were modelled to be 0.26 mm? and 0.6 mm?. Here, the chordae were assumed to be
circular and calculated with the cross-sectional diameter presented in the paper published
by [11], which studied human and ovine cadaver hearts.

2.6 Finite element model

The end-diastolic finite element geometry constructed from the echocardiographic data
is depicted in figure 7. For the anterior and posterior leaflets, four noded general-purpose
shell elements (S4) were used. The chordae tendineae were modelled as two-noded 3D
truss elements (T3D2). Furthermore, the overall leaflet thickness was set to be 3mm,
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Figure 6: NURBS surface created from imported echocardiographic point cloud.
Annulus - green line, Tissue points represented in red and leaflet free edge - blue line.
NURBS surface

which is the average overall thickness of Barlow leaflets found by [5]. As for contact,
a general contact algorithm available in Abaqus was applied. The tangential contact
behaviour was set to frictionless and the normal contact behaviour was a hard contact
condition [9].

The material orientation applied to the mitral valve leaflets is obtained from small angle
light scattering (SALS) data presented by [14]. In [14], the mean collagen fibre direction
is observed to be perpendicular to the annulus near the commissures, and parallel to the
annulus at the middle of the leaflets. Moreover, the fibre direction is observed to gradually
rotate from parallel to perpendicular towards the commissures. Implementation of the
fibre direction in Abaqus is done by partitioning the leaflet into several regions. Then a
material orientation was assigned to each individual partitioned region (figure 7b).

2.7 Boundary conditions and loading

In order to model the boundary conditions, the dynamics of the papillary muscle tips
and the annulus were obtained using in vivo echocardiographic data. The geometry of
the annulus and the positions of the PMs are recorded for all time-frames, between end-
diastole and end-systole. As it is difficult to track material points from echocardiographic
measurements, the motion of the annulus was prescribed using displacement boundary
conditions determined from the acquired images, under the assumption that heterogeneity
in annular strain is small. First, the annular geometries of each time step were modelled
as periodic degree-3 spline curves parameterised by arc length. Then, the relative param-
eterisation of the annular curves was optimised to find the point-wise map that minimised
the total displacement between two consecutive curves as described by Rego et al. [15].
Between each configuration a linear interpolation is performed, creating a continuous
movement between the time-frames. These boundary conditions are then implemented
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Marginal
chordae

(a) Finite element model (b) Material orientation on anterior leaflet

Figure 7: (a) - Finite element model created from echocardiographic data. Posterior
leaflet (light gray), anterior leaflet (dark grey). (b) - Anterior leaflet material
orientation.
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Figure 8: Load Amplitude Curve in the Cardiac Cycle

into the Abaqus user subroutine VDISP.

A uniformly distributed pressure was applied to the leaflets’ ventricular surface, with
a patient specific peak pressure of 18.13 kPa (136mmHg). Furthermore, the amplitude
was modelled in order to follow a pressure curve similar to the one during the cardiac
cycle [16]. The pressure curve is presented in figure 8, where the pressure is applied to
the ventricular surface of the leaflets throughout systole.
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3 Results
3.1 Measurements of FE geometry

The geometry modelled from echocardiographic data has been compared with mea-
surements obtained in literature of a Barlow mitral valve and a healthy mitral valve. The
goal being to verify the geometry with anatomical measurements of Barlow mitral valves.
Furthermore, the Barlow mitral valve studied herein shows abnormal features such as
excessive tissue and a severely dilated annulus. The finite element model is measured in
both the end-diastolic and end-systolic configuration. In table 3 the measurements are
presented.

Table 3: Mitral valve measurements of the FE model, compared with measurements
from literature both in vitro and from 3D echocardiography. [13, 17, 18, 3]

FE model From Literature

ED |PS | Barlow (S) | Barlow (D) | Healthy (D)
Annular perimeter (mm) 170 | 160 | 158 +19 148+17 82 £7
IC diameter (mm) 50.83 | - 4549 46.6 £5 39.5 £34
AP diameter (mm) 45.02 | - 44 8 37.3 £6 32.2 £3.6
Anterior leaflet height (mm) | 32.07 | - - - 20 £2
Posterior leaflet height (mm) | 19.85 | - - - 12 £1
AC height (mm) 10.03 | - - - 7+l
PC height (mm) 12.05 | - - - 7+l
3D annular area (mm?) 2100 | 1625 | - 1500 £280 | -
3D total leaflet area (mm?) | 2645 | - 2302 £455 | 1850 £490 | -
Anterior leaflet area (mm?) | 1145 | - 1162 £276 | - -
Posterior leaflet area (mm?) | 1500 | - 1175 £306 -

IC- Intercommisural, AP-Anteroposterior, AC- Antelolateral Commissure,
PC-Posteriomedial commissure, ED-End Diastole, PS-Peak Systole, S-Systole, D-Diastole.

As can be seen in table 3, the FE model measurements coincide with the upper limits
of the diastolic Barlow measures extracted from literature [3, 17]. Furthermore, for each
time step, a mean annulus plane was calculated. Then, the annulus was projected onto
this mean plane and a two-dimensional (2D) area was computed and plotted against time
in figure 9a. This plot shows how much the annulus dilates throughout the whole cardiac
cycle. Then, the mean squared distance of the annulus to this plane was computed and
plotted in figure 9b, showing how much the annulus flattens during one full cardiac cycle.
The t-wave on the ECG signal is observed prior to 0.5s, hence the measurements in figure
9 represent systole from 0 to 0.5s. As can be seen in figure 9b, the annulus is distinctly
flattened during systole. Note that the end-diastolic configuration is the very last time
step in figure 9.
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Figure 9: Annular measurements and shape. ECG signal(solid curve), 2D area (circles)
and mean squared distance (squares).

3.2 Comparison with three-dimensional echocardiographic data

Figure 10 shows the global response at the A2-P2 region of the leaflet compared to
echocardiography at peak systole. As can be seen, there is a very good correspondence
between the echocardiographic measurements and the mitral valve models.

Posterior
Leaflet
Anterior
leaflet
Human
————— Ovine

Figure 10: Comparison between finite element models and echocardiography along the
A2-P2 leaflets at peak systolic pressure p=136mmHg, using human and ovine chordae
material parameters.
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3.3 Global Response

In this section, the global response of the finite element analysis is presented. Figure 11
depicts the valve closure from end-diastole to end-systole observed from the left atrium.

AC
PC i S

(a) p=0OmmHg (b) p=1mmHg (c) p=15mmHg

(e) p=136mmHg (f) p=125mmHg

(g) p=108mmHg (h) p=125mmHg

Figure 11: Valve closure of finite element model from end-diastole to end-systole. (a)
End-diastolic configuration, p=0 mmHg. (b) p=1 mmHg. (¢) First observation of
coapting surfaces, p=15 mmHg. (d) p=70 mmHg. (e) Peak systolic pressure,
p=136mmHg. (f) Late systolic regurgitation, p=125mmHg. (g) End-systolic
configuration, p=108 mmHg. (h) Cut-view of prolapse at the posteromedial side of the
P2 segment
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From figures 11(a-g) it can firstly be observed regurgitation at the anterolateral region
(A1-P1) throughout the whole analysis. Secondly, the annular motion is clearly observed
in figures 11(a-g). Lastly, in figure 11f, a late systolic regurgitation can be observed near
the posteromedial commissure (A3-P3). Figure 11h depicts a cut-view, showing what
appears to be prolapse at the posteromedial side of the P2 segment. The prolapse is
observed at the same time as the late systolic regurgitation in figure 11f. Note that the
prolapse is present until the end of systole.

3.4 Displacements

The norm of the displacement of points A and B (figure 12a) are plotted against time
in figure 12. Prior to the pressure being applied, it is observed that points A and B
move without any loading. These movements are due to the annular and papillary muscle
dynamics. Moreover, figure 12 shows that as the analysis approaches 0.1s (p=81 mmHg)
the leaflets tend to oscillate very little for the rest of the analysis. Lastly, in figure 12, the
displacements of points A and B are plotted to compare the leaflet response when ovine
and human chordae material parameters are implemented.

25
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5
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o
o
<
[}
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0 0.1 0.2 0.3 0.4

Time[s]

Figure 12: Norm of the displacement of points A and B, obtained with leaflet
parameters from table 1, and human and ovine chordae material parameters from table
2.

3.5 DMaterial parameter study

In this section the material parameters acquired from the nonlinear data-fitting is com-
pared with stiffer and softer material parameters for the leaflets. This is done in order to
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Figure 13: Displacement of point A obtained from analyses using stiffer and softer
material parameters compared with material parameters from nonlinear data-fitting.

observe if there is any difference in global response, when changing these parameters. In
figure 13a, the stress-stretch curves are plotted for an equibiaxial tensile test. Further-
more, in figure 13b the magnitude of point A is plotted, comparing the response from
table 1 with the stiffer and softer material parameters.

From figure 13b, the response is as expected. For the stiffer material there are small
oscillations during the analysis, and the displacement of point A at peak systole is 0.60mm
less for the stiffer material, compared with the material parameters obtained in table 1.
Moreover, the softer material clearly has higher oscillations throughout the analysis and
displaces 0.75mm higher than the material parameters from table 1 at peak systole. Lastly,
it is observed that during the first part of the analysis the response is similar for every
analysis. Even for the large difference in stiffness in figure 13a, the difference in leaflet
displacement in figure 13b is moderate.

3.6 Stresses

The leaflets von Mises stresses are plotted at peak systole (18.13 kPa) in figure 14.
High stress regions are observed near the location where the strut chordae is inserted into
the anterior leaflet and near the fibrous trigones. At the marginal chordae insertion points
there are also observed large von Mises stresses. However, high stresses are also observed
due to the implementation of material orientations, and is further discussed in the section

4.6.
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(a) Atrial view (b) Ventricular side of the anterior leaflet

Figure 14: von Mises stress of the mitral valve leaflets (MPa).

The maximum principal stress direction is plotted on the deformed leaflets in figure
15. As can be seen from figure 15a, the maximum principal stress is aligned with the
modelled material orientation for the anterior leaflet. The maximum principal stress for
the entire posterior leaflet is observed in figure 15b to be perpendicular to the annulus.
As a result, in the posterior leaflet, the maximum principal stress only aligns with the
assigned material orientation near the commissures.

SNEG, (fraction = -1.0)
W s wax Frincipal (2bs)

SNEG, (fraction = -1.0)
W s Max. Principal (2bs)

(a) Anterior leaflet (b) Posterior leaflet - atrial view

Figure 15: Maximum principal stress plotted on deformed mitral valve leaflets.
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4 Discussion
4.1 Global Response

The global response presented in section 3.3 shows that there is regurgitation at the
posteromedial region (A3-P3) at late-systole. Moreover, the posteromedial side of the P2
segment is observed to prolapse at late-systole causing the posterior leaflet to override the
anterior leaflet. These results are highly consistent with what we know about the patient’s
lesions, where regurgitation was detected in the posteromedial region at late systole.

In the anterolateral region (A1-P1), lack of closure in the FE model is observed through-
out the whole analysis. The severity of regurgitation in this region is high before and after
peak systole for the model. However, comparing the anterolateral regurgitation observed
in the patient, the obtained results did not fully coincide with the patient. The patient
experienced regurgitation due to prolapse of the P1 segment from mid systole, which is
not entirely what the FE model predicts. The echocardiographic modelling might be
the reason for the inaccurate observation of regurgitation at this region, and is further
discussed in section 4.2.

As can be seen from figure 9a, the annular area starts to increase prior to peak systole
(t=0.17s). The annulus continues to expand until the pressure has reached approximately
118mmHg (0.38s). Furthermore, the annular flattening observed during systole (figure 9b)
is similar to what is written about Barlow diseased mitral valves [17, 3]. Comparing these
findings with the global response (figure 11), it is evident that the annular changes must
affect the coaptation of the leaflets. The late systolic regurgitation is observed when the
annular area is at its highest. Thus, the dilation of the annulus may be a reason for
regurgitation during this time interval.

4.2 Echocardiographic modelling

The patient-specific mitral valve geometry was modelled using echocardiographic data
as described in section 2.4. The anterior leaflet and the P2 segment of the posterior leaflet
were clearly visible on the echocardiographic images. However, locating the commissures
was a more demanding process, where several echocardiographic views were needed. At
the posteromedial commissure, the leaflets could be identified from the echocardiographic
recording. Hence, the geometry obtained was satisfactory. For the anterolateral commis-
sure the identification of the leaflet structure was cumbersome, leading to considerable
uncertainty in the geometry at this region. As a consequence, the interpolated free edge
at the anterolateral commissure was inaccurate.

