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Preface

The present volume contains 24 papers based on the 33 contributions presented at the 10
th 

National 
Conference on Computational Mechanics -MekIT’19 held at The Norwegian University of Science 
and Technology (NTNU) in Trondheim (Norway) June 3

rd 
and June 4

th
, 2019. 

The series of national conferences on Computational Mechanics dates back to MekIT’01, 
which was arranged at NTNU in Trondheim early May 2001. The motivation of the first MekIT
conference was to bring together those involved in Computational Mechanics in Norway, both in 
industry and academia, to share their experiences and report on their research in an informal and 
friendly setting. At that time, an arena where those involved with rather different applications of 
Computational Mechanics, as well as scientists developing new computational methods of more 
generic nature, could meet was non-existing in Norway. 

The conferences have from the very beginning aimed to cover all sub-areas of Computational 
Mechanics and not only computational solid mechanics and computational fluid dynamics. In spite of 
distinctions in approach and methodology the difficulties faced by the researchers are often of similar 
nature and problems can perhaps be remedied in the same way irrespective of the actual application. 
It has all the time been our hope that the conference series will demonstrate that Computational 
Mechanics is a viable research tool by which both human curiosity and industrial needs can be 
satisfied by scrutinizing the laws of classical mechanics, provided that adequate numerical methods 
are implemented in reliable software, and efficient computers are available. 

A particular mission has been to offer a stimulating environment in which doctoral students 
and other young researchers can present results of their own project work, perhaps for the first time, 
and at the same time get an impression of the multifaceted research which takes place in other research 
groups and at other institutions in Norway. 

In addition to the contributed talks, keynote lectures are delivered by carefully selected 
scientists, normally recruited from the other Scandinavian countries, to give an impression of state
of-the art in Computational Mechanics. This year, however, we were delighted that Professor Robert 
M. McMeeking (Department of Mechanical Engineering & Materials Department, University of 
California at Santa Barbara, USA) and Professor Eric Lamballais (Institut P’, CNRS -Université 
de Poitiers, France) shared their vast expertise with us in fascinating lectures on computational 
biomechanics and large-eddy simulations, respectively. 

The regular contributions have primarily been written by PhD students and other young 
researchers together with their supervisor(s) or project leader(s) and always in English. The manuscripts 
were submitted before the start of the conference. Each manuscript has been subjected to reviewing 
by at least one member of the Scientific Committee and in some cases also by a peer outside of the 
Scientific Committee. The authors were thereafter asked to revise their manuscripts in accordance 
with the comments and suggestions made by the reviewers. The majority of the authors accepted 
our invitation to prepare a carefully revised version of their manuscript, which now is included in 
the printed conference proceedings. Following the contributions by the two invited lecturers, the 22 
contributed papers appear alphabetically according to the family name of the first author and are 
listed in the Table of Contents. The names of all authors and co-authors of the contributed papers are 
included in the Author Index. 

Earlier proceedings have been published by Tapir Academic Press and Akademika 
Publishing just prior to the conference. For the first time in 2015 the conference proceedings were 
published by CIMNE and not until a couple of months after the conference. This new scheme enables 
a more thorough reviewing process and contributes to the quality of this collection of 2+22 papers. 

We, as the organizers of the series of ten MekIT-conferences, could instead have arranged 
separate conferences in computational fluid dynamics (CFD) and computational solid mechanics 
(CSM). But we realized that there are a number of common challenges in CFD and CSM, although 
there are also differences like fractures/cracks and shocks. 

In common, however, CFD and CSM are based on Newtonian mechanics and continuum 
theory, although different material models are used. Water, for example, is an isotropic and Newtonian 
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fluid, but sediments or polymer additives will i) change the viscosity and ii) induce anisotropy. The 
material model (the rheological model) is an essential issue both in CFD and CSM. 

Also in common is the fact that the fundamental equations are partial differential equations 
(PDEs) which depend on the material or fluid properties. The PDEs are often non-linear and have to 
be solved by means of numerical methods: finite-element, finite-difference, finite-volume, spectral 
element methods etc. 

Also in common is that the governing PDEs have to be discretized into grid cells or finite 
or spectral elements. The solutions will therefore be discrete rather than continuous and resolution 
refinement is required to handle cracks in CSM and shocks in CFD. 

Also in common is that initial conditions are needed at the beginning of the simulation and 
boundary conditions are required in space. Like in weather forecasting, for instance, the solution may 
depend crucially on the initial conditions. 

After a simulation has been performed, quality assessment is required both in CFD and 
CMS. This includes validation, namely to justify that the right equations are solved, and verification, 
namely to assure that the equations are solved right. The latter includes grid independency testing. 

The majority of problems in CFD and CSM are non-linear. Therefore, although a problem 
is perfectly symmetric, an asymmetric solution may develop as a result of a bifurcation that sets in 
above a certain parameter value which makes the symmetric solution asymmetric due to a competition 
between two stable but asymmetric solutions. Such bifurcations are sensitive to the choice of initial 
conditions as well as to proper discretization and resolution. 

Also after the simulation is ready and the quality has been assessed, post-processing (to get 
out the data your sponsor asked for) and 3D visualizations (to convince your sponsor and politicians 
what you talk about) are required and represent an integral part of Computational Mechanic. 

During the years of MekIT, we as the organizers have observed a couple of trends since the 
start-up back in 2001: 

• A move from mostly steady problems to time-dependent problems. 
• A move from mostly 2D to 3D problems, which implies much larger computations. 
• A move from linear to non-linear problems, which implies more challenging computations. 
• A move from simple physics towards multi-physics and coupled problems. 
• A move from mono-scale to multi-scale problems. 
• An improving quality of the oral presentations at the conference and the written 

contributions to the proceedings. 

The latest conference, MekIT’19, was hosted by NTNU’s Faculty of Engineering and arranged 
jointly by Department of Energy and Process Engineering and Department of Structural Engineering. 
The Editors appreciate the willingness of the authors to stick to the time schedule for paper 
submission and revision. We are particularly thankful to the members of the Scientific Committee and 
their peers for reviewing the submitted papers and thereby assure the quality of these Proceedings. 
Administrative assistance from Departent of Energy and Process Engineering and financial support 
from Faculty of Engineering are gratefully acknowledged. 

We, as the organizers of the ten MekIT-conferences and editors of the ten MekITproceedings, 
appreciate the long-lasting interest in this biennial event and the willingness of present and former 
PhD-students and colleagues to contribute parts of their research work to the MekIT conferences. 

September 2019 

Helge Andersson 

Bjørn Skallerud 
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FROM EXPLICIT TO IMPLICIT SUBGRID-SCALE AND
WALL MODELLING IN LARGE-EDDY SIMULATION

ERIC LAMBALLAIS AND RODRIGO VICENTE CRUZ

Incompressible Turbulence and Control Group, Pprime Institute, CNRS - University of
Poitiers - ISAE/ENSMA, France

Key words: Turbulence, Large-Eddy Simulation, Subgrid-Scale Modelling, Wall-layer
Modelling, Implicit Modelling.

Abstract. In this paper, the concept of implicit modelling via the numerical error is
exemplified in the context of large-eddy simulation. It is shown how the control of numer-
ical errors at small scales can be an ersatz of subgrid-scale modelling while playing even
the role of wall-layer model in functional terms. Despite the lack of rigorous formalism,
implicit large-eddy simulation is found to be more accurate than conventional large-eddy
simulation based on explicit subgrid-scale modelling. To illustrate these features, two
academic turbulent flows are investigated by direct and large-eddy simulation: (i) the
Taylor-Green vortex problem; (ii) the pipe flow. It is shown that the crucial quality of
implicit subgrid-scale modelling lies in its ability to damp the smallest scales allowed by
the computational mesh. This feature is beneficial for the two flow configurations in-
vestigated, with a remarkable improvement of the near-wall turbulent statistics for the
pipe. On the contrary, the very popular Smagorinsky model is found to be unable to
control this type of spurious oscillations with a structural difficulty to ensure numerical
convergence in the Taylor-Green vortex problem. Even if implicit large-eddy simulation
is always found more accurate than conventional large-eddy simulation for this flow, a
limitation of the approach is clearly exhibited for a challenging computational configura-
tion where the mesh is very coarse by comparison with direct numerical simulation. In
this situation, the fundamental assumption that very large scales are not subjected to
subgrid-scale effects is shown to be erroneous. Because this assumption is inherent to
implicit large-eddy simulation, it is suggested that a specific explicit modelling should be
developed to correctly model the influence of subgrid-scales on very large scales.

1 INTRODUCTION

In large-eddy simulation (LES), the purpose is to compute a reduced solution less
demanding in terms of number of degrees of freedom in order to save computational
resources. Naturally, this reduction has to preserve the most important features of the

1



VIII 1

10. National Conference on Computational Mechanics
MekIT’19

B. Skallerud and H I Andersson (Eds)

FROM EXPLICIT TO IMPLICIT SUBGRID-SCALE AND
WALL MODELLING IN LARGE-EDDY SIMULATION

ERIC LAMBALLAIS AND RODRIGO VICENTE CRUZ

Incompressible Turbulence and Control Group, Pprime Institute, CNRS - University of
Poitiers - ISAE/ENSMA, France

Key words: Turbulence, Large-Eddy Simulation, Subgrid-Scale Modelling, Wall-layer
Modelling, Implicit Modelling.

Abstract. In this paper, the concept of implicit modelling via the numerical error is
exemplified in the context of large-eddy simulation. It is shown how the control of numer-
ical errors at small scales can be an ersatz of subgrid-scale modelling while playing even
the role of wall-layer model in functional terms. Despite the lack of rigorous formalism,
implicit large-eddy simulation is found to be more accurate than conventional large-eddy
simulation based on explicit subgrid-scale modelling. To illustrate these features, two
academic turbulent flows are investigated by direct and large-eddy simulation: (i) the
Taylor-Green vortex problem; (ii) the pipe flow. It is shown that the crucial quality of
implicit subgrid-scale modelling lies in its ability to damp the smallest scales allowed by
the computational mesh. This feature is beneficial for the two flow configurations in-
vestigated, with a remarkable improvement of the near-wall turbulent statistics for the
pipe. On the contrary, the very popular Smagorinsky model is found to be unable to
control this type of spurious oscillations with a structural difficulty to ensure numerical
convergence in the Taylor-Green vortex problem. Even if implicit large-eddy simulation
is always found more accurate than conventional large-eddy simulation for this flow, a
limitation of the approach is clearly exhibited for a challenging computational configura-
tion where the mesh is very coarse by comparison with direct numerical simulation. In
this situation, the fundamental assumption that very large scales are not subjected to
subgrid-scale effects is shown to be erroneous. Because this assumption is inherent to
implicit large-eddy simulation, it is suggested that a specific explicit modelling should be
developed to correctly model the influence of subgrid-scales on very large scales.

1 INTRODUCTION

In large-eddy simulation (LES), the purpose is to compute a reduced solution less
demanding in terms of number of degrees of freedom in order to save computational
resources. Naturally, this reduction has to preserve the most important features of the

1



2

Eric Lamballais and Rodrigo Vicente Cruz

“full” solution to enable reliable predictions. In this work, the full solution is assumed to
satisfy the incompressible Navier-Stokes equations while being assimilated to its highly-
accurate numerical approximation obtained by direct numerical simulation (DNS). The
reliability of the prediction is then connected to the ability of LES to provide mean velocity
and basic turbulent statistics with accuracy close to DNS.

The strategy of conventional LES is to derive the governing equations of the reduced
solution through the definition of the reduction procedure. Typically, a low-pass filter
is invoked to establish the governing equations without specifying the exact form of the
filter but referring to a separation scale ∆ to split the solution into its large-scale (LS)
and subgrid-scale (SGS) components. Non-linearities of Navier-Stokes equations introduce
new unknowns leading to a closure problem. The most popular way to close the equations
is to use a constitutive relation of Boussinesq-type by defining a SGS eddy viscosity with
in particular the well-known Smagorinsky model which is a physical closure designed
to match the expected SGS dissipation. Unfortunately, the formalism to establish the
governing equations suffers from severe shortcomings with in particular the commutation
error between the filter and the spatial differentiation [15, 14, 13, 30]. Another important
weakness is the sensitivity of the equations to numerical errors. To ensure numerical
convergence, a discretization clearly finer than the separation scale ∆ should be employed.
This requirement is fully recognized (see for instance [5, 29, 1, 26, 27, 28]) but almost
never fulfilled by LES users who normally use a computational mesh with a cell size simply
adjusted on the separation scale ∆, a practice which is clearly against the numerical
accuracy. Naturally, it has to be recognized that the requirement of mesh refinement
makes LES less computationally attractive by comparison to DNS, especially if the slow
numerical convergence of the solution is considered, as shown by [9] for the Smagorinsky
model.

A more pragmatic approach of LES is to renounce to well defined governing equations
by discretizing the Navier-Stokes equations on a coarser mesh than in DNS and without
any explicit modelling terms. In this strategy, a regularization effect is expected from nu-
merics in order to automatically provide the reduced/filtered solution. This idea started
with the development of the MILES approach [2]. Here, following the more recent termi-
nology, we refer to implicit LES when the regularization provided by the numerical error
is used as a substitute of subgrid-scale (SGS) modelling, irrespective of the techniques
used to apply the resulting artificial dissipation. In this paper, we investigate the concept
of implicit LES using a generic solver of Navier-Stokes equations in which the numerical
dissipation can be expressed as an implicit spectral vanishing viscosity (SVV) which can
be easily controlled while ensuring high-order accuracy. To have an overview of the diver-
sity of approaches in implicit LES, the reader is referred to the collective book [16] where
connections with explicit SGS modelling are also discussed. Note that the distinction
between conventional and implicit LES is not so clear because some techniques can be
based on a mixed strategy. For instance, a controlled regularization can be obtained by
making scale selective an explicit model (Variational Multiscale Model, see [17, 3]).

2
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The aim of the present contribution is to explain why and to what extent implicit LES
can be successful despite the lack of clear formalism. This investigation is based on a
particular technique of regularization but the main conclusions of the present study can
be related to any implicit SGS modelling provided that it is highly accurate (in terms of
numerical convergence) and scale selective (concentration of numerical dissipation at small
scales). Two academic flow configurations are considered with the Taylor-Green vortex
problem and the turbulent pipe flow. The former is a prototype of flow in transition up
to fully developed turbulence whereas the latter is a generic flow with wall turbulence.
Both flow configurations are analysed by DNS and LES at high Reynolds number.

Thanks to the new generation of massively parallel computers, it has become possible to
generate DNS database at typical Reynolds numbers of LES applications. This is a major
advantage for the development of SGS modelling which can be based on reliable data
at realistic turbulent regimes and with a representative reduction of degrees of freedom
associated with the LES filtering. This is particularly true for the Taylor-Green vortex
problem considered here at the Reynolds number Re = 40000. To the best of the authors’
knowledge, a DNS at this high value has never been documented. It is an unprecedented
opportunity to assess very challenging LES while investigating rigorously the LS-SGS
interactions as it was done by [9, 23] at lower Reynolds number. For the pipe flow, a DNS
of reference at the same Reynolds number as considered here has already been reported
in the literature [18]. The originality of present results lies in the use of very coarse mesh
in the near-wall region and in the development of a robust method to estimate filtered
turbulent statistics from DNS data obtained at marginal resolution. The possibility to
compare with relevance turbulent statistics from implicit LES and DNS will enable us to
rigorously confirm trends reported in [8] at lower Reynolds number.

The paper is organized as follows. First, the whole methodology is presented in section
2. Then, results from DNS/LES of the Taylor-Green vortex problem are discussed in
section 3 through a posteriori and a priori analyses of the SGS modelling. The turbulent
pipe flow is investigated in section 4 by DNS and LES to exhibit an unexpected feature of
implicit wall-layer modelling. The main conclusions of the study are reported in section
5 while discussing prospects for further developments.

2 METHODOLOGY

2.1 Governing equations

For a fluid of constant density ρ and kinematic molecular viscosity ν, the governing
equations
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correspond to the Navier-Stokes equations with an extra-term τij designed to model the
influence of subgrid-scale (SGS) stresses. In DNS mode, pressure p(xj, t) and velocity
fields ui(xj, t) are assumed to be captured up to their smallest significant scales enabling
to assume τij = 0. In LES mode, p(xj, t) and ui(xj, t) are interpreted as only the LS
component of pressure and velocity respectively by reference to a separation scale ∆
which is the lower bound of LS and the upper bound of SGS. In implicit LES, no explicit
SGS modelling is used with τij = 0. In conventional LES, a constitutive relation is used
to express τij as a function of p(xj, t) and ui(xj, t).

For the present study, only the very popular Smagorinsky model [31] is used with

τij = −2 (Cs∆)2 |S|Sij (3)

where

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(4)

is the strain rate tensor and |S| its magnitude with |S| =
√

2SijSij. This SGS model
is considered in its simplest version where the constant Cs = 0.1 is actually a constant
without any attempt to adjust it through a dynamic procedure as originally proposed
in [12, 11]. For comparison between standard and dynamic Smagorinsky models in the
context of section 3, the reader is referred to [9], where it is shown that these two versions
have similar drawbacks for the type of analysis carried out here.

An obvious but important remark is that the governing equations of LES based on the
Smagorinsky model are continuous, as well as for DNS, without any need to refer to the
spatial discretization. The single extra parameter is the separation scale ∆ which is only
present in the constitutive relation (3). On the contrary, since implicit LES is based on
artificial dissipation coming from numerical errors, discretization has to be introduced in
this alternative technique.