As discussed in section 4.1 regurgitation is observed in the anterolateral region during
systole. However, the patient did not experience similar severity of regurgitation near
the anterolateral commissure. Thus, the observed regurgitation from the FE analysis is
probably a consequence of the inaccurate modelling at the anterolateral region.
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4.3 Comparison with 3D echocardiographic data

In figure 10, the correlation between the echocardiographic measurements and the mi-
tral valve model response is observed to be very good. The bulging towards the left atrium
is similar to that of the echocardiographic measurements. However, the FE response for
both human and ovine chordae material parameters are shown to coapt further toward
the left ventricle at peak systole compared to echocardiography. Furthermore, it is ob-
served that both FE models bulge more than the echocardiographic measurements near
the annulus, especially for the ovine material parameters.

Performing a similar comparison near the commissures at peak systole is difficult, as
there is observed a lot of tissue on the echocardiographic images in this region. Collocating
the echocardiographic measurements and the FE model at the commissures, show that
the FE model bulges too little towards the atrium. The excessive tissue at this region is
probably a combination of Barlow disease and calcifications near the annulus, making the
comparison between the in vivo images and the FE model difficult in this region.

4.4 Material parameters

In order to use the Holzapfel-Gasser-Ogden material model, introduced in section 2.3,
to model the response of the mitral valve, it is required that the material parameters im-
plemented in the model show a similar response compared to experimental data presented
by [10]. Obtaining a good fit between the experimental data and the material model pro-
vided by Abaqus, can make it possible to omit the usage of the subroutine VUMAT,
where VUMAT is an Abaqus Explicit subroutine used for material models not directly
available in Abaqus. The study performed in section 2.3, gave a sound fit comparing the
experimental data from [10], with the Holzapfel-Gasser-Ogden strain-energy function.

Human mitral valve tissue has been shown to be stiffer than porcine mitral valve
tissue [19]. Hence, it can be argued that using porcine material properties might not give
a correct response when modelling a human mitral valve. However, in the study [12],
myxomatous mitral valve leaflets were identified to be twice as extensible and less stiff
compared to healthy human leaflets. As a consequence, porcine material parameters are
assumed to be a better assumption than using the parameters from a healthy human, due
to the difference in stiffness.

The chordae tendineae were modelled with both human and ovine material parame-
ters. Comparing the global responses of these two cases, the coaptation and the location
of regurgitation were observed to be nearly identical. From figure 12, the total displace-
ments of points A and B are approximately 1mm higher for the ovine chordae parameters.
Furthermore, the difference in displacement is mainly observed when the ventricular sur-
face is subjected to peak pressures leading to high chordae strains. As a consequence the
human chordae is observed to displace less at high strains compared to the ovine chordae
due to the nature of the material. In the study by [12], myxomatous chordae tendineae
were found to be 50 % less stiff compared to human chordae. Studying the comparison
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with 3D echocardiographic measurements, the ovine chordae parameters are observed to
correlate less to the echocardiography than the model with human chordae parameters.
Furthermore, there is observed little difference in coaptation between the models, but the
ovine model prolapses more as both the leaflets displace towards the atrium.

In section 3.5, it was shown that the difference in displacements between the stiffer,
softer and material parameters from table 1 was low. Hence, it appears that annulus and
papillary muscle movements have more influence on the global response than the applied
materials.

4.5 Chordae modelling

The marginal chordae tendineae are modelled so that they originate from the papillary
muscles and insert into the free edge of the mitral valve leaflets, while the strut chordae
insert into the anterior leaflet rough zone. The chordae insertion sites at the free edge are
prone to high stresses, and the splitting of the chordae helps redistributing the loads along
the elements, preventing the elements from excessive distortion. The chordae modelling
is not just important for anatomical correctness but also for the finite element analysis as
a whole.

From echocardiographic images it is not possible to get a full representation of the
chordae insertion site, nor the amount of chordae. As a consequence, for a patient-specific
analysis, the amount of chordae and insertion sites has to be assumed from literature [13].
Furthermore, it is not possible to detect if the chordae are stretched or not in diastole.
A characteristic feature for Barlow patients is the elongated chordae at systole [1], which
might leave the chordae slack at diastole. It is therefore assumed that there is no pre-
tension in the chordae for a Barlow patient. Hence, the chordae are modelled as straight
lines without any form of pre-tension. The model managed to follow the echocardiographic
measurements without any pre-tensions, which was not the case in the study performed
by [20]. However, in the study by [20] the studied valve was a patient with functional
mitral regurgitation (FMR), which is not a degenerative disease. It can be argued that
some of the chordae should be modelled slack. However, this needs to be studied further.

4.6 Material orientation

The material orientation applied in the FE model on the mitral valve leaflets is for a
healthy porcine specimen. However, as stated in literature, the collagen fibres in Barlow
leaflets are observed to be disoriented and disrupted [5]. In [21], this disruption is found
to be due to myxomatous degeneration. Hence, the fibre direction used in this paper may
not be entirely accurate. However, to the authors’ knowledge little is known about the
collagen orientation for Barlow mitral leaflets. The gradual rotation of the collagen fibres
towards the commissures in the anterior leaflet is not fully accounted for, where instead
each partitioned region is given one specific direction as described in section 2.6. This
modelling technique leads to some abrupt changes where the modelled orientation changes
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(figure 7b). This leads to the stress concentrations observed on the anterior leaflet, just
above the chordae insertions (figure 14).

4.7 Stresses

The von Mises stresses were found to be highest where the abrupt changes in material
orientation were present. However, removing the elements with high stresses due to this
feature, more reasonable stress values were observed. Regions of high stresses near the
chordae insertion points, especially where the strut chordae is inserted, and the fibrous
trigones are observed. This is consistent with previous studies [22, 23]. However, com-
paring stress values with literature, is not so beneficial, as an unusual thickness of 3mm
is used in this study.

5 Conclusion

In this paper, a finite element model of a mitral valve with Barlow disease has been
employed with annular and papillary muscle motions. Lack of closure were observed in
both the anterolateral and posteromedial commissure for the model. This agrees, to some
extent with the echocardiographic findings of the patient. The finite element model pre-
dicted regurgitation in the posteromedial region well, where late systolic regurgitation
and prolapse were observed for both the patient and model. In the anterolateral re-
gion the model predicted regurgitation throughout systole, while echocardiography only
showed regurgitation at mid-systole. An explanation for this discrepancy might be that
the commissure geometry is difficult to define from echocardiography, especially for the
anterolateral commissure. Refinement of the method used to localize these regions in vivo
are necessary to create accurate models. In order to refine the geometrical modelling, an
autostereoscopic 3D screen could be used to locate intricate points near the commissures
[24]. Lastly, severe annular dilation seems to be one major cause of mitral regurgitation.
In this study, the most severe lack of closure from mid- to late-systole appeared when the
annulus dilated the most.

Creating accurate patient-specific models which can predict regurgitation correctly and
reliably will in the future open up several exciting possibilities: for example, performing
surgery in silico in order to optimize and create a patient-specific surgical procedure.
Furthermore, it may facilitate the development of repair devices as they can be tested
and refined numerically.
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Abstract: Aspects of flow induced vibrations in piping systems due to internal flow are
discussed, addressing Engineering Aspects, Computational Methods, and Vibration Problem
Identification.

1 INTRODUCTION

Piping systems are used for conveying fluids (i.e. liquids and gases), the dominating cross
section is circular. From an engineering point of view, piping systems seem, at a first glance,
to be very simple systems: You determine the overall geometry (‘from where to where’), the
internal cross sections based on the amount of fluid to be conveyed per unit of time, and the
structural properties (wall thicknesses, supports ...) based on allowable stresses. However, as
a pipe failure may have consequences ranging from insignificant to catastrophic, it might be
required to study all aspects of the behavior of a piping system, keeping mind that the pipe
behavior is influenced by external sources and vise versa; this physical behavior is typically
of dynamic nature. Hereinafter, the focus is on vibrations with respect to fatigue, noise, and
influence on attached structures. In the literature, there are relative few papers addressing all
three aspects; [1]. In this document, numerical methods for vibration analysis in piping
engineering are discussed and a numerical concept based on the Boundary Element Method
(“BEM?”) is presented.

2 ENGINEERING ASPECTS OF PIPING SYSTEMS

The problem of vibrations in piping systems conveying fluid can realistically be assessed
by numerical methods only. A frequently applied concept is to iterate between structural
analysis and fluid flow analysis, this is basically transferring the deflected geometry shape to
the fluid flow software, then determining the fluid pressure distribution onto the structure and
transferring it to the structural analysis software. After certain convergence-criteria are
fulfilled, the simulation is halted and the solution is digested.

In the following, pipe vibrations are emphasized. A piping system must be designed such

51



Jan Christian Anker

that no critical vibrations with respect to noise, fatigue, and negative influence on other
structures occur. The implication is that you have to do a simulation for each frequency of
excitation you are capable of identifying. The discretization of the structure with supports and
attached masses is straight forward and not discussed here; the discussion is about vibrations
of pipes conveying fluids and what additional physical effects influences their behavior.

We are assuming the flow being one-phase, single medium, single phase, and continuous
with or without disturbances in the flow field. Hence waterhammer effects, slugs, and
cavitation are not considered, the purpose of the method presented is to determine whether
disturbances in the internal flow field or time varying forces acting onto the pipe will cause
insufficiently damped vibrations, i.e. vibrations of unacceptable amplitudes; one terms such
behavior ‘instable’. One difficulty is to quantify ‘unacceptable amplitude’, as it is problem
dependent. Some engineers are of the opinion that when the amplitude(s) stops growing, there
is no problem, but this may only holds true when fatigue and/or noise are no issue(s).

A special case is ‘the submerged pipe’ as found in coolers/heaters, reactors, and with
offshore installations. There are two additional effects to consider in this case: Hydrodynamic
added mass and fluctuations in the surrounding medium, e.g. as a result of vortex shedding.
Hydrodynamic added mass is pretty straightforward, fluctuations in the surrounding medium
not, as the latter may require separate simulations to assess disturbances in the medium
external to the pipe and interaction between pipe and surroundings.

The general procedure could be the following:

i. Model the pipe for structural analysis utilizing solid elements (at least 36 elements
over the circumference, account for masses attached, support stiffnesses, ...).

ii. Identify any disturbances in the pipe flow and any time dependent forces from
attached structures (e.g. pumps, motors) that could trigger vibrations.

iii. Determine the characteristics of the fluid domain external to the pipe (if relevant) and
decide if it must be accounted for.

iv. Perform a series of computations for various speeds of medium internal to the pipe
and for all relevant structural modes and frequencies; if there is a flowing medium
external to the pipe, that must be accounted for as well.

What is outlined above is a brief sketch of what an analysis procedure could look like,
result interpretation would presumably emphasize displacements, stresses and periods of
events. The procedure above might be realistic in principle, but is not practical because of
exorbitant computing times and the amount of data generated, which makes the interpretation
cumbersome. In short: Another computational method is required to help the engineer remove
a potentially serious problem.
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3 A COMPUTATIONAL CONCEPT BASED ON GENERALIZED COORDINATES

For the analysis of the vibration of structures, the normal modes method is since long an
accepted method for addressing their vibrational behavior. To understand the concept,
consider the one spring, one mass system with or without damping that we can study with
respect to steady and harmonic loads. Now, we ask us whether it is possible to represent the
dynamic properties of the structure by sets of uncoupled ‘one mass, one stiffness’ systems?
The answer is ‘yes’, we divide the structure in question in very many small chunks having
mass and stiffness (called Finite Elements), and look for the uncoupled spring — mass
systems. Since we need to keep track of every chunk in a structured way, we introduce
matrices. We generate a Stiffness Matrix [K] and a Mass Matrix [M] representing the
physical properties needed for (somehow) laying the foundation for our goal of describing the
vibrational characteristics of the structure by a bunch of disconnected spring-mass systems.
Now we want to apply Newton’s laws to our system: We call the directions of movement
{xi}, and — enforcing equilibrium — require that spring forces must be in equilibrium with
mass times acceleration, and write in matrix notation

[K*{x} +[M]*{d’x/dt’} = 0 )

then we substitute x;= Xp*sin(wt), perform differentiation with respect to time ‘t’ two times,
(dxi/dt = xp*w*cos(wt), d*xi/dt* = -Xe*w**sin(wt)) and find

[K]*{xo}*sin(wt)-0**[M]*{xo} *sin(wt) =0, or
([K]-0™[M])*{xe} = 0 (@)

For any value of w there is a corresponding value of {x,} giving a qualitative description of
the shape of the structure vibrating; the system’s dynamics without considering damping may
now be described in terms of uncoupled spring-mass systems.

Introducing Eigenvalues and the corresponding Eigenvectors as ‘Modal Coordinates’, we
can describe the displacements and derived quantities as functions of the exiting frequencies.

4 FLUID STRUCTURE INTERACTION UTILIZING MODAL COORDINATES

In the previous section, we have discussed ‘Modal Coordinates’ for the pipe as a structure
(with or without a fluid at rest). Our aim is to device a method that describes the vibrational
characteristics of a pipe conveying a fluid (liquid or gas) for the purpose of identifying any
instable modes. Since all fluids have mass and elastic properties, they qualify for a modal
analysis. In theory, you could do that by utilizing a model by Finite Elements, which is
impractical (if not impossible).

LINFLOW (‘LF’) by ANKER — ZEMER Engineering AB is based on boundary elements
(Boundary Element Method or BEM) and modal coordinates, the verified and surprisingly
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effective concept is outlined below (a complete description does not fit in a conference paper,
for a description in depth see [2]). For those who are technically interested, a brief
presentation of the LF concepts is given below.

LF was originally developed as a tool for aeroelastic analyses for the air-craft industry. The
concepts behind LF, however, differ from those used in classical aeronautical tools for
aeroelastic analysis, so its is fair to describe the theoretical background and assumptions in
some depth.

Firstly, derive the equations describing the inviscid fluid flow over a solid body. The frame
of reference used is a body fixed coordinate system. A flow field can be characterized by the
mass conservation or continuity equation (eq. (3) and three Navier Stokes equations for
momentum conservation (eq. (4)):

4D oy
0 +V (pv) =0 3)

pg =p[%+v(vv) =Vp+u +pf. Q)

VZV+%V(V v)

where t denotes time, V' the velocity vector, p the density, p the pressure, y the viscosity, and
fe external bulk forces. As there are five unknowns (v, vy, v,, p and p), a fifth equation is
needed to make the equation system complete. This will be the classical isentropic relation for
fluids (pr»=constant, where y denotes the constant ratio of specific mass). Unfortunately,
solving egs. (3) and (4) is very computer resource demanding. Approximations are needed if

realistic fluid-structure interaction problems are to be solved with a minimum of computer
resources and a minimum of man-hours for validation and interpretation.

As a first step in deriving the inviscid flow equations, we assume that the flow locally is
irrotational (i.e. VxV =0) and that the flow viscosity is zero (u=0). These assumptions are
valid in flow domains with negligible boundary layer thickness and small shear layer regions
so the influence from such layers can be neglected, assumptions that are well motivated for
many other applications as well. However, LF is able to handle such limitations with
additions to the governing set of equations, and the ability to address both inertial, viscous,
and some non-linear effects not accounted for in the ‘classical’ but still approximate
Reynold’s equation.

We now introduce the velocity potential @ (V =V®) making it possible to reduce the five

flow equations to three equations for the three unknowns @, p and p. The momentum
equation (2) can then be written as (f,=0):
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Applying some vector algebra on equation (5) and applying far field conditions, with
steady flow and straight streamlines, makes it possible to derive the Kelvin’s (the unsteady

version of Bernoulli’s) equation, which is used in the following when deriving the pressure
equation used in LF:

ol B
2

o0 |vf
oo v
ot 2

dp Uwz
5=
(6)

where U is the free-stream part of the velocity vector v, i.e. the flow with the ‘disturbing’
geometry of interest not present, and the subscript ; indicates its far field (distant surrounding)
value. Equation (6) differs from that used in the classical Double Lattice Method’s (“DLM”)
approximation where the reference pressure (p;) is set to zero and the velocity potential is
replaced with ¢=@ -U%/2, leading to a modified Bernoulli’s equation for the DLM:
2
a—<0+ vl +f d_p: 0

Let us, for a moment, go back to the continuity equation (3) and introduce the velocity
potential @ and the definition of the speed of sound, a (a*=dp/dp). This yields, after some
tedious mathematics, the following general vector equation:

Vip—

. %K‘V®~V®J+azf+VoV(m) =0

a ot 2

®

This is the so-called full potential equation. Introduce the Mach number defined as M=Uy/a,
and, assuming that the speed of sound, q, is constant and that the overall free-stream inflow
(Uy) is along the positive x-axis. An advantage is that M can be assumed constant for the
entire flow field in the linear small deflection region. This will enable the derivation of the
classical linear small disturbance velocity potential partial differential equation (“PDE”):

®

Interesting to note is that eq. (9) includes, as special cases, incompressible flow (do/dp=0 >
02c=0) and the acoustic equation (harmonic @ and small perturbations = V?®+(w/a)*® =0).
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Equation (9) is used as governing PDE for describing the fluid’s dynamic behavior in LF. In
the solution of the aeroelastic problem, the pressure is used as loads, and a linear expression
for pressure as a function of the velocity potential, @, is needed. This expression can be
derived using the Kelvin’s equation (6) and the isentropic relationship for the gas. The
Kelvin’s equation may now be rewritten into a linear expression the for pressure as a function
of &:

P=pPxtp

UL [P, oo
2 2 ot

(10

Equation (10) is the incompressible version of the pressure equation used in LF. By using eq.
(10), LF is not limited to applications and flow conditions that are based on thin structures
oscillating around the zero degree angle of attack condition. As a comparison, the DLM is
restricted to such conditions since the v2/2-term is linearized about the free stream velocity
components

~

v

when deriving the expression for pressure, leading to the following DLM-pressure equation:

t 0x (12)

with ~ expressing the oscillatory part of the modified velocity potential. In the DLM, py
describes the actual far field pressure, provided that the first term is removed from eq. (11),
which is in agreement with the zero reference pressure assumption behind eq. (7). The reason
why the U?%2-term can be eliminated in the DLM is that this method’s prime focus is on
pressure differences between upper and lower surfaces (lift forces on wings, etc) and not on
absolute pressures.

A key feature in LF is the representation of flow by harmonic oscillations around some
general equilibrium point. This technique of variable separation and eigenmodes
superposition is well proven and commonly used when analytically solving complicated,
general PDEs. Normally, high accuracy solutions are obtained even with a very small number
of eigenmodes. By assuming a harmonic velocity potential @ in the classical linear small
disturbance velocity potential partial PDE (eq. (11)), one obtains:

2
V2®—M2(ii+i ®=0

U, 0Ox

(13)
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This is the PDE that is transformed into an integral formulation that is discretized utilizing
the Boundary Element Method (‘BEM’) in LF. The steady and unsteady pressures are then
calculated using the linearized pressure equation (10) derived above.

Problems involving interaction between structural and fluid dynamics can be described by
the aeroelastic equation of motion. This equation is normally written in terms of modal
coordinates that are based on the known structural eigenmodes. The benefit of using modal
coordinates is that the number of degrees of freedom in the system is greatly reduced. In
aeroelastic applications, only a few of the lowest frequency eigenmodes may be of interest,
this also holds true when studying pipe vibrations. Another advantage with the LF concept is
that the structural properties are computed once (without accounting for the fluid), and not
over and over again in an iteration loop; required are eigenvalues and eigenmodes (and modal
load vector for simulations not discussed here).

This concept outlined above has been implemented in the LF software; it is utilized for
finding a modal representation of the “aeroelastic problem”. With respect to piping problems,
‘aeroelastic’ is a misnomer, as that matrix covers gases as well as liquids. In any case, the
concept allows us to derive the following equation describing the general FSI problem in
modal coordinates:

The aeroelastic equation of motion expressed in modal coordinates is recognized as the
structural dynamic equation with an additional term that includes the aeroelasticity matrix
which describes the fluid - structure interaction; (14):

-’ [M]{q}+io[CH{q}+[K]1{q}=[Al{q}+{F} (14)

with the left side representing the structure and the right side the fluid (gas or liquid), and
where [ M ] is the mass matrix, [ C ] the damping matrix, and [ K ] the stiffness matrix, [ A]
is the aeroelastic matrix, { F } is the field strength, and { q } a displacement vector.

In LF, the above equation is used to solve stability problems. The method for identifying
instabilities is to set the external force to zero, and check if there are eigenmodes in the
system that are undamped or exponentially growing. Implemented in LINFLOW are the V-g
method and the p-k method for finding inflow velocities that make the system unstable. These
methods are iterative since the aeroelasticity matrix is velocity and frequency dependent,
hence making the problem non-linear,convergence is usually obtained within two or three
iterations. The methods is the way iterations are performed. In the V-g method a fictitious
internal structural damping is introduced such that the stiffness and damping matrices are
written in the form (1 +ig)[K]=io [ C]+ [ K]. In the V-g method one assumes a value
for the critical velocity V, and solves for the value of the damping factor that makes the most
unstable mode critical. Instabilities are identified by required damping factors that are greater
than the available structural damping in the system. This solution gives a new value for the
critical velocity V, and the procedure is repeated until the assumed and obtained values for V
are consistent.
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5 IDENTIFYING PIPING VIBRATION PROBLEMS

To better explaining the method for identifying piping vibration problems, we will expand
on what is said on utilizing eigenfrequencies and eigenmodes in engineering above.
Eigenvalue analysis as such gives valuable info about the dynamics of a structure. Moreover,
it can be utilized as the foundation for linear transient dynamic analysis of structures
(i.e.‘harmonic response by the normal modes method’). One of the big advantages of
eigenvalue analysis is that the results are concise and easy to interpret, another advantage is
that phase information may be considered with input as well as with output; eigenvalue
analysis is well suited to optimize a structure with respect to vibrations. Assuming a perfectly
straight and perfectly circular pipe geometry and corresponding supports, it is known that the
eigenforms come in orthogonal pairs at the same eigenfrequency; this will describe the
movement of the pipe in 3-D. If there is damping in the system, the pairs of orthogonal
modes will no longer be in phase and the pipe will perform a rotating movement. All
engineering materials have internal damping, so we have to account for damping in our
evaluation of the vibrational characteristics of the pipe.

In pipe system engineering, there are two basic items of interest regarding the piping
structure with respect to vibrations: The eigenfrequencies of the pipe as such, and whether
the vibrational amplitudes due to force excitation by the flowing media internal and external
to the pipe can be expected to be within limits. Further, the eigenfrequencies are essential for
determining the response to excitation by outside forces. To assess the likelihood of growing
amplitudes, we check whether material damping or other damping effects are sufficiently
strong to inhibit amplitudes grow out of bonds.

The most pronounced physical effects in the context of harmonic vibrations or effects
triggering vibrations we do not consider here, are: Water hammer effects or slugs (may trigger
unwanted vibrations after the event), vortex shedding or cavitation internal and external to the
pipe (triggering effect; may be introduced as concentrated, pulsating forces if applicable), and
varying fluid mass densities. Further, the influence of a free surface is generally not
considered.

We can safely assume that pipe material and medium have some internal damping.
Damping means energy transfer to the material and to the medium. The energy loss due to
material damping is increasing with growing amplitudes. As we are assuming small
displacements and looking for growing amplitudes, the effects of growing amplitudes onto
system damping will not be discussed henceforth.

There are several factors that directly or indirectly influence the vibrational characteristics.
Some of the factors are depending on one or more of the other factors, this means that the
problem is most likely nonlinear. Consider the following (extreme) example: A structure,
connected to the submerged pipe to be checked for vibrations, has a part that may vibrate due
to a farfield flow, this may influence the external fluid flowfield hitting the pipe; this implies
that a) it must be considered whether there will be any influence from an unconnected
structure on the flowfield reaching the pipe, b) how strong the influence superimposed on any
flowfield influences from attached structures will be, and c) multiple simulations involving all
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relevant combinations of items ‘a’ and ‘b’ should be performed. In reality, this example is
most likely far fetched, but it shows the potentially complex physics that a pipe flow FSI
analysis should take into account.

One factor not addressed above is the deviations between real and modeled physics,
examples hereto would be perfectly straight and perfectly circular pipe geometry vs real
geometry, assuming perfectly symmetric support vs real support characteristics, assumed
material properties, etc. Neglecting such effects usually gives sufficiently accurate results
with structural analysis, what effects small deviations will give in case of piping FSI are
uncharted waters.

The assessment of vibrational behavior of the vibrations of a straight pipe is easy once you
know the kind and frequencies of the excitation(s) and the eigenfrequencies of the pipe at rest.
In the case you do not have data specific to a particular case, you have basically three options
to remedy that, namely by performing a simulation with respect to fluctuations by utilizing a
Navier-Stokes solver, using data based on on experience, and/or using intelligent
assumptions. When modeling the pipe structure, it is recommended using at least 36 (solid)
elements circumferentially, as the accuracy of the FSI simulation is strongly dependent on a
correct pipe stiffness representation. The discretization of the system should also account for
the mass density of the fluid, the higher the mass density, the coarser the discretization. It is
mandatory that the discretization is such that it accurately captures structural eigenfrequencies
near those exiting the system. To model the fluid, the interior of the pipe is covered with
boundary elements matching the discretization of the structure. With the LF concept,
computer time is not an issue for a system part, this having the effect that system changes can
easily be simulated in a short time.