2.2 Numerical methods

To solve equations (1,2), the massively parallel code Incompact3d is used. This solver
has a spatial differentiation entirely based on centered compact finite difference schemes
of sixth-order accuracy when free-slip or periodic boundary conditions are used as in the
present study. Its mesh is Cartesian with nx × ny × nz nodes regularly distributed in
the computational domain Lx × Ly × Lz

1. For a detailed presentation of this code, see
[20, 21, 22].

In Incompact3d, the spatial differentiation of the convective term is kinetic energy
conserving up to the time integration error. This crucial feature is ensured thanks to
the use of the skew-symmetric form in equation (1). The only sources of dissipation are
the viscous and the explicit SGS modelling terms. As a consequence, in the inviscid case
free from any SGS modelling with periodic or free-slip boundary conditions, the kinetic

1The mesh refinement in one direction, enabled by Incompact3d, is not used here.
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energy is trapped inside the computational domain at any mesh resolution. This property,
observed in practice (as illustrated in section 3), is particularly convenient for the separate
analysis of viscous/artificial and SGS dissipations.

Finally, it must be mentioned that a customised immersed boundary method has been
developed in Incompact3d to enable the treatment of complex geometry despite the use of
a Cartesian mesh [10]. This feature is used in section 4 to consider a cylindrical geometry.

2.3 Implicit SGS modelling

In Incompact3d, as a technique to perform implicit LES, a targeted numerical dissipa-
tion can be introduced by artificially boosting at small scales the computation of second
derivatives in the viscous term while keeping the sixth-order accuracy. This particular
technique makes hyperviscous the corresponding numerical errors with a scale-selectivity
which leaves LS virtually free from any artificial dissipation. It can be shown that this
approach is the discrete counterpart of SVV2 leading to the concept of implicit SVV. The
vanishing feature refers to the lack of any significant effect at LS. For instance, in the
wavenumber range k ∈ [0, kc] with kc = π/∆x where ∆x is the cell size, the artificial
dissipation is only active in the range k ∈ [kc/2, kc] while being highly concentrated near
the cutoff wavenumber k � kc. For more details about this way to introduce numerical
dissipation, the reader is referred to [24, 7, 9].

The advantage of the present technique is its flexibility through an easy control of
numerical dissipation in terms of intensity and scale selectivity. In particular, the value
of the implicit SVV at the cutoff wavenumber can be imposed through the free choice
of the numerical viscosity defined as ν0 = νs(kc). To make this choice consistently with
the implicit LES methodology, [9] have proposed a very simple spectral closure of the Lin
equation which provides a Pao-like solution as a prediction of the influence of the numerical
dissipation on the kinetic energy spectrum in the context of homogeneous and isotropic
turbulence. In this tool, the input is the ratio of LES and DNS cell sizes ∆xLES/∆xDNS

and the output is value of ν0 that should ensure satisfactory numerical convergence of the
LES solution through an efficient damping of the kinetic energy at small scales. In section
3, only two values of this ratio are considered with ∆xLES/∆xDNS = (10, 25) leading to
ν0 = (89, 351) respectively as predicted by the Pao-like closure.

3 LES OF THE TAYLOR-GREEN VORTEX PROBLEM

3.1 Flow configuration and DNS of reference

The solution of the Taylor-Green vortex problem is periodic in the three directions
of space in a cubic domain (2π)3. The initial condition has only one harmonic in every

2Spectral meaning as a function of the wavenumber k with νs(k).
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∂ui

∂xj
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∂uj

∂xi

)
(4)
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2SijSij. This SGS model
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direction and one zero velocity component with

u(xi, 0) = sin(x) cos(y) cos(z)

v(xi, 0) = − cos(x) sin(y) cos(z)

w(xi, 0) = 0. (5)

This generates a flow subjected to a strong turbulent breakdown up to a fully developed
state close to turbulence at equilibrium. It is a free evolving flow where the kinetic energy

Ek =
1

(2π)3

∫

(2π)3

uiui

2
dx3 (6)

can only decrease through the effect of molecular dissipation

ε =
1

(2π)3

∫

(2π)3
ν
∂ui

∂xj

∂ui

∂xj

dx3 (7)

with the simple equation
dEk

dt
= −ε. (8)

In this paper, only one Reynolds number Re = 1/ν is reported with Re = 40000. This
high value has required a mesh of 54003 nodes to reach the DNS accuracy. Using some
symmetries of the problem, the number of degrees of freedom actually considered has
been reduced by a factor 8 by limiting the calculation to the impermeable sub-box π3.
The flow has been simulated from t = 0 to t = 20 while generating a database composed
of instantaneous fields and turbulent statistics. The state of the flow at two characteristic
times is illustrated in figure 1 by visualization of the Q-criterion.

3.2 A posteriori analysis

To assess the various LES performed for this study, two mesh resolutions have been
addressed. The High Resolution (HR) and Low Resolution (LR) terms refer to the use
of 5403 and 2163 mesh nodes respectively. This corresponds to ratios ∆xLES/∆xDNS =
(10, 25) which are associated to a reduction of the computational cost by 104 (0.01%) and
254 (0.000256%) respectively. In view of these drastic computational savings, both cases
can be seen as very challenging while enabling LES to potentially capture more than 97%
(HR) and 92% (LR) of the kinetic energy throughout the simulation. The time evolution
of the unfiltered/filtered kinetic energy and their associated dissipation are presented in
figure 2. Filtered data are obtained using the prediction of the Pao-like solver as explained
in [23].

In order to assess that kinetic energy conservation is ensured by the convective term
discretization, two preliminary calculations have been performed by removing the viscous
term at high and low resolution (HR-LR). These type of calculations can be designated as
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Figure 1: Isosurface of Q-criterion at t = 10 (left) and t = 15 (right). DNS data in the sub-box π3 with
Q = 4.

solving the truncated Euler equations. For the time sequence 0 ≤ t ≤ 20 considered while
choosing a timestep ∆t close to the CFL limit at LR, the deviation from Ek = 0.125 is less
than 1%. Additionally, it has been checked that the loss of kinetic energy approximately
scales on ∆t3 as expected for the third-order time advancement scheme used here. The
analysis of kinetic energy spectra Ē(k) clearly shows that the flow progressively evolves as
a white noise with Ē(k) ∼ k2 corresponding to fully thermalized state [6]. This behaviour
is illustrated in figure 3.

Two additional preliminary calculations have been carried out by solving the Navier-
Stokes equations at HR/LR but without any attempt to model SGS effects, neither ex-
plicitly nor implicitly. The kinetic energy spectra obtained for these “no-model LES” are
presented in figure 4. At LR, a thermalization can be observed on more than 80% of
wavenumbers with a spectacular pile-up of Ē(k) near the cutoff wavenumber kc as soon
as t = 5. As expected, the extension of this pile-up is more limited at HR thanks to
the molecular dissipation which prevents the establishment of a wide thermalized zone
in the wavenumber range considered. However, the examination of instantaneous fields
clearly shows that the solution is subjected to spurious numerical oscillations in the whole
computational domain similarly to the LR case (see figure 7 for an illustration based on
the Q-criterion). The lack of physical realism of this type of no-model solutions can be
confirmed by comparing the time evolution of the resulting total dissipation ε̄ = −dĒk/dt
with its filtered DNS counterpart. This comparison is presented in figure 5. It can clearly
observed that the lack of any SGS modelling leads to completely wrong prediction with
a dramatic overestimation of the dissipation during the turbulence breakdown due to the
partial thermalization which magnifies the viscous friction phenomena. This paradoxi-
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Figure 2: Time evolution of the unfiltered and filtered kinetic energy and its associated dissipation.
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Figure 3: Energy spectra Ē(k, t) at t = 5, 10, 15, 20 when solving the truncated Euler equations. Left:
HR case. Right: LR case.

cal situation, in which a subdissipative operator leads eventually to an overdissipative
behaviour, has already been reported by [9]. These two no-model LES lead to two impor-
tant conclusions. First, when free from numerical dissipation, the discretization itself has
no implicit filtering effect on any scale captured by the LES mesh. This implicit filtering
effect of the mesh, sometimes claimed in the LES community, is not at all recovered here
due to the feature of kinetic energy conservation. The second conclusion is that a relevant
SGS modelling is required to expect realistic results.

Figure 5 compares the time evolution of the dissipation ε̄ for the Smagorinsky model
and for the present technique of implicit SVV at HR and LR. For the Smagorinsky model
at HR, two options are tested: (i) standard condition where the separation scale is adjusted
on the cell size ∆ = ∆x; (ii) improved condition where this adjustment is designed to
better ensure the numerical convergence ∆ = 2.5∆x. Although it is fully recognized
that only the improved condition is numerically meaningful (see for instance [13]), it is
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Figure 4: Energy spectra Ē(k, t) at t = 5, 10, 15, 20 obtained by no-model LES. Left: HR case. Right:
LR case.

almost never used by the LES community. The effect of using a cell size ∆x smaller
than the separation scale ∆ has been investigated by [9] by considering the Taylor-Green
vortex problem at lower Reynolds number Re = 5000. It was shown that the standard
condition ∆ = ∆x leads to a solution that is far from numerical convergence while being
subjected to spurious oscillations. The increase of the ratio ∆/∆x was found to restore
the numerical convergence but only slowly (see [9] for more details). Here, this type of
sensitivity is examined at significantly higher Reynolds number.

The quality of the present LES predictions can be evaluated through their deviation
from the ideal curve obtained by filtering the DNS data. At HR (see figure 5-left), by
reference to the no-model LES, the improvement provided by the Smagorinsky model is
significant but the best prediction is obtained by the implicit LES. For the latter, the
dissipation curve is found to match closely its DNS reference with only a slight overes-
timation of the peak. Once the turbulence breakdown completed (at t � 11), a very
good agreement with filtered DNS is recovered. Interestingly, it can be observed that
the improved condition ∆ = 2.5∆x makes the Smagorinsky model clearly more accurate.
However, it cannot outperform the implicit SVV while requiring an extra computational
cost connected to the calculation of the divergence of (3) in the governing equation (1). At
LR (see figure 5-right), the results given by the Smagorinsky model becomes completely
unrealistic with a marginal improvement by comparison to the no-model case. This very
poor prediction can be again interpreted as the consequence of the use of the standard
condition ∆ = ∆x for which no numerical accuracy should be expected. The use of HR
mesh with ∆x = ∆/2.5 while keeping constant ∆ clearly confirms the complete inade-
quacy of the standard condition ∆ = ∆x for which the solution is far from numerical
convergence, especially for the present high Reynolds number.

By comparison to HR, implicit SVV is less efficient at LR with a significant loss of
accuracy. From the early transition t � 6, this implicit SGS model is found underdis-
sipative while missing the dissipation peak and with also the erroneous prediction of a
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Figure 2: Time evolution of the unfiltered and filtered kinetic energy and its associated dissipation.
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condition ∆ = ∆x leads to a solution that is far from numerical convergence while being
subjected to spurious oscillations. The increase of the ratio ∆/∆x was found to restore
the numerical convergence but only slowly (see [9] for more details). Here, this type of
sensitivity is examined at significantly higher Reynolds number.
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from the ideal curve obtained by filtering the DNS data. At HR (see figure 5-left), by
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significant but the best prediction is obtained by the implicit LES. For the latter, the
dissipation curve is found to match closely its DNS reference with only a slight overes-
timation of the peak. Once the turbulence breakdown completed (at t � 11), a very
good agreement with filtered DNS is recovered. Interestingly, it can be observed that
the improved condition ∆ = 2.5∆x makes the Smagorinsky model clearly more accurate.
However, it cannot outperform the implicit SVV while requiring an extra computational
cost connected to the calculation of the divergence of (3) in the governing equation (1). At
LR (see figure 5-right), the results given by the Smagorinsky model becomes completely
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condition ∆ = ∆x for which no numerical accuracy should be expected. The use of HR
mesh with ∆x = ∆/2.5 while keeping constant ∆ clearly confirms the complete inade-
quacy of the standard condition ∆ = ∆x for which the solution is far from numerical
convergence, especially for the present high Reynolds number.

By comparison to HR, implicit SVV is less efficient at LR with a significant loss of
accuracy. From the early transition t � 6, this implicit SGS model is found underdis-
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Figure 5: Time evolution of the total dissipation ε̄ predicted by LES. Left: HR cases. Right: LR cases.
(except Smag. ∆x = ∆/2.5). The cases Smag. ∆ = 2.5∆x (left-top) and Smag. ∆x = ∆/2.5 (right-top)
correspond to the same calculation.

secondary peak at t ≈ 10. The overall agreement with filtered DNS is clearly better than
for the Smagorinsky model, but it cannot be considered as fully satisfactory, especially
during the transition. The fundamental reason of this discrepancy is the main subject of
subsection 3.3.

Before going further in this analysis, it is worth comparing the spectra obtained using
the Smagorinsky model with their counterparts using the implicit SVV as presented in
figure 6. It can observed that the Smagorinsky model in standard condition ∆ = ∆x
is unable to control the pile-up of kinetic energy near the cutoff wavenumber kc. As for
the no-model LES, this partial thermalization corresponds to the development of small-
scale spurious oscillations everywhere in the computational domain. This pile-up is less
pronounced than for the no-model LES (see figure 4 for comparison), especially at HR
for which the improvement provided by the Smagorinsky model is significant. On the
contrary, the use of implicit SVV is found to remarkably damp Ē(k) in the wavenumber
range kc/2 � k � kc for both HR and LR. This ability to prevent any thermalization
is interpreted as the most important condition of present implicit LES to enable the
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secondary peak at t ≈ 10. The overall agreement with filtered DNS is clearly better than
for the Smagorinsky model, but it cannot be considered as fully satisfactory, especially
during the transition. The fundamental reason of this discrepancy is the main subject of
subsection 3.3.

Before going further in this analysis, it is worth comparing the spectra obtained using
the Smagorinsky model with their counterparts using the implicit SVV as presented in
figure 6. It can observed that the Smagorinsky model in standard condition ∆ = ∆x
is unable to control the pile-up of kinetic energy near the cutoff wavenumber kc. As for
the no-model LES, this partial thermalization corresponds to the development of small-
scale spurious oscillations everywhere in the computational domain. This pile-up is less
pronounced than for the no-model LES (see figure 4 for comparison), especially at HR
for which the improvement provided by the Smagorinsky model is significant. On the
contrary, the use of implicit SVV is found to remarkably damp Ē(k) in the wavenumber
range kc/2 � k � kc for both HR and LR. This ability to prevent any thermalization
is interpreted as the most important condition of present implicit LES to enable the
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production of realistic and accurate results. Even the improved condition ∆ = 2.5∆x
with the Smagorinsky model cannot remove correctly the thermalization, especially at
the early transition t = 5 where a clear pile-up of kinetic energy can be observed in figure
6. This is the confirmation of the poor filtering effect of the Smagorinsky model which is
against the numerical accuracy as already observed by [9] at lower Reynolds number.

The loss of physical realism of the vortical structures in presence of spurious oscillations
can also be clearly exhibited by instantaneous visualization based on Q-criterion as shown
in figure 7 for t = 10. Numerical noise completely hides the large-scale organisation of the
flow for the no-model case at LR. For the Smagorinsky model with ∆ = ∆x, unrealistic
small-scale oscillations can be seen at LR and also at HR to a lesser extent. The use of
∆ = 2.5∆x at HR with this model seems to fix this problem but it must be mentioned that
spurious oscillations are visible at the start of the turbulence breakdown (not shown). For
the LES based on implicit SVV, vortical structures are not polluted by numerical noise.
Their characteristic scale is consistent to what can expected from a filtered solution with
a smoothing that is logically more pronounced at LR by comparison to HR.

3.3 A priori analysis

The DNS database can be more extensively used to understand why implicit LES is
found to be underdissipative at LR. Because implicit SVV can fully prevents partial ther-
malization for both HR and LR, the reason of its underdissipative behaviour at LR must
be found elsewhere. As explained in subsection 2.2, a filter consistent with the implicit
SVV can be obtained by solving the Lin equation using a simplified Pao-like spectral
closure [9]. The application of this filter in every spatial direction on the DNS solution
enables a consistent definition of the targeted LES solution that can be used as reference
as it was done in section 3.2 to provide the “filtered DNS” data. This methodology can
be extended to compute various LS and SGS contributions. The resulting decomposition
is illustrated in figure 8 where the total dissipation ε̄ associated with the filtered kinetic
energy Ēk is compared with the dissipation ε, the LS dissipation εLS and the SGS dissi-
pation εSGS with ε̄ = εLS + εSGS. It can be observed that the main contribution to the
dissipation comes from SGS with a ratio εSGS/ε̄ up to 77% at HR and 93% at LR. These
ratios clearly emphasize the major role that must be played by the SGS modelling for this
high Reynolds number case.

Although the expected dissipation εSGS is already a precious information, the know-
ledge of its distribution through scales is essential to determine the scale selectivity of an
ideal SGS modelling. As shown by [23], this scale by scale analysis can be based on the
LS Lin equation written in the following form

(
∂

∂t
+ 2νk2

)
Ē(k, t) = T̄ (k, t) + TSGS(k, t) (9)

where Ē(k, t) is the kinetic energy spectrum of the filtered solution, T̄ (k, t) the transfer
term involving only the filtered solution and TSGS(k, t) the remaining term that describes
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Ē(k, t) = T̄ (k, t) + TSGS(k, t) (9)
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transfers between the supergrid and subgrid scales. TSGS(k, t) corresponds, in absolute
value, to the spectral density of εSGS with

εSGS = −
∫ kc

0

TSGS(k, t) dk. (10)

Equivalently, it is common to introduce the spectral eddy viscosity

νt(k, t) = −TSGS(k, t)

2k2Ē(k, t)
(11)

that makes easier comparison with molecular and eddy viscosity, even if the latter is based
on Boussinesq’s hypothesis whereas the definition of νt(k, t) is exact in the framework of
Fourier analysis.