Finally: An often overlook fact is that the pipe eigenfrequencies are a function of the speed
of the medium. Some maintain that this effect can be neglected; we disagree with this as we
have seen changes of thirty percent and more with a changed medium speed.

6 CONCLUDING

The purpose of this paper is drawing attention to a disregarded (and often contested) fact,
namely that the eigenfrequencies of pipes conveying a medium are depending on the speed of
the medium, and to briefly hint onto the theoretical basis for a software that can address that
phenomenon is given in [3]. References [4, 5, 6] point to the fact that such dependency really
exists.

An efficient numerical concept based on The Boundary Element Method (‘BEM’) has
been outlined, experience with the LINFLOW software shows that it yields engineering
information with minimal computer resources; is remarkable in the sense that no error has
been found in the software after approximately 20 years of usage.
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Abstract. Numerical fatigue crack growth simulations are explored as a method for
predicting the remaining fatigue life of offshore mooring chains. Polynomial solutions for
calculating stress intensity factors along the front of a semi-elliptical crack in a curved
cylindrical bar have been developed and included in a crack growth model. Stress intensity
factor calculations based on superposition of polynomial solutions have been compared
against non-linear finite element analysis results. Crack growth simulations highlighting
the influence of residual stresses on predicted crack shape development and fatigue life
are finally demonstrated.

1 BACKGROUND

Steel chains are extensively used in mooring systems for offshore oil&gas installations,
as well as for floating wind turbines and fish farms. The dynamic motions of moored
floating installation induced by e.g. wind and waves result in cyclic tensile loading of the
mooring chains. Cyclic loading can over time potentially result in initiation and growth
of fatigue cracks. In the marine environments where mooring chains are commonly used,
this fatigue process may furthermore be significantly assisted by corrosion. Corrosion pits
may aid crack initiation, while interactions between corrosive seawater and mechanical
fatigue loading are known to enhance crack growth rates in steels [1,2]. The problem of
estimating remaining fatigue life under such conditions is consequently highly relevant for
integrity management of offshore mooring systems [3].

In the present paper, the practical problem of predicting remaining fatigue lives of cor-
roded offshore mooring chains will be approached using numerical fatigue crack growth
simulations. A stud-less mooring chain design as illustrated in figure 1a will be consid-
ered. Each link in the chain is essentially a curved cylindrical bar joined with a single
weld. Several studies involving full-scale fatigue testing on as-new as well as corroded
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chains of this type can be found in published literature [4-6]. A general observation from
these studies is that fatigue failures in mooring chains predominantly occur in the three
locations highlighted in figure 1b. It can readily be found by stress analysis that these
locations are hot-spots in terms of cyclic stress. Since standard requirements [7] for manu-
facture of offshore mooring chains specify a "proof-loading" that causes significant plastic
deformation of the links, it can however also be shown that these same locations are
characterized by compressive residual stresses [8]. For simulating fatigue crack growth
in mooring chains, a fundamental element will accordingly be the fracture mechanical
treatment of cracks in curved cylindrical bars containing compressive residual stresses.

b
2) ) 2 3 (weld)

Figure 1: (a) Stud-less chain with (b) the three predominant fatigue fracture locations

Fatigue cracks in straight bars under simple load cases, i.e. combinations of pure
tension and pure bending, is a problem that has been extensively covered in published
literature [9 13]. A common approach is to fit polynomial functions to linear elastic
stress intensity factors calculated using finite element analysis (FEA), and combining such
functions using the principle of superposition. An extension of this approach aimed at
geometries and loading situations relevant to cracks in mooring chains will be considered
here.

The present paper explores a numerical model for computationally fast simulations
of fatigue crack growth in offshore mooring chains. As part of this model, polynomial
solutions for the stress intensity factor (SIF) along the front of a semi-elliptical crack in
a generalized curved bar have been developed for stress distributions representative for
proof loaded chains. Comparisons are made against non-linear finite element calculations
performed on chain models containing cracks. Crack growth simulations have finally been
demonstrated on a small selection of example fatigue cracks in a chain link.

2 MODELS AND METHODS

The fatigue crack growth model was developed by combining a generic crack growth
model for semi-elliptical cracks (section 2.1) with stress intensity factor (SIF) solutions
intended to be suitable for cracks in mooring chain links. Three different types of finite
element analysis (FEA) models, as well as two polynomial fitting procedures, have been
used in the development of the SIF solutions. Characterization of the stress distribution in
a typical chain link before any crack has been introduced (sections 2.2-2.3) was performed
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using non-linear FEA of a mooring chain model, with subsequent fitting of normal stresses
to a cubic polynomial form. The SIF solutions (sections 2.4-2.5) were then developed
using linear FEA of curved bar models containing cracks, with subsequent least-squares
fitting to form polynomial solutions. Finally, non-linear FEA of a mooring chain model
containing cracks (section 2.6) was performed for comparison and verification purposes.

Figure 2: (a) Geometry definitions for semi-elliptical cracks and (b) crack growth model

2.1 Fatigue crack growth model

The numerical crack growth model is based on a model proposed by Couroneau and
Royer [11] for semi-elliptical cracks in cylindrical bars. A semi-elliptical crack character-
ized by depth a and aspect ratio a/b, as defined in figure 2a, will be considered. The
concept of an effective stress intensity factor range AK.;; from linear elastic fracture
mechanics will furthermore be used to characterize the cyclic stress conditions along the
crack front under fatigue loading. Only mode I loading of the crack will be considered.
In the case of a crack that is fully open throughout a constant-amplitude load sequence,
AK,p will simply be equal to the difference between the stress intensity factors K.,
and K,,;, calculated for the maximum- and minimum load values. Using the principle of
superposition, these stress intensity factors can be calculated using linear combinations
of solutions for different load cases. In the case of a crack that fully- or partially closes
mid-cycle, which is a situation highly relevant for cracks growing in compressive resid-
ual stress fields, superposition of stress intensity factors may on the other hand result in
physically meaningless negative values [14]. In the present work, a simple crack closure
model that assumes K = 0 when the crack faces are in contact has been used to handle
the latter case. The effective stress intensity factor is consequently defined as follows:

AI(eff = Kmaz - Kmin (Kmm > 0) (134)
AI(eff = Kmaz (Kmin < 0) (lb)

Fatigue crack growth is simulated by propagating the crack front in small increments
Aa while updating its aspect ratio a/b, as illustrated in figure 2b. In order to calculate
the updated crack shape it is assumed that the local crack growth rate at any point P
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or Q on the crack, as measured in a direction perpendicular to the crack front, can be
described by an empirical crack growth law:

da/dN = f(AI(eff) (2)

The crack growth rate da/dN represents the local crack depth increment per load cycle
N, and will generally vary over the width of the crack front. As long as the crack depth
increment Aa from point P to P’ along the crack centerline is small, the local increment
Aa from any point Q to Q’ is approximated as follows:

Aa _ da/dN(point Q)

Aa " da/dN(point P) 3)

For every point Q on the crack front with coordinates (z,y), a new point Q' with
coordinates (2',4') on the updated crack front can then be calculated by extending a
normal vector of length Aa from point Q. The shape of the updated crack front can
finally be computed by fitting an ellipse to a distribution of n such Q’ points. In the
present work, this fitting was performed by finding the new ellipse parameters a and b
that minimize the following sum-of-squares expression:

ss=x (5« (4) ] g

When Aaq is given, the only unknown is b, and a solution for the aspect ratio of the
updated crack front that minimizes the function SS can be readily shown to be:

2 2 12,12

.
’ N ®)
Growth of an initial semi-elliptical surface crack can thus be modeled by propagat-
ing it in small increments Aa while explicitly updating its aspect ratio a/b using the
above equations. Number of fatigue cycles N accumulated throughout the simulation can
furthermore be calculated by integration of the crack growth law (equation 2).

The crack growth law will generally depend on material and environment. For numeri-
cal examples in the present paper, a crack growth law based on statistical analysis of test
results from various steels under freely corroding conditions in seawater performed by R.N.
King [15] has been used. This two-stage law is defined as da/dN = 4.05 x 107 AK}?
[m/cycle] for AK,zp < 42.2 Mpay/m, and da/dN = 1.13 x 10"*AK/} [m/cycle| when
AKepp > 42.2 Mpay/m. In addition to the crack growth law, a vital component of this
crack growth model is a method for calculating K., and K,,;, along the crack front.
Section 2.5 describes a polynomial K solution intended to be suitable for cracks in chain
links.
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a) fP (load)

Ltotal

Figure 3: Chain link model (a) geometry and (b) FEA mesh

2.2 Chain model and stress calculations

The stress distribution in a typical chain link before any crack has been introduced
was investigated by means of finite element analysis (FEA) of a mooring chain model.
Figure 3a shows the assumed chain link geometry in its undeformed state. This geometry
is defined by three parameters; diameter D, radius of curvature R, and length L. The
parameters given in table 1 will be used for numerical examples, and are intended to be
representative of a chain used in permanent mooring of an offshore oil&gas installation.
The chain is subjected to a tensile load P. For convenience, the load will be represented
by a nominal cross-section stress o,,,,, defined as follows:

Onom = 2P /7 D? (6)

Loading of the chain was modeled as a sequence starting with a simulated proof load-
ing, followed by unloading and application of one or more service loads. A proof load
level of 0,,,, = 426 MPa was used in the numerical examples, corresponding to standard
requirements for a D = 114 mm grade R4 mooring chain [7]. Significant plastic defor-
mation of the chain accompanied by the introduction of residual stresses is expected to
occur during proof loading. After unloading, a range of different service load levels up to
Onom = 213 MPa were included in the analysis. These service loads are assumed to be
sufficiently small to not cause any further plastic deformation of the chain.

Material properties are important variables in FEA of chain models, particularly when
the residual stresses caused by proof loading are of interest. Only a single elastic-plastic
material model will however be considered in the present paper. The elastic modulus F
and Poisson’s ratio v define its linear elastic behavior, while a von Mises yield criterion
and a Voce-law hardening rule define the plastic behavior. The yield stress magnitude
can with this model be expressed as o, = 0,0 + Qu|l — exp(—Pep)], where ¢, is the
accumulated plastic strain. Values for the material parameters are given in table 2.
These were chosen to produce a material model that could be reasonably representative
for a grade R4 high-strength offshore mooring chain.
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Finite element analysis was performed using the commercial software Abaqus 2017. The
model (figure 3b) contains three symmetry planes and was meshed using 15120 quadratic
hexahedral elements. Inter-link contact was modeled as a hard contact with Coulomb
friction, assuming a friction coefficient of 0.35. Load was applied to a reference point
coupled to the pulled end of the link via a constraint that prevented rotation of this face
without limiting its translation in any direction. This was confirmed to ensure consis-
tency/symmetry between neighboring links during loading.

Table 1: Chain link geometry parameters

Dlmm| R, mm| Lq[mm|

114.0 134.0 684.0

Table 2: Material model parameters

E[GPa] v o0,0/MPa] Qu[MPa] §
200.0 0.3 870.0 300.0 12.5

2.3 Polynomial approximation of stress distribution

Finite element analysis (FEA) results for the chain link model defined in section 2.2
were used to produce polynomial approximations for stress distributions in the predomi-
nant fatigue crack locations indicated in figure 1b. From theory of linear elastic fracture
mechanics and the principle of superposition, the stress intensity factor associated with a
given crack will be linearly dependent on the stresses that were acting over the crack plane
before the crack was introduced. Since only mode I loading will be considered here, it is
furthermore reasonable to assume that only the normal stress component will contribute
to crack propagation. Expressing the normal stress field as a polynomial should therefore
allow for calculation of linear elastic stress intensity factors via superposition of individual
load cases.

By inspection of FEA results from the predominant fatigue crack locations it was
found that the normal stress distributions o, in these regions, before any crack has been

introduced, can be approximated by a cubic polynomial on the form:
a.(t,y) = 00 + 01(1 — 2y/D) + 02(1 — 4y*/D*) + 03(1 — 8y*/ D?) (7)
+04(1 = 42|’/ D) + 05(1 = 8|z|*/ D*) + 06(1 — 8||"y/ D?)

Note that two first terms in equation 7 represent the customary membrane- and bending
stress components, and that the coordinate system is as defined in figure 2. The reference
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stress values o, = 0y, ...,0¢ are determined by least squares fitting of the polynomial
function to FEA results. An example of such a polynomial fit is shown in figure 4.
The normal stresses have here been calculated for the region representing location 1 in

figure 1 after a load sequence consisting of proof loading, unloading, then re-loading to a
moderately high service load level.

=3
=

Residuals [MPa]

Figure 4: Example of polynomial stress field fitted to FEA results

2.4 Simplified curved bar model with crack

For the generalized case of a semi-elliptical crack in a curved bar where the stress distri-
bution in the crack plane is defined by equation 7, stress intensity factor(SIF) calculations
were performed using a parametric linear FEA model. The geometry of this model can
be characterized by the three dimensionless parameters a/b, a/D and D/R,. Crack shape
is defined by a and b as shown in figure 2, while the bar is defined by its diameter D and
radius of curvature R.. Two different directions of bar curvature relative to crack location
were considered. R, will here be denoted with a negative value if the crack is located on
the interior side of the curvature, and a positive value if on the exterior side. See the
example model geometries shown in figure 5.

DIR.=0 DIR,=+12

Figure 5: Examples of bar-with-crack models for different curvatures D/R., looking at the crack-face
symmetry planes
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Finite element analyses were performed on 448 individual geometries. Eight different
crack depth ratios a/D between 0.03 and 0.4, eight different crack aspect ratios a/b
between 0.0 and 1.5, and seven different bar curvature ratios D/R between —1.2 and
+1.2 were considered. The length of the cylindrical bar was set to have a constant value
of 3D. Preliminary parametric studies indicated that the effect of bar length on calculated
SIFs became insignificant when it exceeded about 2.0D —2.5D. Since very short bars are
not of interest in this study, the bar length was consequently eliminated as a variable.
For each geometry, seven separate load cases were applied, corresponding to each of
the individual terms in the polynomial stress distribution defined by equation 7. The
loads were applied as crack-face pressure fields p(z,y) = —o,(z,y) defined by setting the
respective reference stress o, to unit magnitude. For each analysis, SIFs were evaluated
at 10 different crack front locations z/h. Since the intersection between a semi-elliptical
crack and the free surface of a cylindrical bar in general cannot be characterized by a
1/4/7 stress singularity [16], SIF evaluations were limited to the innermost ~ 85% of the
crack line.

The stress intensity factor calculations were performed using the virtual crack extension
domain integral method [17,18], as implemented in the commercial software Abaqus 2017.
Calculation of SIF from J-integral values were performed under an assumption of plane
strain conditions. The material was assumed to be linear elastic with a Poisson’s ratio of
v = 0.3. Figure 6 shows a typical mesh for the crack front region. The domain integral
volume comprised the innermost five layers of elements surrounding the crack tip, of which
the innermost are collapsed-node elements with mid-side nodes moved to quarter-point
positions. All elements were of 20-node hexahedral type. For verification, results were
checked against STF values calculated from the crack opening displacement field.

{557
Vah

N

symimetry planchf —

Figure 6: Finite element mesh in the crack front region of the simplified bar-with-crack model, looking
at the center-of-crack symmetry plane

2.5 Polynomial stress intensity factor solution

For a semi-elliptical crack in a curved bar where the normal stress in the crack plane
before any crack is introduced can be described by the cubic polynomial defined in equa-
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tion 7, the SIF at any point on the crack front can be calculated as:
6
= Z F,ou\VTa (8)
a=0

The above equation represents a superposition of SIFs contributed from each individual
term in the stress field definition, and is theoretically only valid under the assumptions
of linear elastic material and small deformations. Using FEA results from the generalized
curved bar with crack model defined in section 2.4, polynomial solutions were developed
for the geometry correction factors F,. A wide range of polynomial expressions were con-
sidered, using exhaustive leave-one-out cross validation for evaluation of fit-quality. The
following polynomial expression was found to provide good fits without obvious indica-
tions of over-fitting:

2 5

=3NNS Cola/by(af DY (DR (x /h)! (9)

i=0 j=0 k=0 (=0

For each load case «, least-squares fitting to the 4480 individual SIF values calculated
by FEA was used to determine the 630 coefficients C};,; in the corresponding polynomial.

2.6 Chain model with crack

Numerical stress intensity factor (SIF) calculations were performed by means of non-
linear FEA of chain models containing cracks introduced after proof loading. The purpose
of these simulations was to produce a set of reference SIF values for cracks in proof loaded
offshore mooring chain links that could be used for comparison against the polynomial
SIF solutions. Model geometries are illustrated in figure 7. The chain link geometry was
defined by the parameters in table 1, while a variety of semi-circular cracks (a/b = 1)
with depths @ in the range of 5 — 30 mm were introduced in locations 1 and 3. A sequence
of (1) proof loading, (2) unloading, (3) crack introduction, and (4) service loading of the
chain was simulated. Load levels and the elastic-plastic material model were as described
in section 2.2. After proof loading and introduction of residual stresses, the material
model was changed to linear-elastic and the crack introduced into the model by releasing
a set of boundary conditions. Crack face contact due to compressive residual stresses was
included in the simulation by defining a hard, friction-less contact condition between the
crack face and the crack symmetry plane.

Stress intensity factor calculations were performed using the virtual crack extension
domain integral method in Abaqus 2017, with conversion from .J-value to linear elastic
SIF performed under the assumption of plane strain. Note that due to the proof loading
sequence and introduction of residual stresses, use of the original J definition by Rice [19]
would in this case have lead to a path-dependent contour integral. A modified .J definition
based on the works of Lei et al. [20] that accounts for the initial residual stress field
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b)

Figure 7: Example chain models with cracks in (a) location 1 and (b) location 3

Figure 8: Finite element mesh for chain model with crack

has therefore been used. The finite element meshes consisted of approximately 26000-
52000 quadratic hexahedral elements depending on crack geometry and location, with
collapsed-node elements used at the crack tip. Figure 8 shows the refined mesh used in
the crack front region. The domain integral volume comprised the innermost five layers
of elements surrounding the crack tip. Verification of the SIF calculations was performed
by comparing with STF values calculated from the crack opening displacement field, as
well as checking for possible path-dependencies in the .J-integral values.

3 RESULTS AND COMPARISONS

3.1 Stress intensity factors for cracks in curved bars

The polynomial stress intensity factor (SIF) solutions for semi-elliptical cracks in curved
bars defined by equations 8 and 9 were fitted to results from linear FEA of simplified
curved bar models, as detailed in sections 2.4 and 2.5. Coefficients of determination
exceeded 0.9999 for all seven polynomial functions F,, with no single residual deviating
more than 0.9 % from the corresponding FEA value. The computed coefficients Cf};, for
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the polynomial SIF solution are provided as a separate dataset [21].

In the case of a straight bar subjected to a pure tension or bending load, considering
only the z/h = 0 crack front location, the present polynomial STF solution may be directly
compared with similar solutions published by Astiz [9], Couroneau and Royer [11], as well
as Shin and Cai [12]. The solution by Astiz expresses the geometry correction factor Fy
at the center of a semi-elliptical crack front in a cylindrical bar under tensile loading as a
polynomial function of the two parameters a/D and a/b. Couroneau and Royer similarly
expresses Fy and Fy at the center of the crack front under tensile- and bending loads as
polynomial functions of a/D and a/b. The Shin-Cai solution adds crack front position
as an independent parameter, expressing Fy and Fj along the crack front under tensile-
and bending loads as polynomial functions of a/D, a/b and z/h. Comparison plots
for the corresponding geometry correction factors Fy and F) are provided in figure 9.
Note that the Shin-Cai solution was developed for a/D > 0.067 and does not appear
to be suitable for extrapolation to relative crack depths much smaller than that. Good
agreement between the different polynomial solutions was otherwise observed.

In the limit where the relative crack depth a/D approaches zero, it can be argued that
a crack with aspect ratio a/b > 0 becomes equivalent to an identically shaped surface
crack in a semi-infinite plate. Comparisons with the solution by Newman and Raju [22]
for the latter geometry under tensile loading are shown in figure 10. Good agreement
between computed geometry correction factors were observed over the crack front.

The effect of bar radius-of-curvature R, on SIFs calculated for selected semi-elliptical
crack shapes is demonstrated in figure 11. When the crack is located on the exterior side
of the curved bar (D/R, > 0), the SIF was found to be enhanced by the curvature. When
the crack is located on the interior side of the bar, a reduction in SIF was observed. As
the relative crack depth approaches zero, the effect of curvature appears to vanish.

3.2 Stress intensity factors for cracks in chain links

Stress intensity factors (STFs) calculated by non-linear FEA of chain models containing
cracks introduced after simulated proof loading, as detailed in section 2.6, were compared
against SIFs calculated using the polynomial solution for cracks in generalized curved
bars. The corresponding polynomial solutions were computed by approximating the stress
distribution in the crack plane according to equation 7 in section 2.3, and estimating the
SIF by superposition of the polynomial functions defined by equations 8 and 9 in section
2.5.

Figure 12 shows a comparison for the case of an ¢ = 10 mm deep fatigue crack in
location 1 (see figure 1) of a chain link. Figure 12a compares mean SIF values for the crack,
as calculated over n = 10 evenly distributed crack front positions, for a range of load levels
Onom- Due to the considerable compressive residual stresses present in this region, a tensile
load corresponding to ,,,, > 100 MPa was needed to achieve complete opening of the
crack. Figure 12b shows the corresponding mean of the differences between the calculated
SIF values over the crack front. The SIFs calculated using the polynomial approximation
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Figure 9: Geometry correction factors for cracks in straight bars under tension and bending loads

can be seen to agree well with FEA calculations, exhibiting a mean difference over the
crack front of no more than 1.5 MPa,/m for any of the investigated load levels. As
demonstrated in figure 12¢, the calculated variation in K with crack front position z/h
furthermore appears consistent between the two SIF calculation methods.

Comparisons between the two SIF calculation approaches for cracks of various sizes
in different locations are summarized in figure 13. Considering mean differences over
the crack front, the SIFs calculated using the polynomial approximation were found to
consistently be around 2 — 6 % higher than the corresponding SIFs from direct non-linear
FEA calculations (Kpga mean)-
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Figure 10: Crack front STF variation in the limit when relative crack depth approaches zero
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Figure 11: Influence of bar curvature on calculated SIF, showing FEA results with polynomial fits

3.3 Fatigue crack growth simulations

For the purpose demonstrating the fatigue crack growth simulation method defined
in section 2.1, a selection of hypothetical initial surface defects in a chain link have been
considered. The chain link geometry is as defined in table 1, while the cyclic load range was
assumed to be Aoy, =61 MPa with a mean load of 0,6m mean = 122 MPa. Simulations
were performed on four different initial cracks, all of which are characterized by an initial
crack depth of ¢ = 10 mm. Comparisons are made between the two different aspect
ratios a/b = 1 and a/b = 1/3, and the two different crack locations labeled 1 and 3 in

73



Mads Aursand and Bjgrn Skallerud

a) b) <)
50 _.2.0 25
—®= Polynomial (mean) E —a— Difference —®- Polynomial
40 —&— FEA (mean) —a— FEA
— n? 1.5 1 — 20 7 (onom = 152 MPa)
3 = 3
30 1 = —e—o-
& 5 1.0 & s ‘q—h‘:‘:::-'t‘.::_;
2 20 7 £ 2
Lol
4 ] M ]
1o ] £ 0.5 10
L
0 T T = 0.0 T T 5 T
0 100 200 0 100 200 0.0 0.5 1.0
Onom [MPa] Onom [MPa] x/h

Figure 12: Stress intensity factor calculations for an @ = 10 mm semi-circular crack in location 1 of a
chain link, comparing the polynomial SIF solution to the non-linear FEA calculation
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Figure 13: Stress intensity factor calculations for semi-circular cracks in chain link: Mean errors of the
polynomial SIF solution relative to the non-linear FEA calculations

figure 1b. Each crack was propagated in 1000 increments, with the crack front represented
by 25 nodes. Stress intensity factors were calculated using the polynomial solution from
section 2.5. While limited in scope, these examples should be sufficient to demonstrate
that the crack shape development predicted by the model is not unreasonable.

Results from the crack growth simulations are shown in figure 14. Crack front shape
development during crack growth has been illustrated using a subset of crack front con-
tours. Calculated number of cycles N for the crack to reach a final depth corresponding
to a/D = 0.5 are furthermore indicated. In all four calculation cases, the aspect ratio of
the final crack front can be seen to converge to a/b ~ 0.7 regardless of initial crack shape.
Intermediate crack front shapes can however be seen to differ notably between the two
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crack locations. Since crack front shape development largely is driven by the variation
in AK.;; along the crack front, compressive residual stresses in the chain link can be an
important contributing factor to this variation.

The importance of compressive residual stresses for predicted crack front shape devel-
opment and remaining fatigue life can be to some extent be demonstrated by ignoring
crack closure in the crack growth simulations. Results from crack growth simulations
where crack closure is ignored are shown in figure 15. The crack closure model defined
in equation 1 has in this case been replaced with AK.;; = K00 — Kinin for any K,
Comparison between figures 14 and 15 shows that the crack closure model has substantial
effects on the simulation results for cracks growing from location 1. Under the influence of
substantial compressive residual stresses, the crack closure model can be seen to consider-
ably increase predicted fatigue life and notably influence the shape of intermediate crack
contours. For cracks in location 3, where the residual stress magnitude is considerably
lower and K,,;, in this particular case is non-negative over the full load range, the crack
closure model is on the other hand found to be inconsequential.