Using the present DNS database, the spectral eddy viscosity associated with the im-
plicit SVV filtering at HR and LR is presented in figure 9 at four characteristic times
t = 5, 10, 15 and 20 and using a normalization with the molecular viscosity ν. At HR as
well as at LR, νt(k, t)/ν is maximum at the cutoff wave number kc with a k-dependency
corresponding qualitatively to a hyperviscous behaviour. This ”cusp” behaviour, pre-
dicted by two-point closure theories at high Reynolds number [19, 4, 25] and with a
sharp scale separation in the Fourier space, is recovered here despite the use of a more
progressive decomposition between LS and SGS. It is the signature of triad interactions
between the subgrid and the smallest supergrid scales. An important remark is that after
the early transition, the levels of νt(kc, t)/ν are about one order of magnitude lower than
the predicted values of ν0 for the considered ratios ∆xLES/∆xDNS = (10, 25) associated
with HR and LR. Another difference with the implicit SVV is that νt(kc, t)/ν is actu-
ally non-vanishing at small wavenumbers. Time evolving “plateau” values, to use the
terminology employed by [19, 4, 25], can be clearly observed in figure 9, with spectral

14

Eric Lamballais and Rodrigo Vicente Cruz

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10  100

ν
s
(k

,t
)/

ν

k

t=5

t=10

t=15

t=20

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10  100

ν
s
(k

,t
)/

ν

k

t=5

t=10

t=15

t=20

Figure 9: Spectral eddy viscosity νt(k, t) at t = 5, 10, 15 and 20. Left: HR case. Right: LR case.

eddy viscosity more than 10 times the molecular viscosity at t = 10 (when the turbulence
breakdown is maximum) for the LR case. For the HR case, a similar plateau in the range
10 < k < 100 can be observed but with a spectral eddy viscosity only about twice the
molecular viscosity. Considering this drastic change of νt(k, t) levels depending on the
ratio ∆xLES/∆xDNS, it can be understood why implicit SVV is found to be underdissi-
pative at LR. The lack of any SGS dissipation at very LS, as a fundamental assumption
in implicit LES, is not compatible with the major role of distant triad interactions.

The fraction of SGS dissipation at very LS

εSGS<kc/4
= −

∫ kc/4

0

TSGS(k, t) dk (12)

is presented in figure 8. It can be more than 14%-24% of εSGS for the HR-LR cases
respectively, during the turbulence breakdown, with a strong decrease thereafter for the
HR case (about 1.5% at t = 20) but a non-negligible contribution until the end of the
calculation for the LR case (about 15% at t = 20). This is the clear indication that
the assumption of zero SGS influence at very LS can be accepted for moderate ratios
∆xLES/∆xDNS (i.e. highly resolved LES) while being unrealistic for more challenging
situation where the LES is performed using a very coarse mesh by comparison to DNS.

Implicit SGS modelling is essentially inactive at very LS while concentrating its in-
fluence on the smallest scales potentially captured by the LES. This scale selectivity is
an attractive feature through the ability to efficiently damp spurious oscillations at small
scale as a way to control numerical errors. However, it is known that a too selective
dissipative operator has the potential to interfere with the turbulent cascade through a
too strong interruption of the kinetic energy flux from large to small scales. In that case,
a pile-up of energy is observed at the smallest scales free from extra dissipation. This
phenomenon, refereed to as ”bottleneck effect”, can be observed in figure 10 through the
presence of bumps on the present implicit LES spectra. The extension of these bumps is
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eddy viscosity more than 10 times the molecular viscosity at t = 10 (when the turbulence
breakdown is maximum) for the LR case. For the HR case, a similar plateau in the range
10 < k < 100 can be observed but with a spectral eddy viscosity only about twice the
molecular viscosity. Considering this drastic change of νt(k, t) levels depending on the
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calculation for the LR case (about 15% at t = 20). This is the clear indication that
the assumption of zero SGS influence at very LS can be accepted for moderate ratios
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a pile-up of energy is observed at the smallest scales free from extra dissipation. This
phenomenon, refereed to as ”bottleneck effect”, can be observed in figure 10 through the
presence of bumps on the present implicit LES spectra. The extension of these bumps is

15



16

Eric Lamballais and Rodrigo Vicente Cruz

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 10  100  1000
k

DNS E(k,t) at t=10

DNS 
–
E(k,t) at t=10

LES 
–
E(k,t) at t=10

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 10  100  1000
k

DNS E(k,t) at t=10

DNS 
–
E(k,t) at t=10

LES 
–
E(k,t) at t=10

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 10  100  1000
k

DNS E(k,t) at t=15

DNS 
–
E(k,t) at t=15

LES 
–
E(k,t) at t=15

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 10  100  1000
k

DNS E(k,t) at t=15

DNS 
–
E(k,t) at t=15

LES 
–
E(k,t) at t=15

Figure 10: Energy spectra Ē(k, t) at t = 10 and 15. Left: HR case. Right: LR case.

within the wavenumber range kc/6 < k < kc/2 while being more marked at LR. At HR,
once the turbulent breakdown completed, it is worth noting that the bump is damped
(see figure 10-left/bottom) with only a very slight bottleneck effect. These observations
confirm that the framework of implicit LES should be restricted to situations where the
computational mesh is not too coarse by comparison to DNS.

It could be thought that the combination of the Smagorinsky model with the implicit
SVV is a way to both prevent the development of spurious oscillations at small scale
while applying an explicit SGS at very LS. This mixed explicit/implicit SGS modelling
has been tried but was unsuccessful. The resulting time evolution of the total dissipation
ε̄ is shown in figure 5. Schematically, it can be considered that the dominant influence
comes from the implicit SVV component without any ability of the Smagorinsky model
component to increase ε̄ during the transition. The only significant difference with the
purely implicit LES is that the spurious secondary peak is removed. Even if this change
moves in the direction of improving the agreement with filtered DNS data, it is difficult
to identify the origin of this phenomenon which could be only an artefact free from any
physical meaning.
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4 LES OF PIPE FLOW

4.1 Flow configuration and DNS of reference

To consider the pipe geometry, as already mentioned in section 2.2, an immersed bound-
ary technique is used to ensure the no-slip boundary condition at the wall while using
a regular Cartesian mesh. This approach avoids the need for near-wall mesh refinement
while providing an irregular mesh node distribution in terms of wall distance. A simi-
lar computational configuration has already been used by [8] and accurate basic statistics
have been obtained despite the use of a coarse mesh in terms of wall units in the transverse
directions: ∆x+ = ∆y+ = 5.5. These unexpected results, against the usual recommen-
dation of near-wall refinement to capture small-scale structures close to the wall, were
obtained at the global Reynolds number ReD = 19000, where D is the pipe diameter.

Here, the goal is to similarly investigate a higher Reynolds number case ReD = 37700
for which Reτ = 1000 is the nominal value of the Reynolds number based on the friction
velocity uτ and the radius R = D/2. For this particular flow configuration, accurate
DNS results are documented in [18]. As a first step, a quasi-DNS has been performed
with a mesh of nx × ny × nz = 768 × 768 × 1920 nodes, in a computational domain
of Lx × Ly × Lz = 1.12D × 1.12D × 12.5D, with periodic boundary conditions for the
three directions of space. The pipe length Lz = 12.5D is the same as in [18] and the
computational domain is slightly oversized in the (x, y) directions for improved accuracy
of the immersed boundary technique. The resulting mesh resolution in the transverse
directions ∆x+ = ∆y+ ≈ 2.9 is finer in wall units than in [8] but remains beyond the
typical recommandation for DNS/LES that suggests a cell size ∆x for which the minimal
scale computed with accuracy Lmin = 4∆x may capture the thickness of the viscous
sublayer, i.e., L+

min � 5. For the present resolution, we have instead L+
min = 11.6. Despite

the resulting bypass of the viscous sublayer, it can be seen in figure 11 that a remarkable
agreement with the reference DNS results of [18] is obtained for the mean velocity and
Reynolds stress profiles. We refer here to quasi-DNS because this agreement is achieved
by using a slight amount of numerical dissipation highly concentrated at small scales.
As far as these basic statistics are concerned, it can be concluded that the ability of the
computational mesh to capture the viscous sublayer is not mandatory. Thanks to this, it
is estimated that the computational cost of the present quasi-DNS is reduced by about
two orders of magnitude by comparison to the DNS of [18].

The main purpose of this quasi-DNS was the generation of an easy-to-handle database,
in which results can be freely post-processed and filtered DNS data can be easily estimated
consistently with the implicit SVV. Thanks to the use of periodic conditions, together with
the solution reconstruction provided by the immersed boundary as explained in [10, 8], the
same filtering technique as in section 3 is employed here to enable rigorous comparison
between implicit LES and filtered-DNS results for the present pipe flow configuration.
This comparison is the subject of the next section.
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Figure 10: Energy spectra Ē(k, t) at t = 10 and 15. Left: HR case. Right: LR case.

within the wavenumber range kc/6 < k < kc/2 while being more marked at LR. At HR,
once the turbulent breakdown completed, it is worth noting that the bump is damped
(see figure 10-left/bottom) with only a very slight bottleneck effect. These observations
confirm that the framework of implicit LES should be restricted to situations where the
computational mesh is not too coarse by comparison to DNS.

It could be thought that the combination of the Smagorinsky model with the implicit
SVV is a way to both prevent the development of spurious oscillations at small scale
while applying an explicit SGS at very LS. This mixed explicit/implicit SGS modelling
has been tried but was unsuccessful. The resulting time evolution of the total dissipation
ε̄ is shown in figure 5. Schematically, it can be considered that the dominant influence
comes from the implicit SVV component without any ability of the Smagorinsky model
component to increase ε̄ during the transition. The only significant difference with the
purely implicit LES is that the spurious secondary peak is removed. Even if this change
moves in the direction of improving the agreement with filtered DNS data, it is difficult
to identify the origin of this phenomenon which could be only an artefact free from any
physical meaning.
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4 LES OF PIPE FLOW

4.1 Flow configuration and DNS of reference

To consider the pipe geometry, as already mentioned in section 2.2, an immersed bound-
ary technique is used to ensure the no-slip boundary condition at the wall while using
a regular Cartesian mesh. This approach avoids the need for near-wall mesh refinement
while providing an irregular mesh node distribution in terms of wall distance. A simi-
lar computational configuration has already been used by [8] and accurate basic statistics
have been obtained despite the use of a coarse mesh in terms of wall units in the transverse
directions: ∆x+ = ∆y+ = 5.5. These unexpected results, against the usual recommen-
dation of near-wall refinement to capture small-scale structures close to the wall, were
obtained at the global Reynolds number ReD = 19000, where D is the pipe diameter.

Here, the goal is to similarly investigate a higher Reynolds number case ReD = 37700
for which Reτ = 1000 is the nominal value of the Reynolds number based on the friction
velocity uτ and the radius R = D/2. For this particular flow configuration, accurate
DNS results are documented in [18]. As a first step, a quasi-DNS has been performed
with a mesh of nx × ny × nz = 768 × 768 × 1920 nodes, in a computational domain
of Lx × Ly × Lz = 1.12D × 1.12D × 12.5D, with periodic boundary conditions for the
three directions of space. The pipe length Lz = 12.5D is the same as in [18] and the
computational domain is slightly oversized in the (x, y) directions for improved accuracy
of the immersed boundary technique. The resulting mesh resolution in the transverse
directions ∆x+ = ∆y+ ≈ 2.9 is finer in wall units than in [8] but remains beyond the
typical recommandation for DNS/LES that suggests a cell size ∆x for which the minimal
scale computed with accuracy Lmin = 4∆x may capture the thickness of the viscous
sublayer, i.e., L+

min � 5. For the present resolution, we have instead L+
min = 11.6. Despite

the resulting bypass of the viscous sublayer, it can be seen in figure 11 that a remarkable
agreement with the reference DNS results of [18] is obtained for the mean velocity and
Reynolds stress profiles. We refer here to quasi-DNS because this agreement is achieved
by using a slight amount of numerical dissipation highly concentrated at small scales.
As far as these basic statistics are concerned, it can be concluded that the ability of the
computational mesh to capture the viscous sublayer is not mandatory. Thanks to this, it
is estimated that the computational cost of the present quasi-DNS is reduced by about
two orders of magnitude by comparison to the DNS of [18].

The main purpose of this quasi-DNS was the generation of an easy-to-handle database,
in which results can be freely post-processed and filtered DNS data can be easily estimated
consistently with the implicit SVV. Thanks to the use of periodic conditions, together with
the solution reconstruction provided by the immersed boundary as explained in [10, 8], the
same filtering technique as in section 3 is employed here to enable rigorous comparison
between implicit LES and filtered-DNS results for the present pipe flow configuration.
This comparison is the subject of the next section.
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Figure 11: Mean velocity (left) and Reynolds stress (right) profiles. Comparison of the present quasi-
DNS data with the reference DNS data of [18].

4.2 Results

The present LES results have been obtained using a mesh of nx × ny × nz = 320 ×
320× 960 nodes in a computational domain of Lx × Ly × Lz = 1.44D × 1.44D × 12.5D3,
corresponding to ratios of ∆xLES/∆xqDNS ≈ 3.1 and ∆zLES/∆zqDNS = 2. In terms of
cost, these ratios represent a least computational saving when compared to the Taylor-
Green vortex cases in section 3. Such a limitation is inherent to LES of wall turbulence
given the near-wall scaling of statistics in wall units. However, it is interesting to highlight
that, by comparison to a conventional DNS based on a distorted mesh with near-wall
refinement, the actual computational cost is about 0.03%.

The near-wall mesh resolution of the present LES is particularly coarse: ∆x+ = ∆y+ ≈
9 corresponding to L+

min ≈ 36. With such a cell size in the wall-normal direction, for
which not only the viscous sublayer but even the turbulent production region is bypassed
in terms of scale, it is highly questionable to refer to an explicit calculation of near-wall
turbulence. This critical point is confirmed by the no-model LES for which the obtained
turbulent statistics are completely unrealistic as shown in figure 12. Note that for the sake
of simplicity, only the turbulent kinetic energy profiles are presented to assess the quality
of the velocity fluctuations. The corresponding friction velocity uτ is overestimated by
15%, as a clear indication that the predicted turbulent dynamics in the near-wall region
is unphysical. This point can be confirmed by the instantaneous axial velocity view in
figure 13 where spurious phenomena at small scales can be identified for the no-model
LES, especially in the neighbourhood of the wall. This numerical noise seems to distort the
large-scale dynamics of the near-wall structures. For the present pipe flow and similarly to
the Taylor-Green vortex problem, it can be concluded that without any SGS modelling, a
spurious partial thermalization artificially magnifies the friction phenomena without any
link to physics.

3The use of a slightly extended domain in (x, y) is for improving the reconstruction of the solution
inside the immersed boundary as explained in [8].
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Figure 12: Mean velocity (left) and turbulent kinetic energy (right) profiles. Comparison between
no-model and implicit LES.

The use of implicit SVV leads to a remarkable improvement of the LES results. First,
the friction velocity uτ is estimated with an accuracy of about 1%. However, it must be
recognized that this prediction of uτ is somewhat sensitive to the choice of ν0 and the
scale selectivity of the implicit modelling. Here, we have used the value predicted by the
Pao-like solver for ∆zqDNS/∆zLES = 2 while concentrating the numerical dissipation near
the cutoff wave number in order to reduce the influence of implicit SVV at LS. Naturally,
the prediction from the Pao-like solver, based on the assumption of homogeneous isotropic
turbulence, should be considered as only indicative for the present pipe flow, especially
in the near-wall zone. Despite this rough approximation, convincing statistics can be
obtained as shown in figure 12. By comparison to the no-model case, the improvement
achieved with the implicit SVV is spectacular. Since the computational grid is strictly
identical for the no-model and implicit LES, and keeping in mind that L+

min ≈ 36 is the
minimal scale captured with accuracy in this context, it can be stated that the implicit
SVV behaves as a wall-layer model.

The fundamental reason of this unexpected wall-layer modelling feature remains to be
clarified. Similarly to the Taylor-Green vortex problem, the ability of numerical dissipa-
tion to control the development of numerical noise seems to be a necessary condition for a
successful prediction of basic statistics. This ability is illustrated in figure 13 where it can
be seen that the smoothness of the longitudinal velocity fluctuations is restored by the
implicit SVV in agreement with the patterns obtained by quasi-DNS. Because no vortical
structure smaller than the thickness of the turbulent production zone can be captured by
the present LES mesh, it cannot be referred to any explicit calculation of near-wall tur-
bulence. Since the only source of modelling comes from the extra numerical dissipation,
an interpretation in terms of implicit wall-layer modelling seems to be reasonable.

Before proceeding to the conclusion, it should be mentioned that the value of the
kinetic energy in the very near-wall region is estimated from the mesh nodes very close
to the wall through the data projection from the Cartesian to the cylindrical coordinate
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4.2 Results

The present LES results have been obtained using a mesh of nx × ny × nz = 320 ×
320× 960 nodes in a computational domain of Lx × Ly × Lz = 1.44D × 1.44D × 12.5D3,
corresponding to ratios of ∆xLES/∆xqDNS ≈ 3.1 and ∆zLES/∆zqDNS = 2. In terms of
cost, these ratios represent a least computational saving when compared to the Taylor-
Green vortex cases in section 3. Such a limitation is inherent to LES of wall turbulence
given the near-wall scaling of statistics in wall units. However, it is interesting to highlight
that, by comparison to a conventional DNS based on a distorted mesh with near-wall
refinement, the actual computational cost is about 0.03%.