Crack in location 1 Crack in location 3

0 Hab=1.0 0 4ab=0.33 0 4ab=1.0 -, 0 - ab=033

&2
S| | | &=

D A D A D A D A
T T T T T T

-D/2 0 D/2 -D/2 0 D/2 -D/2 0 D/2 -D/2 0 D/2
X X X X

Figure 14: Crack growth simulation results for various initial cracks characterized by a = 10 mm,
showing subsets of crack front contours and calculated number of fatigue cycles N
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= &= S
= = = =
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Figure 15: Crack growth simulation results for various initial cracks characterized by @ = 10 mm when
ignoring crack closure from compressive residual stresses
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4 DISCUSSION

A key question that this paper has attempted to address is whether the use of polyno-
mial solutions and the principle of superposition is a suitable approach to calculating stress
intensity factors (SIFs) for cracks in chain links. The polynomial solution presented here
involves multiple layers of approximations: Complex stress distributions are simplified to
polynomials, each term of this polynomial is assigned an approximate SIF solution, and
the resulting SIF finally calculated by superposition. Comparisons between this approach
and the computationally demanding approach of directly calculating the STFs directly us-
ing non-linear FEA did however demonstrate reasonable agreement. The calculated SIFs
were generally within &~ 2 — 6 % of each other, with the polynomial method producing
a more conservative result in all attempted comparisons. Considering the multitude of
uncertainties that typically must be addressed in practical fatigue crack growth problems,
these differences can arguably be characterized as minor.

An original contribution in the present paper is a polynomial solution developed for
calculating SIFs along the front of a semi-elliptical crack in a curved cylindrical bar.
For the special case of a straight bar subjected to tension- or bending loading, several
similar solutions can be found in published literature. See e.g. Toribio et al. [13] for
a comprehensive review. Comparisons presented in section 3.1 demonstrated that the
present curved-bar solution should be suitable for this simpler straight-bar case as well,
though at the cost of having to evaluate a comparably large polynomial expression. For
a crack in a straight bar under tensile loading, the polynomial will contain 210 non-
zero terms. For comparison, the straight-bar solution by Shin and Cai [12]| contains 72
terms, and if only the center position on the crack front is of interest, the solution by
Astiz [9] contains no more than 9 terms. With bar curvature included as an independent
parameter, and by accommodating more complex stress distributions than simple tension
and bending, the present polynomial solution is on the other hand intended to offer more
refined SIF calculations for cracks in chain links.

Although somewhat outside the scope of this paper, it should perhaps also be noted
that the use of linear elastic fracture mechanics for characterizing cracks growing in com-
pressive residual stress fields is not without problems. The simple AK.;; approach used
in this work is widely known to be somewhat limited in its ability to characterize crack
tip conditions under tension-compression type of loading [23]. Crack growth simulations
presented in section 3.3 furthermore demonstrated that the crack closure model can have
a significant effect on predicted remaining fatigue life. Since fatigue crack growth in com-
pressive stress fields is of considerable importance for offshore mooring chain fatigue life
predictions, an improved crack closure model suitable for steels in corrosive environments
could be very valuable for the type of fatigue model used in the present work.

76



Mads Aursand and Bjgrn Skallerud

5 CONCLUSION

A numerical model for simulating fatigue crack growth in mooring chain links contain-
ing compressive residual stresses has been presented. Polynomial solutions for calculating
stress intensity factors (SIFs) for semi-elliptical cracks in curved round bars have been
developed as part of the model. SIFs calculated for semi-elliptical cracks in chain links
by superposition of polynomial solutions developed for generalized curved bar geometries
were found to compare well with SIFs calculated directly using non-linear FEA. For the
range of crack sizes and tensile loads considered, results from the polynomial STF solutions
were found to consistently be &~ 2 — 6 % higher than the corresponding non-linear FEA
solutions. Fatigue crack growth simulations were finally demonstrated, highlighting the
problem of characterizing the effective crack driving force (AK, ;) for cracks subjected
to tension-compression loading.
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Abstract. By directly solving the three-dimensional unsteady Navier-Stokes equations,
the wake flow behind a step cylinder with diameter ratio D/d = 2 at Reynolds number
Rep = 150 was investigated. The dominating frequency components and vortex inter-
actions in the wake were studied in detail. Same as in previous studies, three spanwise
vortex cells (the S-cell vortex behind the small cylinder, the L-cell vortex behind the large
cylinder and the N-cell vortex between them) with different shedding frequencies were pre-
cisely captured in the present paper. Complex vortex interactions occur between these
vortex cells. We focused on the vortex dislocations between the N- and L-cell vortices.
A long periodicity of the vortex dislocation is reported and analyzed. Several long time
numerical simulations (more than 3000 D/U time units) were conducted to illustrate and
analyze the wake flow. Benefit from it, a long period characteristic of the vortex dislo-
cation was reported and analyzed. Additionally, the challenges of the grid resolution for
investigating the long period phenomenon were discussed.

1 INTRODUCTION

In recent years, the wake flow behind a step cylinder has attracted more and more
attention from researchers. Due to the abrupt change in diameter, the vortical structures
in the near wake behind the step cylinder are complex even at a low Reynolds number,
e.g. Rep = 150, as shown in figure 7.

When considering flow past a step cylinder, there are two important parameters, i.e.
the ratio between the large cylinder and the small cylinder (diameter ratio D/d) and the
Reynolds number (Rep). By doing laboratory experiments, Lewis & Gharib [1] observed
and reported two vortex interaction modes, direct and indirect modes. When the diam-
eter ratio is smaller than 1.25, only two dominating vortex shedding frequencies can be
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captured in the wake of the step cylinder, corresponding to the vortices shed from the
large cylinder and the small cylinder, respectively. These two vortex cells directly connect
to each other, and the vortex interactions between them occur in a narrow region behind
the step. This mode is called the direct mode. The indirect mode happens when the
diameter ratio (D/d) becomes larger than 1.55. Besides the two dominating vortex shed-
ding frequencies of the small and large cylinder, a distinct frequency can be detected in
the region downstream of the step. Lewis & Gharib [1] defined the region containing this
distinct frequency as the modulation zone (the N-cell area in the present paper, see figure
1). Based on the shedding frequencies and locations of different vortex cells, Dunn &
Tavoularis [2] defined three vortex cells behind the step cylinder with D/d = 2: (1) S-cell
vortex shedding from the small cylinder with the highest vortex shedding frequency; (2)
L-cell vortex shedding from the large cylinder; (3) N-cell vortex shedding near the step
position between the S- and L-cell vortices, with the lowest vortex shedding frequency.
The shedding areas of these three vortex cells are illustrated in figure 1. The terminologies
S-cell, N-cell and L-cell were later used in many studies [3, 4, 5, 6], and are also used in
the present study.

— S-cell area

— N-cell area

— L-cell area

Figure 1: The shedding areas of the three vortex cells, i.e. S-, N- and L-cell area.

Due to the different shedding frequencies, neighbouring vortex cells move either in-
phase or out-of-phase with each other. When they move out-of-phase, the contorted
tangle’ of vortices appears at the boundary between them, which looks like the disloca-
tions that appear in solid materials. Williamson [8] defined this kind of vortex interaction
as the vortex dislocation. The similar physical phenomena were also observed in the
wake behind the step cylinder. In 1992, Lewis & Gharib [1] observed that an inclined
interface between the N-cell and L-cell area appears at the beat frequency (f; — fn).
They suspected that this inclined interface might be caused by the variation of the actual
spanwise length of the N-cell vortices. In 2010, Morton & Yarusevych [3] proved this
suspicion. By doing numerical simulations, they clearly presented a cyclic variation of the
N-cell vortices. In their studies, as N- and L-cell vortices move out-of-phase, in parallel
with the appearances of the vortex dislocation, the spanwise length of the N-cell vortices
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and the position of the N-L cell interface change periodically with the beat frequency
(fr-fn). Morton & Yarusevych [3] defined these cyclic variations as the N-cell cycle. In
2017, Tian et al. [6] further investigated the vortex dislocation between N- and L-cell
vortices in detail. They identified two new loop structures: the NL-loop (the fake loop)
structure formed between a N-cell and a L-cell vortex, and the NN-loop (the real loop)
structure formed between two adjacent N-cell vortices. Based on careful observations of
the formation processes of these loop structures, an antisymmetric vortex interaction was
also reported between two adjacent N-cell cycles.

In 2015, McClure et al. [9] were the first reported the long period characteristic of
the vortex dislocation by investigating flow past dual step cylinders (1 < D/d < 4) at
Rep = 150. They found that there is a continuous variation in the vortex dislocations, i.e.
the neighboring vortex dislocations are not exactly the same. They also defined the time
period between two identical vortex dislocations as the fundamental dislocation cycle.

Compare to the interesting observations in this wake, what was much less focus on
in the literature is the computational challenges in conducting simulations of the step
cylinder wakes. Many complex and small vortical structures play important roles in the
vortex interactions in this wake. These vortices are far more difficult to capture compared
to the primary vortices. In addition, insufficient grid resolution may have little influence
on the primary vortices, but will have strong effects on the vortex dislocations. When we
discuss the long period phenomena, this becomes even more critical.

In the present paper, we investigate and report some interesting long period phenom-
ena, and a subsequent computational challenge. In order to achieve this, the flow past
a step cylinder (D/d = 2) at Rep = 150 is studied by means of solving the full three-
dimensional unsteady Navier-Stokes equations. The isosurface of Ay and the time trace
of velocity are plotted and observed for a relatively long time period (more than 2000
D/U). Last but not least, the challenges of investigating the long periodic phenomenon
are discussed.

2 COMPUTATIONAL METHOD AND FLOW CONFIGURATION
2.1 Computational method

For all simulations in the present study, the full three-dimensional incompressible
Navier-Stokes equations were directly solved by the code MGLET [10, 11]. In this second-
order finite-volume solver, the governing equations are in integral form:

/Au-ndA:O (1)

1
g///uidQJr?{uiu-ndA:fffpii~ndA+1/%gmdu,-'ndA (2)
ot Q A PJa A

where A and ) are the control surface and the control volume, respectively. n is the
unit vector on dA pointing out of €2, and i; is the Cartesian unit vector in x; direction.
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All simulations are done on a staggered Cartesian mesh. After discretizing equation (2),
we get

S~ D(w)+C(w) + C(p) = Fu,p) 3
in which D(u) represents the discretized diffusive term, C(u) represents the discretized
convective term, and G(p) represents the discretized pressure term. The midpoint rule is
used to approximate the surface integral, leading to second-order accuracy in space. The
diffusive term is approximated by a central-difference formulation, which preserves the
second-order accuracy. The time integration of equation (3) is conducted by a third-order
explicit low-storage Runge-Kutta scheme [12] (details can be found in [13]). The pressure
term is corrected by solving a Poisson equation to fulfill a divergence-free velocity field:

div[(G(dp))]At = div(u*) (4)

where 0p is the pressure correction, u* is an intermediate velocity field calculated by
omitting the pressure term in equation (3) and At is the constant time step that ensures
a CFL number smaller than 0.7. At every marching time step, this discretized Poisson
equation is represented by a linear equation system, which is solved by Stone’s Strongly
Implicit Procedure (SIP) [14].

The solid boundaries of the step cylinder is handled by an immersed boundary method
(IBM). In MGLET, we use an unstructured triangular mesh to represent the surface of
the geometry, and directly transfer information to IBM to block grid cells bounded by
this surface. Then the grid cells at the fluid-solid interface will be set as internal cells by
interpolating the flow variables from the surrounding cells. A more detailed description
of the IBM used in MGLET can be found in [15].

2.2 Flow configuration

The geometry of the step cylinder investigated in the present paper is shown in figure 2
(a), in which D is the diameter of the large circular cylinder, and d is the diameter of the
small cylinder. [ and L are the length of the small and large cylinder, respectively. The
origin locates at the center of the interface between the small and large cylinder. In figure
2 (b), the coordinate system and the computational domain are shown, where z—, y— and
z—directions correspond to the streamwise, crossflow and spanwise direction, respectively.
The computational domain is a rectangular box spanning 20D in the crossflow direction,
30D in the streamwise direction and 45D in the spanwise direction. The total length of
the step cylinder equals 45D. These parameters are larger than that used by Morton
and Yarusevych [3] for modeling a step cylinder with the same D/d and Rep. Boundary
conditions applied in the present study are as follow:

- The inlet boundary: uniform velocity profile u=U, v=0, w=0;
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- The outlet boundary: Neumann boundary conditions for velocity components (Ou/dz =
Ov/0x = Ow/dx = 0) and constant zero pressure condition;

- The other four planes of the computational domain: free-slip boundary conditions.
For the two vertical planes: v = 0, du/dy = dw/dy = 0, For the two horizontal
planes: w =0, Ou/dz = dv/dz = 0

- The step cylinder surfaces: no-slip and impermeable wall condition;

10 20
4 It Z
— - X
—> l Y
i=1
—> Yl »x ©
—>
u Side View
I 10 20
o Y
— - X
' <
-7F7 —
Top-down View
@ (b)

Figure 2: (a) The step cylinder geometry investigated in the present study; (b) Computational domain
size, origin and coordinate system illustrated from different viewpoints. Diameter of the large cylinder, D,
is the length unit. The origin locates at the center of the interface between the small and large cylinder.

3  Grid study

3.1 Grid overview

Table 1: Grid information of all cases. The Reynolds number is 150 for all cases (Rep = UD /v = 150).
Grid levels are illustrated in figure 3.

Min grid Number of Number of grid cells Time step  Total number of

Case cell size  grid levels in one grid box At grid cells (million)
1 0.025 5 30 x 30 x 30 0.0080 30.2
2 0.020 5 36 x 36x 36 0.0067 48.8
3 0.015 6 24 x 24x 24 0.0050 81.0
4 0.012 6 30 x 30x 30 0.0040 173.8
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Detailed grid information of all cases simulated is summarized in table 1. The Reynolds
number is calculated based on the uniform free-stream velocity (U) and the diameter of
the large cylinder (D), i.e. Rep = UD/v = 150 (v is the kinematic viscosity of the fluid).
The computational domain is divided into many cubic Cartesian grid boxes. In each grid
box, N x N x N cubic Cartesian grid cells are uniformly distributed. In the areas where
complex flow phenomena take place, such as in the region around the 'step’, the area where
the vortex dislocation happens, etc., the grid is refined by equally splitting grid boxes (e.g.
the level-1 box) into eight smaller cubic grid boxes (i.e. the level-2 box). Hence, the grid
resolution on level-2 is two times better than that on level-1. This refinement process goes
on automatically until the finest grid level (varies with cases shown in table 1) is reached.
In figure 3, a schematic illustration of the grid for C'ase2 is shown.

3.2 Grid convergence study

Motivated by ensuring that the grid resolution is good enough to resolve all impor-
tant fluid phenomena, especially the complicated flow around the step, four grids were
generated for thegrid study, as shown in table 1.

First, we did a rough check by comparing vortex shedding frequencies of the three
vortex cells in all cases. In table 2, by conducting Fast Fourier Transform of the time-series
of the streamwise velocity u along a sampling line at (2/D, y/D)=(0.6, 0.2), the Strouhal
number (St) of the three dominating vortex cells (S-cell Stg = fsD/U, N-cell Sty =
fnDJU and L-cell St = fLD/U) in the wake of the step cylinder are calculated and
presented. One can see that the differences in St of the same vortex cell are small among
all cases. The largest difference is (Sts of Case2-Stg of Case3)/(Sts of Case3)=1.7%,
which is considerably small. Moreover, the difference between Case3 and Cased (the
finest two cases) is smaller than 0.7%.

Table 2: The Strouhal number (St) of three dominating vortex cells (S-cell Sts = fsD/U, N-cell
Sty = fnD/U and L-cell St;, = fr,D/U) for all cases investigated. The results of one previous numerical
study [3] and two previous laboratory experiments [16, 17] are also shown. [Note: in our case, Sts is
calculated based on the diameter of the large cylinder, a factor 2 is used when obtain data from [16, 17].]

Case Stg Sty Str,

1 0.2943 0.1532 0.1769

2 0.2950 0.1531 0.1771

3 0.2895 0.1545 0.1780

4 0.2921 0.1549 0.1784

Morton and Yarusevych [3] 0.320 0.157  0.179
Norberg [16] 0.297 - -
Williamson [17] 0.298 - -
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Figure 3: (a) A slice of the computational domain in the z —z plane at y/D = 0. Each square represents
the slice of a corresponding cubic Cartesian grid box which contains N x N x N grid cells. In this figure,
there are five levels of grid boxes, where the first four levels are indicated by numbers (1-4). Due to
different minimum grid sizes, different cases have either five or six levels of grid boxes. (b) Same as (a)
but the slice positioned in the x — y plane at z/D = 0~ (at the large cylinder area). (¢) A zoom-in plot
of the grid cells in the step region (red rectangle in (a)) for Case2; (d) Same as (c¢) but the zoom-in area
is indicated by a red rectangle in (b).

Second, the mean streamwise velocity (7/U) distributions are checked along a line AB
(as indicated in the subplot figure 4 (c)) and a line C'D (as indicated in the subplot figure
5 (b)) to illustrate the time averaged flow conditions close to the step. The curves in
figure 4 (a) are almost identical, and the zoom-in plot 4 (b) clearly shows a convergent
tendency form Casel to Cased4. Additionally, the difference between Case3 and Cased
is negligible. The flow field behind the step is more complicated than that in front of the
step. As shown in figure 5 (a), the curve from Casel shows obvious differences compared
with the curves from the other three cases. From the two zoom-in plots, figure 5 (¢) and
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(d), one can see that the maximum difference in 4/U between Case2, Case3 and Cased
is only around 0.005. This means that, except for Casel, the flow field from the other
three cases fit each other well.

0.7 T T T
@ [ Case 1
0.6} ---Case 2| |
—Case 3
0.5t o Case 4
0.4¢ 1
=)

E 0.3¢ 1
0.2f 1
0.1f ]

0.16 0.18 0.2
0 ” 1 1 L
0@ 0.2 0.4 0.6 0.8®)
Spanwise length / D

Figure 4: (a) Distributions of mean streamwise velocity %‘ along a sampling line AB in the x — z plane
at y/D = 0; (b) A zoom-in plot of the upper part of curves in (a) (black rectangle in (a)); (c¢) A sketch
of the sampling line AB of length 0.8D, positioned 0.15D in front of the small cylinder.
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Figure 5: (a) Distributions of mean streamwise velocity [‘;} along a sampling line CD in the x — z plane
at y/D = 0; (b) A sketch of the sampling line CD of length 6D, positioned 1D behind the large cylinder;
(¢c) and (d) Zoom-in plots of the lower part of curves in (a) (black rectangles in (a)).

Furthermore, the time traces of the instantaneous spanwise velocity w in the N-cell
area where the velocity varies dramatically with time are plotted for Case2, Casel and
Cased in figure 6. The mean values and the fluctuations of these curves coincide well.
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Figure 6: Time traces of the spanwise velocity (w/U) at point (z/D, y/D, z/D)=(1, 0, -2.5) in the
N-cell area. The red line is obtained from paper [3]. T is the period of one N-cell cycle which is the same
time scale as Morton and Yarusevych used in [3].

3.3 Comparing with previous studies

In figure 7 (a), an overview of the vortex structures behind the step cylinder is il-
lustrated by plotting the isosurface of Ay = —0.05 [7]. The overall vortical structures
from previous numerical simulations [3] and laboratory experiments [2] are presented in
figure 7 (b) and (c), respectively. The wake structures compare well with each other in
these three plots. In figure 7 (a), three vortex cell areas (the S-, N- and L-cell areas)
are also clearly illustrated. As Morton & Yarusevych [3], we also captured three domi-
nating frequency components in the wake flow, as shown in table 2. The Sty from our
simulations fits well with theirs. Our Stgs and Sty, however, are somewhat lower than
that from their simulations. As mentioned in previous papers [2, 18, 19], the shedding
of S-cell vortices is seldomly affected by the step. Two laboratory experiments [16, 17]
are introduced to validate our Stg. From table 2, one can see that our results compare
better with the experimental values. Moreover, the spanwise velocity data from paper [3]
is inserted in figure 6. The match between the present study and Morton & Yarusevych
[3] is convincing, except for small differences in the lower part of the curves.

Based on all these careful comparisons, we believe that, except for Casel, the con-
vergent tendency from Case2 to Cased is clear. Moreover, the difference between Case3
and Cased is small, and both of them fit well with previous results. However, due to the
smaller time step size and large number of grid cells, the computational cost of C'ase4 is
significantly higher that that of C'ase3. All discussions in the present paper are therefore
based on data from Case3.
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Figure 7: Vortex shedding in the wake behind a step cylinder: (a) Isosurfaces of Ao = —0.05 [7] from our
simulation, Rep = 150 and D/d = 2; (b) Isosurfaces of Q ~ 2 x 1073 from [3], Rep = 150 and D/d = 2;
(c) Flow visualization image from [2], Rep = 150 and D/d = 2;

4 RESULTS
4.1 Long periodicity of the vortex dislocations

In the present study, as in the previous investigations [2, 3], three vortex cells (S-, N-
and L-cell vortices) are captured in the wake behind the step cylinder. Complex vortex
interactions occur between them, especially between the N- and L-cell vortices. Due to
different shedding frequencies, the N- and L-cell vortices move either in-phase or out-of-
phase. During this process, vortex dislocations and vortex loop structures form. As shown
in figure 8, the formation of the 1st N-cell cycle is illustrated by consecutive snapshots
of isosurface of Ay. The time ¢ is set to t=t*-2378.1D /U, where t* is the actual time in
the simulation (this applies through the paper). All N- and L-cell vortices are labeled
by a combination of capital letters and numbers; 'N” and °L’ represent N- and L-cell
vortices, respectively, while the number indicates the shedding order. To differentiate
vortices shed from the different sides of the step cylinder, we use capital letters with
primes (N’ and L) to represent vortices shed from the '+Y’ side; and capital letters (N
and L) to represent vortices shed from the *-Y’ side. From figure 8 (a) to (f), every N-cell
vortex has one corresponding L-cell vortex shed from the same side (e.g. NO and LO;
N'1 and L’1...). As the phase difference between the N- and L-cell vortex accumulates
[3], loop structures appear when corresponding N- and L-cell vortices are out of phase.
From figure 8 (g) to (j), loop structures (N8-L’9) and (N’9-L10) form, and are indicated
by green and red curves, respectively. Detailed descriptions of the formation process of
those loop structures can be found in paper [6]. Based on the order of their appearances,
we name the green curve as the NL-loopl, and the red curve as the NL-loop2. Meantime,
we define the side of a NL-loop structure as the side of its N-cell vortex component. For
example, the NL-loop1 N8-L’9 (shown by green curves) in figure 8 (h) is identified to form
at the -Y’ side, because the N-cell vortex (N8) in this loop is at the -Y’ side.

In figure 9, by plotting the isosurface of Ay = —0.05, the NL-loop structures in the
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(f) t=27 (g) t=315 (h) t=36 (i) t=40.5 (j)t=43.8

Figure 8: Isosurface of Ay = —0.05 [7] showing the development of the 1st N-cell cycle on the -Y” side of
the step cylinder. The time ¢ is set to t=t*—2378.1D/U (t* is the actual time). Solid and dashed curves
indicate the loop structures on the -Y’ and "+Y’ side, respectively.

1st and 2nd N-cell cycles are shown. The same colors and definitions in figure 8 are used
here. One can see that the NL-loopl (N8-L’9) in the 1st N-cell cycle (figure 9 (a)) and
the NL-loopl (N’21-L24) in the 2nd N-cell cycle (figure 9 (c¢)) are on different sides of the
step cylinder. This is the antisymmetry reported in our previous paper [6]. However, by
comparing figure 9 (a) and (c); (b) and (d), one can see that the corresponding NL-loops
have small differences (highlighted by black circles), which means the conventional anti-
symmetry is not perfect. These differences are also reflected in the time traces of crossflow
velocity (v) in the center plane. When a vortex dislocation occurs, the adjacent vortices
move out phase. Meanwhile, the induced velocity fluctuations at the boundary between
the adjacent vortex cells are excepted to diminish. For different dislocation processes,
the corresponding distinct vortex alignments cause different amount of reductions in the
induced crossflow velocity (v). In figure 10, the time trace of the crossflow velocity (v/U)
is plotted at the position (z/D, y/D, z/D)=(1.5, 0, -6), which is at the boundary between
the N- and L-cell vortices. The instants where the vortex dislocations in the 1st and 2nd
N-cell cycle occur are marked by 'Disl” and 'Dis2’, respectively. One can see that the
obvious reductions in the induced crossflow velocity are different at these two positions.
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Figure 9: NL-loop structures at the 1st and 2nd N-cell cycles are plotted in [(a), (b)] and [(c), (d)],
respectively. The same colors and definitions used in figure 8 are also used here.
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Figure 10: Time trace of the crossflow velocity (v) at a sampling point (z/D, y/D, z/D)=(1.5, 0, -6).
"Disl” represents the dislocation process that occurs in the 1st N-cell cycle defined in figure 9, same for
"Dis2”.