The near-wall mesh resolution of the present LES is particularly coarse: ∆x+ = ∆y+ ≈
9 corresponding to L+

min ≈ 36. With such a cell size in the wall-normal direction, for
which not only the viscous sublayer but even the turbulent production region is bypassed
in terms of scale, it is highly questionable to refer to an explicit calculation of near-wall
turbulence. This critical point is confirmed by the no-model LES for which the obtained
turbulent statistics are completely unrealistic as shown in figure 12. Note that for the sake
of simplicity, only the turbulent kinetic energy profiles are presented to assess the quality
of the velocity fluctuations. The corresponding friction velocity uτ is overestimated by
15%, as a clear indication that the predicted turbulent dynamics in the near-wall region
is unphysical. This point can be confirmed by the instantaneous axial velocity view in
figure 13 where spurious phenomena at small scales can be identified for the no-model
LES, especially in the neighbourhood of the wall. This numerical noise seems to distort the
large-scale dynamics of the near-wall structures. For the present pipe flow and similarly to
the Taylor-Green vortex problem, it can be concluded that without any SGS modelling, a
spurious partial thermalization artificially magnifies the friction phenomena without any
link to physics.

3The use of a slightly extended domain in (x, y) is for improving the reconstruction of the solution
inside the immersed boundary as explained in [8].
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The use of implicit SVV leads to a remarkable improvement of the LES results. First,
the friction velocity uτ is estimated with an accuracy of about 1%. However, it must be
recognized that this prediction of uτ is somewhat sensitive to the choice of ν0 and the
scale selectivity of the implicit modelling. Here, we have used the value predicted by the
Pao-like solver for ∆zqDNS/∆zLES = 2 while concentrating the numerical dissipation near
the cutoff wave number in order to reduce the influence of implicit SVV at LS. Naturally,
the prediction from the Pao-like solver, based on the assumption of homogeneous isotropic
turbulence, should be considered as only indicative for the present pipe flow, especially
in the near-wall zone. Despite this rough approximation, convincing statistics can be
obtained as shown in figure 12. By comparison to the no-model case, the improvement
achieved with the implicit SVV is spectacular. Since the computational grid is strictly
identical for the no-model and implicit LES, and keeping in mind that L+

min ≈ 36 is the
minimal scale captured with accuracy in this context, it can be stated that the implicit
SVV behaves as a wall-layer model.

The fundamental reason of this unexpected wall-layer modelling feature remains to be
clarified. Similarly to the Taylor-Green vortex problem, the ability of numerical dissipa-
tion to control the development of numerical noise seems to be a necessary condition for a
successful prediction of basic statistics. This ability is illustrated in figure 13 where it can
be seen that the smoothness of the longitudinal velocity fluctuations is restored by the
implicit SVV in agreement with the patterns obtained by quasi-DNS. Because no vortical
structure smaller than the thickness of the turbulent production zone can be captured by
the present LES mesh, it cannot be referred to any explicit calculation of near-wall tur-
bulence. Since the only source of modelling comes from the extra numerical dissipation,
an interpretation in terms of implicit wall-layer modelling seems to be reasonable.

Before proceeding to the conclusion, it should be mentioned that the value of the
kinetic energy in the very near-wall region is estimated from the mesh nodes very close
to the wall through the data projection from the Cartesian to the cylindrical coordinate
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Figure 13: Visualisation of the instantaneous axial velocity. Left: quasi-DNS. Centre: no-model LES.
Right: implicit LES.

systems (see [8] for more explanations). A careful examination of each node contribution
shows that the resulting azimuthal average associated with this projection contains error
compensations that are related to the azimuthal location of the nodes and are caused by
the immersed boundary method. An improvement of this technique is under progress to
reduce the phenomenon and hopefully achieve more accurate turbulent statistics.

5 CONCLUSION

Implicit LES is a fuzzy concept in the sense that it is not based on well defined governing
equations with a wide variety of techniques to obtain the expected regularization. The
bet is that solving Navier-Stokes equations using a coarse mesh (by comparison with
DNS) can provide a physically acceptable solution when the numerical errors are scale
selective with high accuracy at LS and artificial dissipation at small scales. In this study,
by considering two academic flows representative of turbulence with and without wall, it
is shown that this pragmatic strategy can give more accurate results than conventional
LES based on explicit SGS modelling, at least for the Smagorinsky model considered here.

The main message of this paper is that numerical accuracy is the most important
condition to obtain reliable results by LES. The notion of numerical accuracy can be
easily defined in the context of DNS through the feature of numerical convergence. In
conventional LES based on explicit SGS modelling, this feature is preserved if the cell size
∆x goes to zero while keeping constant the separation scale ∆. In marginal conditions
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where ∆x is only adjusted on ∆, as does the vast majority of LES users, it is shown that the
solution is far from numerical convergence while being highly corrupted by spurious small-
scale oscillations, a situation that corresponds to partial thermalization. The use of a more
refined mesh can reduce these numerical errors but the numerical convergence is found to
be very slow because even the condition ∆x = ∆/2.5 is not enough to completely prevent
partial thermalization. Moreover, even when the numerical convergence is reached, the
Smagorinsky model has only a weak filtering effect with a resulting low potential for
reduction of the number of degrees of freedom of the problem [9].

In implicit LES, the assessment of numerical convergence is more difficult because this
approach is essentially discrete. The choice of the computational mesh determines the
implicit LES solution without any other reference than ∆x to estimate the separation
scale ∆. Note however that [9] have shown that, thanks to the ability of implicit LES
to control the development of spurious small-scale oscillations, the resulting solution can
be considered as numerically converged. This control is probably the main quality of
any implicit LES. In this study, it is observed that the quality of LES predictions mainly
depends on the ability of the SGS modelling to prevent thermalization. The more this
thermalization is extended, the less accurate the results are. Since implicit LES is designed
to avoid any thermalization, it has a natural advantage over conventional LES based on
explicit SGS modelling.

One original conclusion of this work is that avoiding thermalization is also highly ben-
eficial for the computation of wall turbulence, enabling the use of a very coarse mesh in
the near-wall region. In this sense, the concept of implicit SGS modelling can be extended
to wall-layer modelling with the ability to capture realistically near-wall dynamics, with,
in particular, the correct prediction of basic turbulent statistics. The useful recommen-
dation of mesh refinement near the wall can be overcome through a bypass of the viscous
sublayer, a bypass that can be even extended beyond the turbulent production region.
This unexpected feature needs to be further investigated to accurately determine what
is missed by this straightforward implicit wall-layer modelling depending on the turbu-
lent statistics considered. In particular, it would be interesting to compare the near-wall
numerical dissipation with its molecular counterpart in the framework of a priori and a
posteriori analysis as it is done here for the Taylor-Green vortex problem.

Finally, it has to be recognized that when the number of degrees of freedom of LES is
strongly reduced by comparison to DNS, the implicit SGS modelling strategy is incom-
plete. The modelling of distant interactions between very LS and SGS is clearly missing
because implicit SGS modelling is essentially inactive at very LS (vanishing feature of
the numerical dissipation). Further development is required to ensure this specific mod-
elling. Because by construction, numerical errors are minimum at very LS, it can be
anticipated that the modelling of SGS effects on this range of scales has to be explicit.
Then, a favourable option could be a mixed implicit/explicit SGS modelling. Thanks to
the scale selectivity of the implicit modelling, which makes it inactive at LS, it can be
simply superimposed on the explicit modelling. In the spectral range where both implicit
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Figure 13: Visualisation of the instantaneous axial velocity. Left: quasi-DNS. Centre: no-model LES.
Right: implicit LES.

systems (see [8] for more explanations). A careful examination of each node contribution
shows that the resulting azimuthal average associated with this projection contains error
compensations that are related to the azimuthal location of the nodes and are caused by
the immersed boundary method. An improvement of this technique is under progress to
reduce the phenomenon and hopefully achieve more accurate turbulent statistics.
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Implicit LES is a fuzzy concept in the sense that it is not based on well defined governing
equations with a wide variety of techniques to obtain the expected regularization. The
bet is that solving Navier-Stokes equations using a coarse mesh (by comparison with
DNS) can provide a physically acceptable solution when the numerical errors are scale
selective with high accuracy at LS and artificial dissipation at small scales. In this study,
by considering two academic flows representative of turbulence with and without wall, it
is shown that this pragmatic strategy can give more accurate results than conventional
LES based on explicit SGS modelling, at least for the Smagorinsky model considered here.

The main message of this paper is that numerical accuracy is the most important
condition to obtain reliable results by LES. The notion of numerical accuracy can be
easily defined in the context of DNS through the feature of numerical convergence. In
conventional LES based on explicit SGS modelling, this feature is preserved if the cell size
∆x goes to zero while keeping constant the separation scale ∆. In marginal conditions
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where ∆x is only adjusted on ∆, as does the vast majority of LES users, it is shown that the
solution is far from numerical convergence while being highly corrupted by spurious small-
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refined mesh can reduce these numerical errors but the numerical convergence is found to
be very slow because even the condition ∆x = ∆/2.5 is not enough to completely prevent
partial thermalization. Moreover, even when the numerical convergence is reached, the
Smagorinsky model has only a weak filtering effect with a resulting low potential for
reduction of the number of degrees of freedom of the problem [9].

In implicit LES, the assessment of numerical convergence is more difficult because this
approach is essentially discrete. The choice of the computational mesh determines the
implicit LES solution without any other reference than ∆x to estimate the separation
scale ∆. Note however that [9] have shown that, thanks to the ability of implicit LES
to control the development of spurious small-scale oscillations, the resulting solution can
be considered as numerically converged. This control is probably the main quality of
any implicit LES. In this study, it is observed that the quality of LES predictions mainly
depends on the ability of the SGS modelling to prevent thermalization. The more this
thermalization is extended, the less accurate the results are. Since implicit LES is designed
to avoid any thermalization, it has a natural advantage over conventional LES based on
explicit SGS modelling.

One original conclusion of this work is that avoiding thermalization is also highly ben-
eficial for the computation of wall turbulence, enabling the use of a very coarse mesh in
the near-wall region. In this sense, the concept of implicit SGS modelling can be extended
to wall-layer modelling with the ability to capture realistically near-wall dynamics, with,
in particular, the correct prediction of basic turbulent statistics. The useful recommen-
dation of mesh refinement near the wall can be overcome through a bypass of the viscous
sublayer, a bypass that can be even extended beyond the turbulent production region.
This unexpected feature needs to be further investigated to accurately determine what
is missed by this straightforward implicit wall-layer modelling depending on the turbu-
lent statistics considered. In particular, it would be interesting to compare the near-wall
numerical dissipation with its molecular counterpart in the framework of a priori and a
posteriori analysis as it is done here for the Taylor-Green vortex problem.

Finally, it has to be recognized that when the number of degrees of freedom of LES is
strongly reduced by comparison to DNS, the implicit SGS modelling strategy is incom-
plete. The modelling of distant interactions between very LS and SGS is clearly missing
because implicit SGS modelling is essentially inactive at very LS (vanishing feature of
the numerical dissipation). Further development is required to ensure this specific mod-
elling. Because by construction, numerical errors are minimum at very LS, it can be
anticipated that the modelling of SGS effects on this range of scales has to be explicit.
Then, a favourable option could be a mixed implicit/explicit SGS modelling. Thanks to
the scale selectivity of the implicit modelling, which makes it inactive at LS, it can be
simply superimposed on the explicit modelling. In the spectral range where both implicit
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and explicit modelling are active (i.e. at small scale), it can be foreseen that implicit dis-
sipation will dominate its explicit counterpart thanks to the hyperviscous feature. This
straightforward implementation is tested in this study with the Smagorinsky model. No
significant improvement has been observed for the reason that the Smagorinsky model is
not a good candidate for SGS modelling at very LS. Further investigation is needed to
establish the physical scaling of SGS dissipation at very LS and then propose a specific
modelling term.
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and explicit modelling are active (i.e. at small scale), it can be foreseen that implicit dis-
sipation will dominate its explicit counterpart thanks to the hyperviscous feature. This
straightforward implementation is tested in this study with the Smagorinsky model. No
significant improvement has been observed for the reason that the Smagorinsky model is
not a good candidate for SGS modelling at very LS. Further investigation is needed to
establish the physical scaling of SGS dissipation at very LS and then propose a specific
modelling term.
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Abstract 
When molecular motors are present in the solvent of a polymer gel composed of 
DNA strands, it is observed that, when the motors are active, the gel shrinks.  This 
is caused by the molecular motors attaching to the DNA strands and reeling them 
in. The power generated by these motors is obtained by ATP hydrolysis reaction, 
which transduces chemical energy into mechanical work.  The process is controlled 
by signals of an electrochemical nature that trigger motor activity.  Gel shrinkage 
is accompanied by a significant stiffening of its elastic modulus.  The molecular 
motors separate into two families; one family remains permanently attached to the 
DNA chains and cause a steady-state shrinkage and stiffening.  The other family of 
motors attaches to DNA chains, causes transient shrinkage and stiffening, and then 
detaches.  We propose a theory based on non-equilibrium thermodynamics to 
describe this mechanical behavior.  The phenomena are considered to occur due to 
the molecular motors increasing the effective cross-link density in the polymer 
network, thereby reducing system entropy.  This outcome is shown to both shrink 
the gel and stiffen it.  The theory is then applied to a swollen polymer network, with 
solvent diffusion and neo-Hookean elastic behavior used to describe the transient 
passive response of the gel.  Results from simulation of active uniaxial contraction 
of a slab of gel is compared with experimental results for the behavior of a bead 
embedded in a gel.  Good agreement is found.  
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[24] E. Lamballais, V. Fortuné, and S. Laizet. Straightforward high-order numerical
dissipation via the viscous term for direct and large eddy simulation. J. Comp.
Phys., 230:3270–3275, 2011.

[25] M. Lesieur. Turbulence in fluids. Springer, fourth edition, 2008.

[26] J. Meyers, B. J. Geurts, and M. Baelmans. Database analysis of errors in large-eddy
simulation. Phys. Fluids, 15(9):2740–2755, 2003.

[27] J. Meyers, B. J. Geurts, and M. Baelmans. Optimality of the dynamic procedure for
large-eddy simulation. Phys. Fluids, 045108:1–9, 2005.

[28] J. Meyers, B. J. Geurts, and P. Sagaut. A computational error-assessment of central
finite-volume discretizations in large-eddy simulation using a Smagorinsky model. J.
Comp. Phys., 227:156–173, 2007.

[29] N. Park and K. Mahesh. Analysis of numerical errors in large eddy simulation using
statistical closure theory. J. Comp. Phys., 222:194–216, 2007.

[30] P. Sagaut. Large eddy simulation of incompressible flow: an introduction. Springer-
Verlag, second edition, 2005.

[31] J. Smagorinsky. General circulation experiments with the primitive equations. Mon.
Weath. Rev., 91(3):99–164, 1963.

24

Contraction of polymer gels due to the activity of molecular 
motors 

 
 Robert M. McMeeking1,2,3,4, Mattia Bacca5, Omar A. Saleh1,6 

 
1Materials Department, University of California, Santa Barbara, California, USA 
2Mechanical Engineering Departments, University of California, Santa Barbara 
3School of Engineering, University of Aberdeen, King’s College, Aberdeen, UK  

4INM—Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, Germany 
5Mechanical Engineering Department, University of British Columbia, Vancouver, BC, Canada 

6Biomolecular Science & Engineering Program, University of California, Santa Barbara 
 

Abstract 
When molecular motors are present in the solvent of a polymer gel composed of 
DNA strands, it is observed that, when the motors are active, the gel shrinks.  This 
is caused by the molecular motors attaching to the DNA strands and reeling them 
in. The power generated by these motors is obtained by ATP hydrolysis reaction, 
which transduces chemical energy into mechanical work.  The process is controlled 
by signals of an electrochemical nature that trigger motor activity.  Gel shrinkage 
is accompanied by a significant stiffening of its elastic modulus.  The molecular 
motors separate into two families; one family remains permanently attached to the 
DNA chains and cause a steady-state shrinkage and stiffening.  The other family of 
motors attaches to DNA chains, causes transient shrinkage and stiffening, and then 
detaches.  We propose a theory based on non-equilibrium thermodynamics to 
describe this mechanical behavior.  The phenomena are considered to occur due to 
the molecular motors increasing the effective cross-link density in the polymer 
network, thereby reducing system entropy.  This outcome is shown to both shrink 
the gel and stiffen it.  The theory is then applied to a swollen polymer network, with 
solvent diffusion and neo-Hookean elastic behavior used to describe the transient 
passive response of the gel.  Results from simulation of active uniaxial contraction 
of a slab of gel is compared with experimental results for the behavior of a bead 
embedded in a gel.  Good agreement is found.  

 



26

10. National Conference on Computational Mechanics
MekIT’19

B. Skallerud and H I Andersson (Eds)

FINITE ELEMENT ANALYSIS OF A BARLOW MITRAL
VALVE: PATIENT SPECIFIC GEOMETRY AND
COMPARISON WITH THREE-DIMENSIONAL

ECHOCARDIOGRAPHIC DATA.

Hans Martin Dahl Aguilera1, Victorien Prot1, Bjørn Skallerud1 and Stig
Urheim2

1Department of Structural Engineering, Faculty of Engineering Science
The Norwegian University of Science and Technology, Norway

e-mail: victorien.prot@ntnu.no

2 Department of Heart Disease
Haukeland University Hospital, Norway

Key words: Computational Methods, Finite element method, Barlow disease, Degener-
ative mitral valve disease.