The different alignments of N- and L-cell vortices induce slightly different NL-loops and
different reductions in the induced crossflow velocity in the 1st and 2nd N-cell cycles. From
the NL-loopl (N8-L’9) of the 1st N-cell cycle in figure 9 (a) to the NL-loopl (N’21-L24) of
the 2nd N-cell cycle in figure 9 (c¢), there are 13 N-cell and 15 L-cell vortices. Compared to
the vortex pairs in the 1st N-cell cycle, the fact that 15 x ﬁ —13 % ﬁ =0.064 (fy and
fr are obtained from table 2-Case3) induces a small phase shift to every vortex pair (a
N-cell vortex and its counterpart L-cell vortex) in the 2nd N-cell cycle. It means that the
vortex alignment varies from one N-cell cycle to another. Only when the vortex alignment
becomes exactly the same in two N-cell cycles, the corresponding vortex dislocations can
be exactly the same.

Considering vortices shed alternatingly from the '+Y” and *-Y’ sides of the step cylinder,
the exactly same vortex alignment can appear at the same side or different sides of the
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step cylinder. When the same vortex alignment appears at the same side of the step
cylinder in two N-cell cycles, their subsequent NL-loop structures should be identical (i.e.
perfect symmetric). On the other hand, perfect antisymmetric NL-loop structures are
expected. We assume that there are two neighboring vortex cells: vortex cell-1 with a
shedding frequency fi, and vortex cell-2 with a shedding frequency f,. If the number of
cell-1 and cell-2 vortices are 'k’ and ’j” between the two N-cell cycles which have the same
vortex alignment, expression 5

y 1
2fa

should be satisfied. We keep the number ’2’ as a factor in both sides of expression (5),
because the shedding frequency should be doubled when we consider vortices from the
+Y’ and -Y’ side separately (normally, the vortex shedding frequency in a Karman
vortex street is the shedding frequency of a pair of vortices).

1 .
l<:><2—fl=j (5)

+Y side -Y si +Y side
, , ! X

i [
(a) t=672.1 (b) t=675.4 (d) t=1311.9 (e) t=1945.0 (f) t=1948.3
The 16th N-cell cycle The 31th N-cell cycle The 46th N-cell cycle

Figure 11: NL-loop structures at the 1st and 2nd N-cell cycles are plotted in [a), b)] and [c), d)],
respectively. The same colors and definitions as in figure 8 are used here.

After long time of observation, we found that the corresponding NL-loop structures
(NL-loopl: N8-L’9; NL-loop2: N’9-L10) in the 1st N-cell cycle, and (NL-loopl: N’205-
L236; NL-loop2: N206-1.’237) in the 16th N-cell cycle are perfect antisymmetric, as shown
in figure 9 a), b) and figure 11 a) b). Details are highlighted by black circles. Between
these two N-cell cycles, there are 183 N-cell vortices and 211 L-cell vortices which satisfy
equation (5), i.e.183 x ZJ%N =211x i =592 (fy and f, are obtained from table 2-Clase3).

In addition, the NL-loop structures in the 31th and the 46th N-cell cycle are plotted in
figure 11 (c), (d), (e) and (f). One can see that, after every 15 N-cell cycles, the perfect
antisymmetric phenomenon appears. In figure 12, the time traces of the crossflow velocity
v are plotted at the position (x/D,y/D,z/D)=(1.5, 0, -6). The y-coordinate of figure
12 (b) is reversed (from v to —v) to ease the comparison. The position where a vortex
dislocation happens is marked by a combination of the capital letter "D’ and its series
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number. One can see that these two plots almost coincide, which proves that all of the
vortex alignments and the corresponding NL-loop structures are perfectly antisymmetric
between D1-D15 and D16-D30.
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Figure 12: Time trace of the crossflow velocity (v) at a sample point (z, y, z)/D=(1.5, 0, -6). "D1”
means the dislocation process that occurs in the 1st N-cell cycle defined in figure 9, same for "D2”, etc.

This long cyclic process (around 650 D/U) is quite similar to the 'fundamental dislo-
cation cycle’ defined by McClure et al. [9]. They focused on the flow around a dual step
cylinder. In their study, the same vortex dislocations appeared at the same side of the dual
step cylinder at certain intervals, i.e. the perfect symmetry defined in the present paper.
Moreover, they proposed equation (6) to measure the duration of the phase realignment
process (the same assumption used in equation (5) is also used here).

fi m
how (6)

The 'm’ and 'n’ are measured to the lowest possible integer value.
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However, our observations clearly show that there is another type of the fundamental
dislocation cycles, i.e. the perfect antisymmetric cycle. Behind the cylindrical structure,
vortices alternatingly shed at the two sides of the structure. The alignment of vortices
appears at one side of the structure is possible to repeat at either the same side or the
other side of the structure. By using equation (6), the anticipated number of vortices in
one fundamental vortex dislocation cycle can only be even (2m cell-1 vortices, and 2n cell-
2 vortices). It makes equation (6) only suitable for the cases with perfectly symmetric
fundamental dislocation cycles. In addition, when f; and fo are close, it is impossible
to get the accurate value of 'm’” and 'n’. For example, in our case, f; = 0.1545 and
f2 = 0.1780. It results in 197 N-cell vortices and 227 L-cell vortices in one fundamental
vortex dislocation cycle. Without observations, it seems impossible to get the correct
value of 'm’ and 'n’.

In general, there are two types of the fundamental dislocation cycles, i.e. the perfect
symmetric cycle and the perfect antisymmetric cycle. The different duration of 13 N-
cell and 15 L-cell vortices brings the small phase shift to every vortex pair of the N-
and L-cell vortex in neighboring N-cell cycles, and finally results in the fundamental
dislocation cycle’. Ideally, the duration of the cycle can be measured by equation (5).
But, in practice, it might be hard to get the accurate number of vortices without careful
observations, especially when the shedding frequencies of neighboring vortices are close.

4.2 Computational challenges for investigating a long periodic phenomenon

As discussed in section 3.2, the results of our four cases show good convergence, and
compare well with previous studies [3, 6]. However, considering the long periodicity of
the fundamental dislocation cycle discussed in section 4.1, the simulation time of our
convergence tests might not be long enough. Further investigations proves this.

Firstly, after another 1000 time units (D/U) simulation of Case 4, the exact same
fundamental vortex dislocation was observed. However, different from Case 3, in Case 4,
the same vortex dislocation appears at the same side of the step cylinder, and there are
131 N-cell and 151 L-cell vortices in one fundamental vortex dislocation cycle.

Furthermore, we set up a new case (named as Clase5) to continue refining our grid size
from 0.012D to 0.010D. Still we cannot get exactly the same result as we obtained from
the Case 4. In the Case 5, in one fundamental vortex dislocation cycle, the number of N-
and L-cell vortices are 170 and 196, respectively.

Although, the number of vortices in one fundamental vortex dislocation cycle varies
for different cases, further investigation proves that all the different cases converge to the
same physical mechanism.

In figure 13, the isosurface of \y = —0.05 is plotted to illustrate the NL-loop structures
for different cases. Details of the loop structures are highlighted by black circles. The
figure is divided into three parts by two dashed black lines: the left, middle and right part.
As shown in the left part of figure 13 ((a), (b), (g), (h), (m) and (n)), the same NL-loop
structures are observed in all three cases (Case3, Cased and Caseb). Even the details of
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the loop structures highlighted by black circles are almost exactly the same. It means, at
this moment, all the three grid resolutions are able to give the same vortex alignments,
and the same vortex structures. For all three cases, the N-cell cycle containing the NL-
loop structures shown in the left part of figure 13, is set up to the 1*st N-cell cycle. By
comparing the following N-cell cycles, we found that the differences between these three
cases are gradually accumulated.

+Y side

(e) NL-loopl (f) NL-loop2
J \ ALY

(g) NL-loopl  (h) NL-loop2 : (i) -loopl (j) NL-loop2 : ) NL-loop2

-
Case5

(r) NL-loop2
5*th N-cell cycle

(m) NL-loopl  (n) NL-loop2 } (0) NL-loopl (p) NL-loop2 } (q) NL-loapl

1*st N-cell cycle : 2*nd N-cell cycle

Figure 13: Isosurface of Ay = —0.05 [7] showing the NL-loop structures in Case3, Cased and Caseb on
both *+Y” and ’-Y” sides. The details of the loop structures are highlighted by black circles. Two dashed
lines divide the figure into three parts: the left part (the NL-loop structures in the 1*st N-cell cycle), the
middle part (the NL-loop structures in the 2*nd N-cell cycle) and the right part (the NL-loop structures
in the 5*th N-cell cycle).

In the middle part of figure 13, the NL-loop structures in the 2*nd N-cell cycle are
plotted for all three cases. One can see that the differences in details of the NL-loop
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structures are still very small between the different cases. However, as shown in the right
part of figure 13, the loop structures in the 5*th N-cell cycle are completely different for all
three cases. This transformation is caused by the accumulations of the minor differences
in the vortex shedding frequencies (fy and fr) between these three cases.

Table 3: The Strouhal number (St) of N-cell vortex (Sty = fyD/U) and L-cell vortex (Sty, = fLD/U)
for Case3, Cased and Caseb.

Case Mean grid size (D) Sty Str,

3 0.015 0.1545 0.1780
4 0.012 0.1547 0.1783
5 0.010 0.1549 0.1784

As shown in table 3, the differences of the shedding frequencies (fy and fy) are very
small between these three cases. Normally, it is reasonable to claim that these three cases
are already converged. Actually, in a relatively short time period, e.g. from the 1*st N-cell
cycle (the left part of the figure 13) to the 2*nd N-cell cycle (the middle part of the figure
13), the wake flow and vortex structures agree well between Case3, Cased and Caseb.
But after long time accumulations, e.g. from the 1*st N-cell cycle (the left part of figure
13) to the 5*th N-cell cycle (the right part of the figure 13), even the small differences in
the shedding frequencies can affect the wake flow. Only when the shedding frequencies of
different grid cases are exactly the same, the vortex alignment and vortex structures can
be exactly the same.

In general, we admit that even in C'aseb, the mesh resolution is still not fully converged
for fundamental vortex dislocations. It is very difficult to get complete grid convergence
when investigating the exceptionally long period phenomenon. After a long time accumu-
lation, even a tiny difference could become big enough to affect the flow field. However
we clearly show that C'ase3, Clased and Cased are all able to give the same instantaneous
vortical structures in the near wake. The different detailed information (the number of N-
and L-cell vortices) in one fundamental vortex dislocation cycle is caused by the accumu-
lation of the minor difference in the vortex shedding frequencies between these cases. The
mechanism and the existence of the two kinds of fundamental vortex dislocation cycles
are valid for all cases.

5 CONCLUSION

The present results show good agreement with previous studies [3, 6, 9], such as the
three dominating spanwise vortices (i.e. S-,; N- and L-cell vortices), vortex dislocations be-
tween the N- and L-cell vortex, loop structures (NL-loopl and NL-loop2) generated during
the vortex dislocation process and the antisymmetric phenomena between the neighboring
N-cell cycles. In addition, the long period characteristic of the vortex dislocation, i.e. the
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fundamental dislocation cycle, was for the first time captured and analyzed in the wake
of the single step cylinder. We have clearly shown that the different duration of 13 N-cell
and 15 L-cell vortices during one N-cell cycle brings the small phase shift to every vortex
pair of N- and L-cell vortex, and finally causes the ’fundamental vortex dislocation cycle’.
In addition, there are two kinds of fundamental dislocation cycles, i.e. the symmetric fun-
damental dislocation cycle, and the antisymmetric fundamental dislocation cycle, which
are determined by whether the same vortex alignment appears on the same side of the
step cylinder or not. Last but not least, we discussed challenges of the grid resolution on
investigating the long period characteristic. We found that, for the present case, although
the detailed information (e.g. the number of N- and L-cell vortices) in one fundamental
vortex dislocation cycle varies when continuing to refine the grid, the mechanism of the
fundamental vortex dislocation cycle is valid for all cases.

In the future, other Reynolds numbers and diameter ratios will be investigated to
explore how the vortex shedding frequencies of N- and L-cell vortices affect the formation
and the length of the fundamental vortex dislocation cycle.
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Abstract. A new numerical wave model in the framework of REEF3D solves the Laplace
equation for the flow potential and the nonlinear kinematic and dynamics free surface
boundary conditions with HYPRE’s massively parallel stabilized bi-conjugated gradient
solver and a geometric multi-gr