Abstract. In this paper, a patient-specific finite element (FE) model is created for a
mitral valve diagnosed with Barlow disease. The FE model is constructed from three-
dimensional (3D) echocardiographic data. The mitral valve leaflets and the chordae
tendineae are modelled with hyperelastic materials. Patient-specific annular and pap-
illary muscle motions are used as boundary conditions in the analyses. The FE model of
this Barlow mitral valve is used to predict the location of mitral regurgitation.
The global response of the mitral valve model is compared with echocardiographic mea-
surements, and with the patients lesions observed pre- and intraoperatively. The re-
sults showed regurgitation at both commissures, and the FE model aligned well with the
echocardiographic measurements at peak systole.

1 Introduction

The mitral valve is a complex structure that separates the left atrium from the left
ventricle, ensuring one-way blood flow between the two heart chambers. This valvular
structure consists of several components: the anterior and posterior leaflets, the annulus,
chordae tendineae and the papillary muscles. The annulus is situated at the intersection
between the left atrium and the left ventricle, and functions as an attachment ring for the
two leaflets. Moreover, from the ventricular wall, the papillary muscles originate. From
the papillary muscles, the chordae tendineae branches out and insert into the posterior
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surements, and with the patients lesions observed pre- and intraoperatively. The re-
sults showed regurgitation at both commissures, and the FE model aligned well with the
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1 Introduction

The mitral valve is a complex structure that separates the left atrium from the left
ventricle, ensuring one-way blood flow between the two heart chambers. This valvular
structure consists of several components: the anterior and posterior leaflets, the annulus,
chordae tendineae and the papillary muscles. The annulus is situated at the intersection
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two leaflets. Moreover, from the ventricular wall, the papillary muscles originate. From
the papillary muscles, the chordae tendineae branches out and insert into the posterior
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and anterior leaflets. During the cardiac cycle, the components of the mitral valve work
in concert in order to achieve proper closure at systole, enabling unidirectional blood
flow. Furthermore, Carpentier et al.[1] divided the posterior and anterior leaflets into six
different segments described in figure 1.

Figure 1: Atrial view of the mitral valve with leaflet segmentation. Anterolateral
Commissure (AC), posteromedial Commissure (PC). Taken from [1].

The second most common valvular heart disease in European countries is mitral regur-
gitation [2]. Mitral regurgitation is predominantly caused by degenerative diseases such
as Fibroelastic Deficiency or Barlow disease (BD), where the latter is the topic of this
paper. BD affects the entire mitral valve apparatus, where a severely dilated annulus,
excessive leaflet tissue, billowing or prolapse of the leaflets, myxomatous degeneration
and chordae alterations are characteristic lesions. Another characteristic feature related
to BD is that the annular saddle shape flattens, and overstretches at end systole[3]. Fur-
thermore, Barlow disease is mainly observed in patients younger than the age of 60 [4].
The work by Hjortnaes et al.[5] studied the histological changes in the mitral valve due
to Barlow’s disease. It was observed that the thickening of the mitral valve leaflets was
caused by gathering of water absorbent proteins (proteoglycans) in the spongiosa layer,
and intimal thickening of the fibrosa and atrialis.

Repairing a Barlow mitral valve is a complex procedure, and often the whole mitral
apparatus must be assessed. Reconstructive surgery of the mitral valve may include
annuloplasty, different sliding and resection techniques and artificial chordal insertions.
Sophisticated imaging techniques have in recent years become available, leading to a
greater understanding of the mitral valve dynamics. The motivation for this paper is to
develop a patient-specific finite element model of a Barlow mitral valve before surgical
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treatment. The development of such a model will hopefully enable us to predict the
location of mitral regurgitation. Furthermore, with a realistic model it should be possible
to perform surgical procedures in silico, optimizing and creating a patient-specific repair
procedure. To the authors’ knowledge, this is the first time a Barlow mitral valve has
been studied using a finite element model.

This paper is organized as follows. First, the patient’s pathology is presented. Then
the material models, the FE geometry and boundary conditions are described. Thereafter,
the results are presented and discussed. Finally, conclusions from the study are given.

2 Methods

2.1 Patient and echocardiographic measurement

In this section the studied patient, his lesions and the surgical procedures performed
are briefly described.

The patient is a 45 year old male who was diagnosed with Barlow’s disease and operated
in 2017 with mitral valve repair. The patient had a severely dilated annulus with excessive
leaflet tissue and mitral regurgitation. From echocardiographic findings, multiple jets of
mitral regurgitation in mid to late systole were observed. The most severe regurgitation
was located in the posteromedial region with billowing (A2-A3-P3) and prolapse of the
P3 segment. A less severe regurgitation jet was observed in the anterolateral region due
to prolapse of P1. Mitral annular disjunction (MAD) of 10 mm was observed in the P1-P2
region.

The patient received an annuloplasty ring of size 38, triangular resection and sliding
of P2 in order to reduce the height of the P2 segment. Furthermore, there was inserted
2x4 neo chordae (Goretex 5-0) from each papillary muscle and to the edge of the A2 and
P2 segment. Lastly, there was performed a transposition of secondary P2 chordae to the
free edge of the P2 segment.

2.2 Continuum mechanical framework and constitutive models

Kinematics

We consider a deformable body in two different instantaneous configurations Ω0 and
Ω, representing the reference and current configuration, respectively. A particle in the
reference configuration Ω0 is defined by the position vector X. The position of the same
particle in the current configuration Ω is further defined by the the vector x. The rela-
tionship between the two configurations is described by the deformation map relationship
x = x(X, t). The deformation gradient F is defined as

F =
∂x

∂X
. (1)

The volume ratio is defined as J = detF, where J = 1 describes an isochoric transforma-
tion. Furthermore, the right and left Cauchy-Green tensors are defined as C = FTF and

3
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2.1 Patient and echocardiographic measurement

In this section the studied patient, his lesions and the surgical procedures performed
are briefly described.

The patient is a 45 year old male who was diagnosed with Barlow’s disease and operated
in 2017 with mitral valve repair. The patient had a severely dilated annulus with excessive
leaflet tissue and mitral regurgitation. From echocardiographic findings, multiple jets of
mitral regurgitation in mid to late systole were observed. The most severe regurgitation
was located in the posteromedial region with billowing (A2-A3-P3) and prolapse of the
P3 segment. A less severe regurgitation jet was observed in the anterolateral region due
to prolapse of P1. Mitral annular disjunction (MAD) of 10 mm was observed in the P1-P2
region.

The patient received an annuloplasty ring of size 38, triangular resection and sliding
of P2 in order to reduce the height of the P2 segment. Furthermore, there was inserted
2x4 neo chordae (Goretex 5-0) from each papillary muscle and to the edge of the A2 and
P2 segment. Lastly, there was performed a transposition of secondary P2 chordae to the
free edge of the P2 segment.

2.2 Continuum mechanical framework and constitutive models

Kinematics

We consider a deformable body in two different instantaneous configurations Ω0 and
Ω, representing the reference and current configuration, respectively. A particle in the
reference configuration Ω0 is defined by the position vector X. The position of the same
particle in the current configuration Ω is further defined by the the vector x. The rela-
tionship between the two configurations is described by the deformation map relationship
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b = FFT respectively. Furthermore, the distortional part of the right and left Cauchy-
Green can be written as C = J− 2

3FTF and b = J− 2
3FFT

For an anisotropic material reinforced by a family of fibres, the fibre direction in the
reference configuration is defined by the unit vector a0. The mapping of the fibre direction
from the reference configuration to the current configuration is expressed as a = Fa0.

Strain-energy function and stress tensors

For hyperelastic materials a strain-energy function Ψ is introduced in order to describe
the response of the material. The strain-energy function Ψ for incompressible materials
can be expressed in terms of five invariants, I1, I2, J, I4, I5 as,

Ψ = Ψ̃(I1, I2, I4, I5) + p(1− J), (2)

where the principal invariants of C (i.e., I1, I2, J) are related to isotropic elasticity and
defined as,

I1 = tr(C), I2 =
1

2
[I21 − tr(C2)], J =

√
det(C). (3)

For an incompressible material the third invariant can be written as J = 1. The invariants
I4, I5 describe the transversely isotropic properties of the material, expressed by the fibre
direction in the reference configuration a0 and the right Cauchy-Green tensor C,

I4 = a0 ·Ca0, I5 = a0 ·C2a0, (4)

and p is the Lagrange multiplier. The second Piola-Kirchhoff stress tensor S can be
derived from 2 giving,

S = 2
5∑

i=1
i �=3

∂Ψ

∂Ii

∂Ii
∂C

+ pC−1, (5)

where the scalar p can be determined from the plane stress condition. In this work, we
apply this constitutive model to mitral leaflets that may be considered as thin sheets,
thus assuming that the stress in the out of plane direction (denoded 3-direction) S33 is
zero leads to:

p = −2
5∑

i=1
i �=3

∂Ψ

∂Ii

∂Ii
∂C33

C33. (6)

Lastly the second Piola-Kirchhoff stress tensor S can be transformed to the Cauchy stress
tensor σ= 1

J
FSFT by the push-forward operation of S [6]. This was used for material

parameter fitting presented in section 2.3.
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2.3 Material models and parameters

The constitutive model used to analyse the response of the leaflets, is a hyperelastic
anisotropic material model, which is available through the material library in Abaqus.
The material model was originally developed in order to model the mechanical response of
arterial layers with a distributed collagen fibre orientation [7]. The strain-energy function
W is defined in terms of the deviatoric strain invariants Ī1 and Ī4, which are defined as,

Ī1 = trC, Ī4 = a0 ·C · a0. (7)

Thus,

W (Ī1, Ī4) = C10(Ī1 − 3) +
1

D

(
(J2)− 1

2
− ln(J)

)
+

k1
2k2

(expk2(E)2 − 1), (8)

with,

E = κ(Ī1 − 3) + (1− 3κ)(Ī4 − 1), (9)

where C10, D, k1, k2 and κ are temperature-dependent material parameters. C10 and k1
have the dimension MPa, while k2 is dimensionless. Furthermore, D is a material constant
that controls compressibility[8]. The dispersion parameter κ describes the distribution of
the fibres. When κ = 0, there is no dispersion of the fibres, while, κ = 1

3
describes an

isotropic material where the fibres are randomly distributed [9].
In order to describe the mechanical response of the mitral valve leaflets, the constitutive

model presented by [7] had to be fitted to experimental data. In the paper published by
May-Newman and Yin [10], a strain-energy function derived from experimental data with
corresponding material parameters is presented. The suggested model in [10] has an
exponential form in terms of the invariants I1 and I4.

Ψ(I1, I4) = c0[exp
c1(I1−3)2+c2(

√
I4−1)4 − 1] + p(J − 1), (10)

where ci, i=0,1,2, are material parameters, and p is the Lagrange-multiplier.
The lsqnonlin function from the Optimization Toolbox of Matlab was used to perform

a nonlinear least square fitting. In table 1, the acquired material parameters from the
non-linear regression is presented. Furthermore, figures 2 and 2.3 show the stress-stretch
relationship, comparing the obtained material parameters with the ones presented by
May-Newman and Yin[10]. The leaflets were modelled with a density of 1000 kg/m3.

Table 1: Material parameters obtained from nonlinear data-fitting of experimental data
provided by [10]

c10(MPa) k1(MPa) k2 κ
Anterior leaflet 0.001 0.0240 50.92 0.1728
Posterior leaflet 0.001 0.0207 52.35 0.2669
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b = FFT respectively. Furthermore, the distortional part of the right and left Cauchy-
Green can be written as C = J− 2

3FTF and b = J− 2
3FFT

For an anisotropic material reinforced by a family of fibres, the fibre direction in the
reference configuration is defined by the unit vector a0. The mapping of the fibre direction
from the reference configuration to the current configuration is expressed as a = Fa0.

Strain-energy function and stress tensors

For hyperelastic materials a strain-energy function Ψ is introduced in order to describe
the response of the material. The strain-energy function Ψ for incompressible materials
can be expressed in terms of five invariants, I1, I2, J, I4, I5 as,

Ψ = Ψ̃(I1, I2, I4, I5) + p(1− J), (2)

where the principal invariants of C (i.e., I1, I2, J) are related to isotropic elasticity and
defined as,

I1 = tr(C), I2 =
1

2
[I21 − tr(C2)], J =

√
det(C). (3)

For an incompressible material the third invariant can be written as J = 1. The invariants
I4, I5 describe the transversely isotropic properties of the material, expressed by the fibre
direction in the reference configuration a0 and the right Cauchy-Green tensor C,

I4 = a0 ·Ca0, I5 = a0 ·C2a0, (4)

and p is the Lagrange multiplier. The second Piola-Kirchhoff stress tensor S can be
derived from 2 giving,

S = 2
5∑

i=1
i �=3

∂Ψ

∂Ii

∂Ii
∂C

+ pC−1, (5)

where the scalar p can be determined from the plane stress condition. In this work, we
apply this constitutive model to mitral leaflets that may be considered as thin sheets,
thus assuming that the stress in the out of plane direction (denoded 3-direction) S33 is
zero leads to:

p = −2
5∑

i=1
i �=3

∂Ψ

∂Ii

∂Ii
∂C33

C33. (6)

Lastly the second Piola-Kirchhoff stress tensor S can be transformed to the Cauchy stress
tensor σ= 1

J
FSFT by the push-forward operation of S [6]. This was used for material

parameter fitting presented in section 2.3.
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2.3 Material models and parameters

The constitutive model used to analyse the response of the leaflets, is a hyperelastic
anisotropic material model, which is available through the material library in Abaqus.
The material model was originally developed in order to model the mechanical response of
arterial layers with a distributed collagen fibre orientation [7]. The strain-energy function
W is defined in terms of the deviatoric strain invariants Ī1 and Ī4, which are defined as,

Ī1 = trC, Ī4 = a0 ·C · a0. (7)

Thus,

W (Ī1, Ī4) = C10(Ī1 − 3) +
1

D

(
(J2)− 1

2
− ln(J)

)
+

k1
2k2

(expk2(E)2 − 1), (8)

with,

E = κ(Ī1 − 3) + (1− 3κ)(Ī4 − 1), (9)

where C10, D, k1, k2 and κ are temperature-dependent material parameters. C10 and k1
have the dimension MPa, while k2 is dimensionless. Furthermore, D is a material constant
that controls compressibility[8]. The dispersion parameter κ describes the distribution of
the fibres. When κ = 0, there is no dispersion of the fibres, while, κ = 1

3
describes an

isotropic material where the fibres are randomly distributed [9].
In order to describe the mechanical response of the mitral valve leaflets, the constitutive

model presented by [7] had to be fitted to experimental data. In the paper published by
May-Newman and Yin [10], a strain-energy function derived from experimental data with
corresponding material parameters is presented. The suggested model in [10] has an
exponential form in terms of the invariants I1 and I4.

Ψ(I1, I4) = c0[exp
c1(I1−3)2+c2(

√
I4−1)4 − 1] + p(J − 1), (10)

where ci, i=0,1,2, are material parameters, and p is the Lagrange-multiplier.
The lsqnonlin function from the Optimization Toolbox of Matlab was used to perform

a nonlinear least square fitting. In table 1, the acquired material parameters from the
non-linear regression is presented. Furthermore, figures 2 and 2.3 show the stress-stretch
relationship, comparing the obtained material parameters with the ones presented by
May-Newman and Yin[10]. The leaflets were modelled with a density of 1000 kg/m3.

Table 1: Material parameters obtained from nonlinear data-fitting of experimental data
provided by [10]

c10(MPa) k1(MPa) k2 κ
Anterior leaflet 0.001 0.0240 50.92 0.1728
Posterior leaflet 0.001 0.0207 52.35 0.2669
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Figure 2: Cauchy-stress vs stretch curves for the anterior leaflet. Experimental data
provided by [10] and nonlinear data-fitting of the constitutive model described by [7].
Note that the 1-direction is aligned with the collagen fiber. a) equibaxial (λ1 = λ2), b)

strip biaxial (λ2 = 1.1), c) off-biaxial (λ1/λ2 = 1.5), d) strip biaxial (λ1 = 1.1).

Table 2: Ogden model material parameters for modelling of chordae tendinae. Anterior
Marginal(AM), Anterior Strut(AS) and Posterior Marginal(PM). Human and ovine

material parameters.

Human Ovine
AM AS PM AM AS PM

µ1(MPa) 8.91 9.61 9.57 0.37 0.85 0.66
α1 27.02 30.86 22.78 11.70 28.03 29.67
µ2(MPa) 12.19 7.99 10.61 1.79 0.21 1.37
α2 20.91 27.65 21.68 5.00 5.47 18.25
µ3(MPa) 12.78 7.81 10.65 0.33 0.16 1.46
α3 20.89 30.00 21.35 34.06 25.06 19.45
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Figure 3: Cauchy-stress vs stretch curves for the posterior leaflet. Experimental data
provided by [10] and nonlinear data-fitting of the constitutive model described by [7].
Note that the 1-direction is aligned with the collagen fiber. a) equibaxial (λ1 = λ2), b)

strip biaxial (λ2 = 1.1), c) off-biaxial (λ1/λ2 = 1.5), d) strip biaxial (λ1 = 1.1).

Lastly, the Ogden strain-energy function is used in order to describe the chordae
tendineae. When assumed incompressible, the strain-energy function is,

Ψ =
N∑
i=1

2µi

α2
i

(λαi
1 + λαi

2 + λαi
3 − 3), (11)

where µi and αi are material constants and λαi
j (j=1,2,3) are the principal stretches. The

material parameters used for the chordae are provided by Zuo et al.[11], and describe
the response of human chordae tendineae. Material parameters provided by [11] of ovine
chordae tendineae were also implemented in another analysis. Human chordae were shown
to be significantly stiffer than ovine chordae [11], and myxomatous chordae were found
to be 50% less stiff compared to human chordae [12]. Thus, ovine material parameters
were studied to compare the global response between the two. In table 2, the material
parameters for the marginal chordae and the strut chordae are presented. Lastly, the
mechanical response of human and ovine marginal chordae are plotted in figure 4.
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Figure 2: Cauchy-stress vs stretch curves for the anterior leaflet. Experimental data
provided by [10] and nonlinear data-fitting of the constitutive model described by [7].
Note that the 1-direction is aligned with the collagen fiber. a) equibaxial (λ1 = λ2), b)

strip biaxial (λ2 = 1.1), c) off-biaxial (λ1/λ2 = 1.5), d) strip biaxial (λ1 = 1.1).

Table 2: Ogden model material parameters for modelling of chordae tendinae. Anterior
Marginal(AM), Anterior Strut(AS) and Posterior Marginal(PM). Human and ovine

material parameters.

Human Ovine
AM AS PM AM AS PM

µ1(MPa) 8.91 9.61 9.57 0.37 0.85 0.66
α1 27.02 30.86 22.78 11.70 28.03 29.67
µ2(MPa) 12.19 7.99 10.61 1.79 0.21 1.37
α2 20.91 27.65 21.68 5.00 5.47 18.25
µ3(MPa) 12.78 7.81 10.65 0.33 0.16 1.46
α3 20.89 30.00 21.35 34.06 25.06 19.45
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Figure 3: Cauchy-stress vs stretch curves for the posterior leaflet. Experimental data
provided by [10] and nonlinear data-fitting of the constitutive model described by [7].
Note that the 1-direction is aligned with the collagen fiber. a) equibaxial (λ1 = λ2), b)

strip biaxial (λ2 = 1.1), c) off-biaxial (λ1/λ2 = 1.5), d) strip biaxial (λ1 = 1.1).

Lastly, the Ogden strain-energy function is used in order to describe the chordae
tendineae. When assumed incompressible, the strain-energy function is,

Ψ =
N∑
i=1

2µi

α2
i

(λαi
1 + λαi

2 + λαi
3 − 3), (11)

where µi and αi are material constants and λαi
j (j=1,2,3) are the principal stretches. The

material parameters used for the chordae are provided by Zuo et al.[11], and describe
the response of human chordae tendineae. Material parameters provided by [11] of ovine
chordae tendineae were also implemented in another analysis. Human chordae were shown
to be significantly stiffer than ovine chordae [11], and myxomatous chordae were found
to be 50% less stiff compared to human chordae [12]. Thus, ovine material parameters
were studied to compare the global response between the two. In table 2, the material
parameters for the marginal chordae and the strut chordae are presented. Lastly, the
mechanical response of human and ovine marginal chordae are plotted in figure 4.
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Figure 4: Nominal Stress vs Nominal Strain curves. Human and ovine chordae
material parameteres implemented in the Ogden material model.

2.4 Geometry

The patient-specific geometry was created from 3D echocardiographic data of a patient
diagnosed with Barlow disease. The recordings were imported into a Matlab GUI which
enables manual extraction of geometrical points. At the end-diastolic configuration the
annulus, leaflet edges and papillary muscle tips were identified (Figure 5).

The annulus was created by extracting points around the annular perimeter and per-
forming a cubic spline interpolation. The anterior and posterior leaflets were constructed
by identifying the leaflet edges and the tissue points as shown in figure 5, where the tissue
points (white circles in figure 5) are defined as the points between the annulus and the
free edge. For the free edge, a cubic interpolation is also performed, creating a continuous
line at the margin (figure 6). The extracted points were then imported into the CAD
software Rhino, where a non-uniform rational B-spline (NURBS) surface is created by
using the tissue points to guide the surface between the annulus and the free edge lines.
Furthermore, the papillary muscle tips are identified, and serve as the attachment points
for the chordae.

2.5 Chordae modelling

The chordae tendineae originate from the papillary muscles and insert into either the
leaflet edge, rough zone or the basal portion of the mitral valve leaflets. However, in this
paper the basal chordae are not considered, hence only the marginal and strut chordae
are modelled. The marginal chordae insert into the free edge of both the anterior and
posterior leaflets, while the strut chordae insert into the anterior leaflet only.

Twelve marginal chordae were modelled to originate from each papillary muscle. Each
marginal chordae was then split in a fan-like manner, inserting into the leaflet edge with
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Figure 5: Explanation of the anatomical components on an echocardiographic image,
end-diastolic configuration. Papillary Muscle Tips (stars), Posterior leaflet edge (left
triangle), Anterior leaflet edge (right triangle), Annulus (squares). White circles

represent the tissue points, extracted from the middle of the leaflets.

about five different insertion points as described by [13]. The branching was mainly done
in order to simulate a more anatomically correct model, where the branch origin was
set between the papillary muscle and the free edge (figure 7a). Moreover, the branching
led to a redistribution of stress on the leaflet edge, hence preventing excessive distorted
elements in the analysis. Lastly, the strut chordae is inserted into the rough zone of the
anterior leaflet, which is situated between the annulus and the free edge. As with the
marginal chordae, the strut chordae branches out in a fan-like manner. The branching is
distributed to the nearby nodes of the main insertion point (figure 7a).

The cross-sectional areas for human marginal and strut chordae was modelled to be
0.25 mm2 and 1.27 mm2 respectively. While, for the ovine chordae the cross-sectional
areas were modelled to be 0.26 mm2 and 0.6 mm2. Here, the chordae were assumed to be
circular and calculated with the cross-sectional diameter presented in the paper published
by [11], which studied human and ovine cadaver hearts.

2.6 Finite element model

The end-diastolic finite element geometry constructed from the echocardiographic data
is depicted in figure 7. For the anterior and posterior leaflets, four noded general-purpose
shell elements (S4) were used. The chordae tendineae were modelled as two-noded 3D
truss elements (T3D2). Furthermore, the overall leaflet thickness was set to be 3mm,
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Figure 4: Nominal Stress vs Nominal Strain curves. Human and ovine chordae
material parameteres implemented in the Ogden material model.

2.4 Geometry

The patient-specific geometry was created from 3D echocardiographic data of a patient
diagnosed with Barlow disease. The recordings were imported into a Matlab GUI which
enables manual extraction of geometrical points. At the end-diastolic configuration the
annulus, leaflet edges and papillary muscle tips were identified (Figure 5).

The annulus was created by extracting points around the annular perimeter and per-
forming a cubic spline interpolation. The anterior and posterior leaflets were constructed
by identifying the leaflet edges and the tissue points as shown in figure 5, where the tissue
points (white circles in figure 5) are defined as the points between the annulus and the
free edge. For the free edge, a cubic interpolation is also performed, creating a continuous
line at the margin (figure 6). The extracted points were then imported into the CAD
software Rhino, where a non-uniform rational B-spline (NURBS) surface is created by
using the tissue points to guide the surface between the annulus and the free edge lines.
Furthermore, the papillary muscle tips are identified, and serve as the attachment points
for the chordae.

2.5 Chordae modelling

The chordae tendineae originate from the papillary muscles and insert into either the
leaflet edge, rough zone or the basal portion of the mitral valve leaflets. However, in this
paper the basal chordae are not considered, hence only the marginal and strut chordae
are modelled. The marginal chordae insert into the free edge of both the anterior and
posterior leaflets, while the strut chordae insert into the anterior leaflet only.

Twelve marginal chordae were modelled to originate from each papillary muscle. Each
marginal chordae was then split in a fan-like manner, inserting into the leaflet edge with
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Figure 5: Explanation of the anatomical components on an echocardiographic image,
end-diastolic configuration. Papillary Muscle Tips (stars), Posterior leaflet edge (left
triangle), Anterior leaflet edge (right triangle), Annulus (squares). White circles

represent the tissue points, extracted from the middle of the leaflets.

about five different insertion points as described by [13]. The branching was mainly done
in order to simulate a more anatomically correct model, where the branch origin was
set between the papillary muscle and the free edge (figure 7a). Moreover, the branching
led to a redistribution of stress on the leaflet edge, hence preventing excessive distorted
elements in the analysis. Lastly, the strut chordae is inserted into the rough zone of the
anterior leaflet, which is situated between the annulus and the free edge. As with the
marginal chordae, the strut chordae branches out in a fan-like manner. The branching is
distributed to the nearby nodes of the main insertion point (figure 7a).

The cross-sectional areas for human marginal and strut chordae was modelled to be
0.25 mm2 and 1.27 mm2 respectively. While, for the ovine chordae the cross-sectional
areas were modelled to be 0.26 mm2 and 0.6 mm2. Here, the chordae were assumed to be
circular and calculated with the cross-sectional diameter presented in the paper published
by [11], which studied human and ovine cadaver hearts.

2.6 Finite element model

The end-diastolic finite element geometry constructed from the echocardiographic data
is depicted in figure 7. For the anterior and posterior leaflets, four noded general-purpose
shell elements (S4) were used. The chordae tendineae were modelled as two-noded 3D
truss elements (T3D2). Furthermore, the overall leaflet thickness was set to be 3mm,
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Figure 6: NURBS surface created from imported echocardiographic point cloud.
Annulus - green line, Tissue points represented in red and leaflet free edge - blue line.

NURBS surface

which is the average overall thickness of Barlow leaflets found by [5]. As for contact,
a general contact algorithm available in Abaqus was applied. The tangential contact
behaviour was set to frictionless and the normal contact behaviour was a hard contact
condition [9].

The material orientation applied to the mitral valve leaflets is obtained from small angle
light scattering (SALS) data presented by [14]. In [14], the mean collagen fibre direction
is observed to be perpendicular to the annulus near the commissures, and parallel to the
annulus at the middle of the leaflets. Moreover, the fibre direction is observed to gradually
rotate from parallel to perpendicular towards the commissures. Implementation of the
fibre direction in Abaqus is done by partitioning the leaflet into several regions. Then a
material orientation was assigned to each individual partitioned region (figure 7b).

2.7 Boundary conditions and loading

In order to model the boundary conditions, the dynamics of the papillary muscle tips
and the annulus were obtained using in vivo echocardiographic data. The geometry of
the annulus and the positions of the PMs are recorded for all time-frames, between end-
diastole and end-systole. As it is difficult to track material points from echocardiographic
measurements, the motion of the annulus was prescribed using displacement boundary
conditions determined from the acquired images, under the assumption that heterogeneity
in annular strain is small. First, the annular geometries of each time step were modelled
as periodic degree-3 spline curves parameterised by arc length. Then, the relative param-
eterisation of the annular curves was optimised to find the point-wise map that minimised
the total displacement between two consecutive curves as described by Rego et al. [15].
Between each configuration a linear interpolation is performed, creating a continuous
movement between the time-frames. These boundary conditions are then implemented
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Figure 6: NURBS surface created from imported echocardiographic point cloud.
Annulus - green line, Tissue points represented in red and leaflet free edge - blue line.

NURBS surface

which is the average overall thickness of Barlow leaflets found by [5]. As for contact,
a general contact algorithm available in Abaqus was applied. The tangential contact
behaviour was set to frictionless and the normal contact behaviour was a hard contact
condition [9].

The material orientation applied to the mitral valve leaflets is obtained from small angle
light scattering (SALS) data presented by [14]. In [14], the mean collagen fibre direction
is observed to be perpendicular to the annulus near the commissures, and parallel to the
annulus at the middle of the leaflets. Moreover, the fibre direction is observed to gradually
rotate from parallel to perpendicular towards the commissures. Implementation of the
fibre direction in Abaqus is done by partitioning the leaflet into several regions. Then a
material orientation was assigned to each individual partitioned region (figure 7b).

2.7 Boundary conditions and loading

In order to model the boundary conditions, the dynamics of the papillary muscle tips
and the annulus were obtained using in vivo echocardiographic data. The geometry of
the annulus and the positions of the PMs are recorded for all time-frames, between end-
diastole and end-systole. As it is difficult to track material points from echocardiographic
measurements, the motion of the annulus was prescribed using displacement boundary
conditions determined from the acquired images, under the assumption that heterogeneity
in annular strain is small. First, the annular geometries of each time step were modelled
as periodic degree-3 spline curves parameterised by arc length. Then, the relative param-
eterisation of the annular curves was optimised to find the point-wise map that minimised
the total displacement between two consecutive curves as described by Rego et al. [15].
Between each configuration a linear interpolation is performed, creating a continuous
movement between the time-frames. These boundary conditions are then implemented
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(a) Finite element model (b) Material orientation on anterior leaflet

Figure 7: (a) - Finite element model created from echocardiographic data. Posterior
leaflet (light gray), anterior leaflet (dark grey). (b) - Anterior leaflet material

orientation.
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Figure 8: Load Amplitude Curve in the Cardiac Cycle

into the Abaqus user subroutine VDISP.
A uniformly distributed pressure was applied to the leaflets’ ventricular surface, with

a patient specific peak pressure of 18.13 kPa (136mmHg). Furthermore, the amplitude
was modelled in order to follow a pressure curve similar to the one during the cardiac
cycle [16]. The pressure curve is presented in figure 8, where the pressure is applied to
the ventricular surface of the leaflets throughout systole.
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3 Results

3.1 Measurements of FE geometry

The geometry modelled from echocardiographic data has been compared with mea-
surements obtained in literature of a Barlow mitral valve and a healthy mitral valve. The
goal being to verify the geometry with anatomical measurements of Barlow mitral valves.
Furthermore, the Barlow mitral valve studied herein shows abnormal features such as
excessive tissue and a severely dilated annulus. The finite element model is measured in
both the end-diastolic and end-systolic configuration. In table 3 the measurements are
presented.

Table 3: Mitral valve measurements of the FE model, compared with measurements
from literature both in vitro and from 3D echocardiography. [13, 17, 18, 3]

FE model From Literature
ED PS Barlow (S) Barlow (D) Healthy (D)

Annular perimeter (mm) 170 160 158 ±19 148±17 82 ±7
IC diameter (mm) 50.83 - 45±9 46.6 ±5 39.5 ±3.4
AP diameter (mm) 45.02 - 44 ±8 37.3 ±6 32.2 ±3.6
Anterior leaflet height (mm) 32.07 - - - 20 ±2
Posterior leaflet height (mm) 19.85 - - - 12 ±1
AC height (mm) 10.03 - - - 7 ±1
PC height (mm) 12.05 - - - 7 ±1
3D annular area (mm2) 2100 1625 - 1500 ±280 -
3D total leaflet area (mm2) 2645 - 2302 ±455 1850 ±490 -
Anterior leaflet area (mm2) 1145 - 1162 ±276 - -
Posterior leaflet area (mm2) 1500 - 1175 ±306 - -
IC- Intercommisural, AP-Anteroposterior, AC-Anterolateral Commissure,
PC-Posteriomedial commissure, ED-End Diastole, PS-Peak Systole, S-Systole, D-Diastole.

As can be seen in table 3, the FE model measurements coincide with the upper limits
of the diastolic Barlow measures extracted from literature [3, 17]. Furthermore, for each
time step, a mean annulus plane was calculated. Then, the annulus was projected onto
this mean plane and a two-dimensional (2D) area was computed and plotted against time
in figure 9a. This plot shows how much the annulus dilates throughout the whole cardiac
cycle. Then, the mean squared distance of the annulus to this plane was computed and
plotted in figure 9b, showing how much the annulus flattens during one full cardiac cycle.
The t-wave on the ECG signal is observed prior to 0.5s, hence the measurements in figure
9 represent systole from 0 to 0.5s. As can be seen in figure 9b, the annulus is distinctly
flattened during systole. Note that the end-diastolic configuration is the very last time
step in figure 9.

12

Hans Martin Dahl Aguilera, Victorien Prot, Bjørn Skallerud and Stig Urheim

0 0.5 1

t (s)

1200

1400

1600

1800

2000

2200

2
D

 a
re

a
 (

m
m

2
)

-200

0

200

400

600

800

1000

e
c
g

 (
m

v
)

(a) 2D annular area plotted against
time(s)

0 0.5 1

t (s)

0

2

4

6

8

10

12

m
e

a
n

 s
q

u
a

re
d

 d
is

ta
n

s
e

 (
m

m
)

-200

0

200

400

600

800

1000

e
c
g

 (
m

v
)

(b) Mean squared distance of the annulus
to its mean-plane

Figure 9: Annular measurements and shape. ECG signal(solid curve), 2D area (circles)
and mean squared distance (squares).

3.2 Comparison with three-dimensional echocardiographic data

Figure 10 shows the global response at the A2-P2 region of the leaflet compared to
echocardiography at peak systole. As can be seen, there is a very good correspondence
between the echocardiographic measurements and the mitral valve models.

Figure 10: Comparison between finite element models and echocardiography along the
A2-P2 leaflets at peak systolic pressure p=136mmHg, using human and ovine chordae

material parameters.
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As can be seen in table 3, the FE model measurements coincide with the upper limits
of the diastolic Barlow measures extracted from literature [3, 17]. Furthermore, for each
time step, a mean annulus plane was calculated. Then, the annulus was projected onto
this mean plane and a two-dimensional (2D) area was computed and plotted against time
in figure 9a. This plot shows how much the annulus dilates throughout the whole cardiac
cycle. Then, the mean squared distance of the annulus to this plane was computed and
plotted in figure 9b, showing how much the annulus flattens during one full cardiac cycle.
The t-wave on the ECG signal is observed prior to 0.5s, hence the measurements in figure
9 represent systole from 0 to 0.5s. As can be seen in figure 9b, the annulus is distinctly
flattened during systole. Note that the end-diastolic configuration is the very last time
step in figure 9.
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Figure 9: Annular measurements and shape. ECG signal(solid curve), 2D area (circles)
and mean squared distance (squares).

3.2 Comparison with three-dimensional echocardiographic data

Figure 10 shows the global response at the A2-P2 region of the leaflet compared to
echocardiography at peak systole. As can be seen, there is a very good correspondence
between the echocardiographic measurements and the mitral valve models.

Figure 10: Comparison between finite element models and echocardiography along the
A2-P2 leaflets at peak systolic pressure p=136mmHg, using human and ovine chordae

material parameters.
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3.3 Global Response

In this section, the global response of the finite element analysis is presented. Figure 11
depicts the valve closure from end-diastole to end-systole observed from the left atrium.

(a) p=0mmHg (b) p=1mmHg (c) p=15mmHg

(d) p=70mmHg (e) p=136mmHg (f) p=125mmHg

(g) p=108mmHg (h) p=125mmHg

Figure 11: Valve closure of finite element model from end-diastole to end-systole. (a)
End-diastolic configuration, p=0 mmHg. (b) p=1 mmHg. (c) First observation of
coapting surfaces, p=15 mmHg. (d) p=70 mmHg. (e) Peak systolic pressure,
p=136mmHg. (f) Late systolic regurgitation, p=125mmHg. (g) End-systolic

configuration, p=108 mmHg. (h) Cut-view of prolapse at the posteromedial side of the
P2 segment
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From figures 11(a-g) it can firstly be observed regurgitation at the anterolateral region
(A1-P1) throughout the whole analysis. Secondly, the annular motion is clearly observed
in figures 11(a-g). Lastly, in figure 11f, a late systolic regurgitation can be observed near
the posteromedial commissure (A3-P3). Figure 11h depicts a cut-view, showing what
appears to be prolapse at the posteromedial side of the P2 segment. The prolapse is
observed at the same time as the late systolic regurgitation in figure 11f. Note that the
prolapse is present until the end of systole.

3.4 Displacements

The norm of the displacement of points A and B (figure 12a) are plotted against time
in figure 12. Prior to the pressure being applied, it is observed that points A and B
move without any loading. These movements are due to the annular and papillary muscle
dynamics. Moreover, figure 12 shows that as the analysis approaches 0.1s (p=81 mmHg)
the leaflets tend to oscillate very little for the rest of the analysis. Lastly, in figure 12, the
displacements of points A and B are plotted to compare the leaflet response when ovine
and human chordae material parameters are implemented.
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Figure 12: Norm of the displacement of points A and B, obtained with leaflet
parameters from table 1, and human and ovine chordae material parameters from table

2.

3.5 Material parameter study

In this section the material parameters acquired from the nonlinear data-fitting is com-
pared with stiffer and softer material parameters for the leaflets. This is done in order to
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Figure 13: Displacement of point A obtained from analyses using stiffer and softer
material parameters compared with material parameters from nonlinear data-fitting.

observe if there is any difference in global response, when changing these parameters. In
figure 13a, the stress-stretch curves are plotted for an equibiaxial tensile test. Further-
more, in figure 13b the magnitude of point A is plotted, comparing the response from
table 1 with the stiffer and softer material parameters.

From figure 13b, the response is as expected. For the stiffer material there are small
oscillations during the analysis, and the displacement of point A at peak systole is 0.60mm
less for the stiffer material, compared with the material parameters obtained in table 1.
Moreover, the softer material clearly has higher oscillations throughout the analysis and
displaces 0.75mm higher than the material parameters from table 1 at peak systole. Lastly,
it is observed that during the first part of the analysis the response is similar for every
analysis. Even for the large difference in stiffness in figure 13a, the difference in leaflet
displacement in figure 13b is moderate.

3.6 Stresses

The leaflets von Mises stresses are plotted at peak systole (18.13 kPa) in figure 14.
High stress regions are observed near the location where the strut chordae is inserted into
the anterior leaflet and near the fibrous trigones. At the marginal chordae insertion points
there are also observed large von Mises stresses. However, high stresses are also observed
due to the implementation of material orientations, and is further discussed in the section
4.6.
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(a) Atrial view (b) Ventricular side of the anterior leaflet

Figure 14: von Mises stress of the mitral valve leaflets (MPa).

The maximum principal stress direction is plotted on the deformed leaflets in figure
15. As can be seen from figure 15a, the maximum principal stress is aligned with the
modelled material orientation for the anterior leaflet. The maximum principal stress for
the entire posterior leaflet is observed in figure 15b to be perpendicular to the annulus.
As a result, in the posterior leaflet, the maximum principal stress only aligns with the
assigned material orientation near the commissures.

(a) Anterior leaflet (b) Posterior leaflet - atrial view

Figure 15: Maximum principal stress plotted on deformed mitral valve leaflets.
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Figure 14: von Mises stress of the mitral valve leaflets (MPa).
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4 Discussion

4.1 Global Response

The global response presented in section 3.3 shows that there is regurgitation at the
posteromedial region (A3-P3) at late-systole. Moreover, the posteromedial side of the P2
segment is observed to prolapse at late-systole causing the posterior leaflet to override the
anterior leaflet. These results are highly consistent with what we know about the patient’s
lesions, where regurgitation was detected in the posteromedial region at late systole.

In the anterolateral region (A1-P1), lack of closure in the FE model is observed through-
out the whole analysis. The severity of regurgitation in this region is high before and after
peak systole for the model. However, comparing the anterolateral regurgitation observed
in the patient, the obtained results did not fully coincide with the patient. The patient
experienced regurgitation due to prolapse of the P1 segment from mid systole, which is
not entirely what the FE model predicts. The echocardiographic modelling might be
the reason for the inaccurate observation of regurgitation at this region, and is further
discussed in section 4.2.

As can be seen from figure 9a, the annular area starts to increase prior to peak systole
(t=0.17s). The annulus continues to expand until the pressure has reached approximately
118mmHg (0.38s). Furthermore, the annular flattening observed during systole (figure 9b)
is similar to what is written about Barlow diseased mitral valves [17, 3]. Comparing these
findings with the global response (figure 11), it is evident that the annular changes must
affect the coaptation of the leaflets. The late systolic regurgitation is observed when the
annular area is at its highest. Thus, the dilation of the annulus may be a reason for
regurgitation during this time interval.

4.2 Echocardiographic modelling

The patient-specific mitral valve geometry was modelled using echocardiographic data
as described in section 2.4. The anterior leaflet and the P2 segment of the posterior leaflet
were clearly visible on the echocardiographic images. However, locating the commissures
was a more demanding process, where several echocardiographic views were needed. At
the posteromedial commissure, the leaflets could be identified from the echocardiographic
recording. Hence, the geometry obtained was satisfactory. For the anterolateral commis-
sure the identification of the leaflet structure was cumbersome, leading to considerable
uncertainty in the geometry at this region. As a consequence, the interpolated free edge
at the anterolateral commissure was inaccurate.

As discussed in section 4.1 regurgitation is observed in the anterolateral region during
systole. However, the patient did not experience similar severity of regurgitation near
the anterolateral commissure. Thus, the observed regurgitation from the FE analysis is
probably a consequence of the inaccurate modelling at the anterolateral region.
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4.3 Comparison with 3D echocardiographic data

In figure 10, the correlation between the echocardiographic measurements and the mi-
tral valve model response is observed to be very good. The bulging towards the left atrium
is similar to that of the echocardiographic measurements. However, the FE response for
both human and ovine chordae material parameters are shown to coapt further toward
the left ventricle at peak systole compared to echocardiography. Furthermore, it is ob-
served that both FE models bulge more than the echocardiographic measurements near
the annulus, especially for the ovine material parameters.

Performing a similar comparison near the commissures at peak systole is difficult, as
there is observed a lot of tissue on the echocardiographic images in this region. Collocating
the echocardiographic measurements and the FE model at the commissures, show that
the FE model bulges too little towards the atrium. The excessive tissue at this region is
probably a combination of Barlow disease and calcifications near the annulus, making the
comparison between the in vivo images and the FE model difficult in this region.

4.4 Material parameters

In order to use the Holzapfel-Gasser-Ogden material model, introduced in section 2.3,
to model the response of the mitral valve, it is required that the material parameters im-
plemented in the model show a similar response compared to experimental data presented
by [10]. Obtaining a good fit between the experimental data and the material model pro-
vided by Abaqus, can make it possible to omit the usage of the subroutine VUMAT,
where VUMAT is an Abaqus Explicit subroutine used for material models not directly
available in Abaqus. The study performed in section 2.3, gave a sound fit comparing the
experimental data from [10], with the Holzapfel-Gasser-Ogden strain-energy function.

Human mitral valve tissue has been shown to be stiffer than porcine mitral valve
tissue [19]. Hence, it can be argued that using porcine material properties might not give
a correct response when modelling a human mitral valve. However, in the study [12],
myxomatous mitral valve leaflets were identified to be twice as extensible and less stiff
compared to healthy human leaflets. As a consequence, porcine material parameters are
assumed to be a better assumption than using the parameters from a healthy human, due
to the difference in stiffness.

The chordae tendineae were modelled with both human and ovine material parame-
ters. Comparing the global responses of these two cases, the coaptation and the location
of regurgitation were observed to be nearly identical. From figure 12, the total displace-
ments of points A and B are approximately 1mm higher for the ovine chordae parameters.
Furthermore, the difference in displacement is mainly observed when the ventricular sur-
face is subjected to peak pressures leading to high chordae strains. As a consequence the
human chordae is observed to displace less at high strains compared to the ovine chordae
due to the nature of the material. In the study by [12], myxomatous chordae tendineae
were found to be 50 % less stiff compared to human chordae. Studying the comparison
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4.3 Comparison with 3D echocardiographic data

In figure 10, the correlation between the echocardiographic measurements and the mi-
tral valve model response is observed to be very good. The bulging towards the left atrium
is similar to that of the echocardiographic measurements. However, the FE response for
both human and ovine chordae material parameters are shown to coapt further toward
the left ventricle at peak systole compared to echocardiography. Furthermore, it is ob-
served that both FE models bulge more than the echocardiographic measurements near
the annulus, especially for the ovine material parameters.

Performing a similar comparison near the commissures at peak systole is difficult, as
there is observed a lot of tissue on the echocardiographic images in this region. Collocating
the echocardiographic measurements and the FE model at the commissures, show that
the FE model bulges too little towards the atrium. The excessive tissue at this region is
probably a combination of Barlow disease and calcifications near the annulus, making the
comparison between the in vivo images and the FE model difficult in this region.

4.4 Material parameters

In order to use the Holzapfel-Gasser-Ogden material model, introduced in section 2.3,
to model the response of the mitral valve, it is required that the material parameters im-
plemented in the model show a similar response compared to experimental data presented
by [10]. Obtaining a good fit between the experimental data and the material model pro-
vided by Abaqus, can make it possible to omit the usage of the subroutine VUMAT,
where VUMAT is an Abaqus Explicit subroutine used for material models not directly
available in Abaqus. The study performed in section 2.3, gave a sound fit comparing the
experimental data from [10], with the Holzapfel-Gasser-Ogden strain-energy function.

Human mitral valve tissue has been shown to be stiffer than porcine mitral valve
tissue [19]. Hence, it can be argued that using porcine material properties might not give
a correct response when modelling a human mitral valve. However, in the study [12],
myxomatous mitral valve leaflets were identified to be twice as extensible and less stiff
compared to healthy human leaflets. As a consequence, porcine material parameters are
assumed to be a better assumption than using the parameters from a healthy human, due
to the difference in stiffness.

The chordae tendineae were modelled with both human and ovine material parame-
ters. Comparing the global responses of these two cases, the coaptation and the location
of regurgitation were observed to be nearly identical. From figure 12, the total displace-
ments of points A and B are approximately 1mm higher for the ovine chordae parameters.
Furthermore, the difference in displacement is mainly observed when the ventricular sur-
face is subjected to peak pressures leading to high chordae strains. As a consequence the
human chordae is observed to displace less at high strains compared to the ovine chordae
due to the nature of the material. In the study by [12], myxomatous chordae tendineae
were found to be 50 % less stiff compared to human chordae. Studying the comparison
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with 3D echocardiographic measurements, the ovine chordae parameters are observed to
correlate less to the echocardiography than the model with human chordae parameters.
Furthermore, there is observed little difference in coaptation between the models, but the
ovine model prolapses more as both the leaflets displace towards the atrium.

In section 3.5, it was shown that the difference in displacements between the stiffer,
softer and material parameters from table 1 was low. Hence, it appears that annulus and
papillary muscle movements have more influence on the global response than the applied
materials.

4.5 Chordae modelling

The marginal chordae tendineae are modelled so that they originate from the papillary
muscles and insert into the free edge of the mitral valve leaflets, while the strut chordae
insert into the anterior leaflet rough zone. The chordae insertion sites at the free edge are
prone to high stresses, and the splitting of the chordae helps redistributing the loads along
the elements, preventing the elements from excessive distortion. The chordae modelling
is not just important for anatomical correctness but also for the finite element analysis as
a whole.

From echocardiographic images it is not possible to get a full representation of the
chordae insertion site, nor the amount of chordae. As a consequence, for a patient-specific
analysis, the amount of chordae and insertion sites has to be assumed from literature [13].
Furthermore, it is not possible to detect if the chordae are stretched or not in diastole.
A characteristic feature for Barlow patients is the elongated chordae at systole [1], which
might leave the chordae slack at diastole. It is therefore assumed that there is no pre-
tension in the chordae for a Barlow patient. Hence, the chordae are modelled as straight
lines without any form of pre-tension. The model managed to follow the echocardiographic
measurements without any pre-tensions, which was not the case in the study performed
by [20]. However, in the study by [20] the studied valve was a patient with functional
mitral regurgitation (FMR), which is not a degenerative disease. It can be argued that
some of the chordae should be modelled slack. However, this needs to be studied further.

4.6 Material orientation

The material orientation applied in the FE model on the mitral valve leaflets is for a
healthy porcine specimen. However, as stated in literature, the collagen fibres in Barlow
leaflets are observed to be disoriented and disrupted [5]. In [21], this disruption is found
to be due to myxomatous degeneration. Hence, the fibre direction used in this paper may
not be entirely accurate. However, to the authors’ knowledge little is known about the
collagen orientation for Barlow mitral leaflets. The gradual rotation of the collagen fibres
towards the commissures in the anterior leaflet is not fully accounted for, where instead
each partitioned region is given one specific direction as described in section 2.6. This
modelling technique leads to some abrupt changes where the modelled orientation changes
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(figure 7b). This leads to the stress concentrations observed on the anterior leaflet, just
above the chordae insertions (figure 14).

4.7 Stresses

The von Mises stresses were found to be highest where the abrupt changes in material
orientation were present. However, removing the elements with high stresses due to this
feature, more reasonable stress values were observed. Regions of high stresses near the
chordae insertion points, especially where the strut chordae is inserted, and the fibrous
trigones are observed. This is consistent with previous studies [22, 23]. However, com-
paring stress values with literature, is not so beneficial, as an unusual thickness of 3mm
is used in this study.

5 Conclusion

In this paper, a finite element model of a mitral valve with Barlow disease has been
employed with annular and papillary muscle motions. Lack of closure were observed in
both the anterolateral and posteromedial commissure for the model. This agrees, to some
extent with the echocardiographic findings of the patient. The finite element model pre-
dicted regurgitation in the posteromedial region well, where late systolic regurgitation
and prolapse were observed for both the patient and model. In the anterolateral re-
gion the model predicted regurgitation throughout systole, while echocardiography only
showed regurgitation at mid-systole. An explanation for this discrepancy might be that
the commissure geometry is difficult to define from echocardiography, especially for the
anterolateral commissure. Refinement of the method used to localize these regions in vivo
are necessary to create accurate models. In order to refine the geometrical modelling, an
autostereoscopic 3D screen could be used to locate intricate points near the commissures
[24]. Lastly, severe annular dilation seems to be one major cause of mitral regurgitation.
In this study, the most severe lack of closure from mid- to late-systole appeared when the
annulus dilated the most.

Creating accurate patient-specific models which can predict regurgitation correctly and
reliably will in the future open up several exciting possibilities: for example, performing
surgery in silico in order to optimize and create a patient-specific surgical procedure.
Furthermore, it may facilitate the development of repair devices as they can be tested
and refined numerically.
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Abstract: Aspects  of  flow induced vibrations  in  piping systems due to  internal  flow are
discussed, addressing Engineering Aspects, Computational Methods, and Vibration Problem
Identification.

1 INTRODUCTION

Piping systems are used for conveying fluids (i.e. liquids and gases), the dominating cross
section is circular. From an engineering point of view, piping systems seem, at a first glance,
to be very simple systems: You determine the overall geometry (‘from where to where’), the
internal cross sections based on the amount of fluid to be conveyed per unit of time, and the
structural properties (wall thicknesses, supports …) based on allowable stresses. However, as
a pipe failure may have consequences ranging from insignificant to catastrophic, it might be
required to study all aspects of the behavior of a piping system, keeping mind that the pipe
behavior is influenced by external sources and vise versa; this physical behavior is typically
of dynamic nature. Hereinafter, the focus is on vibrations with respect to fatigue, noise, and
influence on attached structures. In the literature, there are relative few papers addressing all
three  aspects;  [1].  In  this  document,  numerical  methods  for  vibration  analysis  in  piping
engineering are discussed and a numerical concept based on the Boundary Element Method
(“BEM”) is presented.

2 ENGINEERING ASPECTS OF PIPING SYSTEMS

The problem of vibrations in piping systems conveying fluid can realistically be assessed
by numerical  methods only.  A frequently  applied  concept  is  to  iterate  between structural
analysis and fluid flow analysis, this is basically transferring the deflected geometry shape to
the fluid flow software, then determining the fluid pressure distribution onto the structure and
transferring  it  to  the  structural  analysis  software.  After  certain  convergence-criteria  are
fulfilled, the simulation is halted and the solution is digested. 

In the following, pipe vibrations are emphasized. A piping system must be designed such
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behavior is influenced by external sources and vise versa; this physical behavior is typically
of dynamic nature. Hereinafter, the focus is on vibrations with respect to fatigue, noise, and
influence on attached structures. In the literature, there are relative few papers addressing all
three  aspects;  [1].  In  this  document,  numerical  methods  for  vibration  analysis  in  piping
engineering are discussed and a numerical concept based on the Boundary Element Method
(“BEM”) is presented.

2 ENGINEERING ASPECTS OF PIPING SYSTEMS

The problem of vibrations in piping systems conveying fluid can realistically be assessed
by numerical  methods only.  A frequently  applied  concept  is  to  iterate  between structural
analysis and fluid flow analysis, this is basically transferring the deflected geometry shape to
the fluid flow software, then determining the fluid pressure distribution onto the structure and
transferring  it  to  the  structural  analysis  software.  After  certain  convergence-criteria  are
fulfilled, the simulation is halted and the solution is digested. 

In the following, pipe vibrations are emphasized. A piping system must be designed such
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that  no  critical  vibrations  with  respect  to  noise,  fatigue,  and negative  influence  on  other
structures occur. The implication is that you have to do a simulation for each frequency of
excitation you are capable of identifying. The discretization of the structure with supports and
attached masses is straight forward and not discussed here; the discussion is about vibrations
of pipes conveying fluids and what additional physical effects influences their behavior. 

    We are assuming the flow being one-phase, single medium, single phase, and continuous
with  or  without  disturbances  in  the  flow  field.  Hence  waterhammer  effects,  slugs,  and
cavitation are not considered, the purpose of the method presented is to determine whether
disturbances in the internal flow field or time varying forces acting onto the pipe will cause
insufficiently damped vibrations, i.e. vibrations of unacceptable amplitudes; one terms such
behavior ‘instable’. One difficulty is to quantify ‘unacceptable amplitude’, as it is problem
dependent. Some engineers are of the opinion that when the amplitude(s) stops growing, there
is no problem, but this may only holds true when fatigue and/or noise are no issue(s).

    A special  case is ‘the submerged pipe’ as found in coolers/heaters,  reactors,  and with
offshore installations. There are two additional effects to consider in this case: Hydrodynamic
added mass and fluctuations in the surrounding medium, e.g. as a result of vortex shedding.
Hydrodynamic added mass is pretty straightforward, fluctuations in the surrounding medium
not,  as  the  latter  may  require  separate  simulations  to  assess  disturbances  in  the  medium
external to the pipe and interaction between pipe and surroundings.

    The general procedure could be the following:

i. Model the pipe for structural analysis utilizing solid elements (at least 36 elements 
over the circumference, account for masses attached, support stiffnesses, …).

ii. Identify any disturbances in the pipe flow and any time dependent forces from 
attached structures (e.g. pumps, motors) that could trigger vibrations.

iii. Determine the characteristics of the fluid domain external to the pipe (if relevant) and 
decide if it must be accounted for.

iv. Perform a series of computations for various speeds of medium internal to the pipe 
and for all relevant structural modes and frequencies; if there is a flowing medium 
external to the pipe, that must be accounted  for as well.

    What is outlined above is a brief sketch of what an analysis procedure could look like,
result  interpretation  would  presumably  emphasize  displacements,  stresses  and  periods  of
events. The procedure above might be realistic in principle, but is not practical because of
exorbitant computing times and  the amount of data generated, which makes the interpretation
cumbersome. In short: Another computational method is required to help the engineer remove
a potentially serious problem.
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3 A COMPUTATIONAL CONCEPT BASED ON GENERALIZED COORDINATES 

    For the analysis of the vibration of structures, the normal modes method is since long an
accepted  method  for  addressing  their  vibrational  behavior.  To  understand  the  concept,
consider the one spring, one mass system with or without damping that we can study with
respect to steady and harmonic loads. Now, we ask us whether it is possible to represent the
dynamic properties of the structure by sets of uncoupled ‘one mass, one stiffness’ systems?
The answer is ‘yes’, we divide the structure in question in very many small chunks having
mass  and  stiffness  (called  Finite  Elements),  and  look  for  the  uncoupled spring  –  mass
systems.  Since we need to keep track of every chunk in a structured way, we introduce
matrices.   We  generate  a  Stiffness  Matrix  [K]  and  a  Mass  Matrix  [M]  representing  the
physical properties needed for (somehow) laying the foundation for our goal of describing the
vibrational characteristics of the structure by a bunch of disconnected spring-mass systems.
Now we want to apply Newton’s laws to our system:  We call the directions of movement
{xi}, and – enforcing equilibrium – require that spring forces must be in equilibrium with
mass times acceleration, and write in matrix notation

[K]*{xi}+[M]*{d2xi/dt2} = 0       (1)

then we substitute xi =  x0*sin(ωt), perform differentiation with respect to time ‘t’ two times, 
(dxi/dt = x0*ω*cos(ωt), d2xi/dt2 = -x0*ω2*sin(ωt)) and find

[K]*{x0}*sin(ωt)-ω2*[M]*{x0}*sin(ωt) = 0,    or    

([K]-ω2*[M])*{x0} = 0   (2)

For any value of ω there is a corresponding value of {x0} giving a qualitative description of
the shape of the structure vibrating; the system’s dynamics without considering damping may
now be described in terms of uncoupled spring-mass systems.

    Introducing Eigenvalues and the corresponding Eigenvectors as ‘Modal Coordinates’, we
can describe the displacements and derived quantities as functions of the exiting frequencies.

4 FLUID STRUCTURE INTERACTION UTILIZING MODAL COORDINATES 

    In the previous section, we have discussed ‘Modal Coordinates’ for the pipe as a structure
(with or without a fluid at rest). Our aim is to device a method that describes the vibrational
characteristics of a pipe conveying a fluid (liquid or gas) for the purpose of identifying any
instable modes. Since all fluids have mass and elastic properties, they qualify for a modal
analysis.  In  theory,  you could do that  by utilizing  a  model  by Finite  Elements,  which is
impractical (if not impossible).

    LINFLOW (‘LF’) by ANKER – ZEMER Engineering AB is based on boundary elements
(Boundary Element Method or BEM) and modal coordinates, the verified and surprisingly
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effective concept is outlined below (a complete description does not fit in a conference paper,
for  a  description  in  depth  see  [2]). For  those  who  are  technically  interested,  a  brief
presentation of the LF concepts is given below.  

LF was originally developed as a tool for aeroelastic analyses for the air-craft industry. The
concepts  behind  LF,  however,  differ  from  those  used  in  classical  aeronautical  tools  for
aeroelastic analysis, so its is fair to describe the theoretical background and assumptions in
some depth.

Firstly, derive the equations describing the inviscid fluid flow over a solid body. The frame
of reference used is a body fixed coordinate system. A flow field can be characterized by the
mass  conservation  or  continuity  equation  (eq.  (3)  and  three  Navier  Stokes  equations  for
momentum conservation (eq. (4)):
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dt
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
  (3)

(4)

where t denotes time,   the velocity vector, ρ the density, р the pressure, μ the viscosity, and
ƒe  external bulk forces. As there are five unknowns (vx,  vy,  vz,   and  p), a fifth equation is
needed to make the equation system complete. This will be the classical isentropic relation for
fluids  (p=constant,  where γ  denotes  the  constant  ratio  of  specific  mass).  Unfortunately,
solving eqs. (3) and (4) is very computer resource demanding. Approximations are needed if

realistic fluid-structure interaction problems are to be solved with a minimum of computer 
resources and a minimum of man-hours for validation and interpretation. 

  As a first step in deriving the inviscid flow equations, we assume that the flow locally is
irrotational (i.e.  ×∇  =0) and that the flow viscosity is zero (µ=0). These assumptions are
valid in flow domains with negligible boundary layer thickness and small shear layer regions
so the influence from such layers can be neglected, assumptions that are well motivated for
many  other  applications  as  well.  However,  LF  is  able  to  handle  such  limitations  with
additions to the governing set of equations, and the ability to address both inertial, viscous,
and  some  non-linear  effects  not  accounted  for  in  the  ‘classical’  but  still  approximate
Reynold’s equation. 

   We now introduce the velocity potential Ф ( =Ф) making it possible to reduce the five
flow equations  to  three  equations  for  the  three  unknowns  Ф,  ρ and  p.   The  momentum
equation (2) can then be written as (fe=0): 
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Applying some vector algebra on equation (5) and applying far field conditions, with 
steady flow and straight streamlines, makes it possible to derive the Kelvin’s (the unsteady 
version of Bernoulli’s) equation, which is used in the following when deriving the pressure 
equation used in LF:
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where U is the free-stream part of the velocity vector   , i.e. the flow with the ‘disturbing’
geometry of interest not present, and the subscript  indicates its far field (distant surrounding)
value. Equation (6) differs from that used in the classical Double Lattice Method’s (“DLM”)
approximation where the reference pressure (p) is set to zero and the velocity potential is
replaced with =Ф-U2t/2, leading to a modified Bernoulli’s equation for the DLM:
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Let  us,  for  a  moment,  go  back to  the  continuity  equation  (3)  and introduce the  velocity
potential  Ф and the definition of the speed of sound,  a (a2=dp/d). This yields, after some
tedious mathematics, the following general vector equation: 
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This is the so-called full potential equation. Introduce the Mach number defined as M=U/a,
and, assuming that the speed of sound, a, is constant and that the overall free-stream inflow
(U) is along the positive x-axis. An advantage is that  M can be assumed constant for the
entire flow field in the linear  small deflection region. This will enable the derivation of the
classical linear small disturbance velocity potential partial differential equation (“PDE”): 
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Interesting to note is that eq. (9) includes, as special cases, incompressible flow (d/dp=0  
2Ф=0) and the acoustic equation (harmonic Ф and small perturbations  2Ф+(/a)2Ф =0). 
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Applying some vector algebra on equation (5) and applying far field conditions, with 
steady flow and straight streamlines, makes it possible to derive the Kelvin’s (the unsteady 
version of Bernoulli’s) equation, which is used in the following when deriving the pressure 
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This is the so-called full potential equation. Introduce the Mach number defined as M=U/a,
and, assuming that the speed of sound, a, is constant and that the overall free-stream inflow
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Interesting to note is that eq. (9) includes, as special cases, incompressible flow (d/dp=0  
2Ф=0) and the acoustic equation (harmonic Ф and small perturbations  2Ф+(/a)2Ф =0). 
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Equation (9) is used as governing PDE for describing the fluid’s dynamic behavior in LF. In
the solution of the aeroelastic problem, the pressure is used as loads, and a linear expression
for pressure as a function of the velocity  potential,  Ф,  is needed.  This expression can be
derived  using  the  Kelvin’s  equation  (6)  and  the  isentropic  relationship  for  the  gas.  The
Kelvin’s equation may now be rewritten into a linear expression the for pressure as a function
of Ф:

          
p=p∞+ρ [ U∞

2

2
−(|v|

2

2
+ ∂Φ
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Equation (10) is the incompressible version of the pressure equation used in LF. By using eq.
(10), LF is not limited to applications and flow conditions that are based on thin structures
oscillating around the zero degree angle of attack condition. As a comparison, the DLM is
restricted to such conditions since the ν²/2-term is linearized about the free stream velocity
components
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when deriving the expression for pressure, leading to the following DLM-pressure equation:
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with  ˜  expressing  the  oscillatory  part  of  the  modified  velocity  potential.  In  the  DLM,  p

describes the actual far field pressure, provided that the first term is removed from eq. (11),
which is in agreement with the zero reference pressure assumption behind eq. (7). The reason
why the  U2/2-term can be eliminated in the DLM is that this method’s prime focus is on
pressure differences between upper and lower surfaces (lift forces on wings, etc) and not on
absolute pressures. 

    A key feature in LF is the representation of flow by harmonic oscillations around some
general  equilibrium  point.  This  technique  of  variable  separation  and  eigenmodes
superposition  is  well  proven  and  commonly  used  when  analytically  solving  complicated,
general PDEs. Normally, high accuracy solutions are obtained even with a very small number
of eigenmodes.  By assuming a harmonic velocity potential  Ф in the classical  linear small
disturbance velocity potential partial PDE (eq. (11)), one obtains:
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This is the PDE that is transformed into an integral formulation that is discretized utilizing
the Boundary Element Method (‘BEM’) in LF. The steady and unsteady pressures are then
calculated using the linearized pressure equation (10) derived above. 

    Problems involving interaction between structural and fluid dynamics can be described by
the  aeroelastic  equation  of  motion.  This  equation  is  normally  written  in  terms  of  modal
coordinates that are based on the known structural eigenmodes. The benefit of using modal
coordinates is that the number of degrees of freedom in the system is greatly reduced. In
aeroelastic applications, only a few of the lowest frequency eigenmodes may be of interest,
this also holds true when studying pipe vibrations. Another advantage with the LF concept is
that the structural properties are computed once (without accounting for the fluid), and not
over and over again in an iteration loop; required are eigenvalues and eigenmodes (and modal
load vector for simulations not discussed here). 

    This concept outlined above has been implemented in the LF software; it is utilized for
finding a modal representation of the “aeroelastic problem”. With respect to piping problems,
‘aeroelastic’ is a misnomer, as that matrix covers gases as well as liquids.  In any case, the
concept allows us to derive the following equation describing the general FSI problem in
modal coordinates:

    The aeroelastic equation of motion expressed in modal coordinates is recognized as the
structural dynamic equation with an additional  term that  includes the aeroelasticity  matrix
which describes the fluid - structure interaction; (14):

- ω2 [ M ] { q } + iω[ C ]{ q } + [ K ] { q } = [ A ] { q } + { F }                 (14)

with the left side representing the structure and the right side the fluid (gas or liquid), and
where [ M ] is the mass matrix, [ C ] the damping matrix, and [ K ] the stiffness matrix, [ A]
is the aeroelastic matrix, { F } is the field strength, and  { q } a displacement vector.

    In LF, the above equation is used to solve stability problems. The method for identifying
instabilities  is  to set the external  force to zero,  and check if  there are eigenmodes in the
system that are undamped or exponentially growing. Implemented in LINFLOW are the V-g
method and the p-k method for finding inflow velocities that make the system unstable. These
methods are iterative  since  the  aeroelasticity  matrix  is  velocity  and frequency dependent,
hence making the problem non-linear,convergence is usually obtained within two or three
iterations. The methods is the way iterations are performed. In the V-g method a fictitious
internal structural damping is introduced such that the stiffness and damping matrices are
written in the form ( 1 + ig ) [ K ] ≡ iω [ C ] + [ K ] . In the V-g method one assumes a value
for the critical velocity V, and solves for the value of the damping factor that makes the most
unstable mode critical. Instabilities are identified by required damping factors that are greater
than the available structural damping in the system. This solution gives a new value for the
critical velocity V, and the procedure is repeated until the assumed and obtained values for V
are consistent.
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p=p∞+ρ [ U∞

2

2
−(|v|

2

2
+ ∂Φ
∂ t ) ]

(10)

Equation (10) is the incompressible version of the pressure equation used in LF. By using eq.
(10), LF is not limited to applications and flow conditions that are based on thin structures
oscillating around the zero degree angle of attack condition. As a comparison, the DLM is
restricted to such conditions since the ν²/2-term is linearized about the free stream velocity
components

          

|v|2

2
=

1
2
U

2
+U

∂~φ
∂ x (11)

when deriving the expression for pressure, leading to the following DLM-pressure equation:

           
p− p∞=− ρ ( ∂

~φ
∂ t

+U
∂~φ
∂ x

)
(12)

with  ˜  expressing  the  oscillatory  part  of  the  modified  velocity  potential.  In  the  DLM,  p

describes the actual far field pressure, provided that the first term is removed from eq. (11),
which is in agreement with the zero reference pressure assumption behind eq. (7). The reason
why the  U2/2-term can be eliminated in the DLM is that this method’s prime focus is on
pressure differences between upper and lower surfaces (lift forces on wings, etc) and not on
absolute pressures. 

    A key feature in LF is the representation of flow by harmonic oscillations around some
general  equilibrium  point.  This  technique  of  variable  separation  and  eigenmodes
superposition  is  well  proven  and  commonly  used  when  analytically  solving  complicated,
general PDEs. Normally, high accuracy solutions are obtained even with a very small number
of eigenmodes.  By assuming a harmonic velocity potential  Ф in the classical  linear small
disturbance velocity potential partial PDE (eq. (11)), one obtains:

              
∇2Φ−M 2( i ω

U∞
+ ∂
∂ x )

2

Φ=0
(13)
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This is the PDE that is transformed into an integral formulation that is discretized utilizing
the Boundary Element Method (‘BEM’) in LF. The steady and unsteady pressures are then
calculated using the linearized pressure equation (10) derived above. 

    Problems involving interaction between structural and fluid dynamics can be described by
the  aeroelastic  equation  of  motion.  This  equation  is  normally  written  in  terms  of  modal
coordinates that are based on the known structural eigenmodes. The benefit of using modal
coordinates is that the number of degrees of freedom in the system is greatly reduced. In
aeroelastic applications, only a few of the lowest frequency eigenmodes may be of interest,
this also holds true when studying pipe vibrations. Another advantage with the LF concept is
that the structural properties are computed once (without accounting for the fluid), and not
over and over again in an iteration loop; required are eigenvalues and eigenmodes (and modal
load vector for simulations not discussed here). 

    This concept outlined above has been implemented in the LF software; it is utilized for
finding a modal representation of the “aeroelastic problem”. With respect to piping problems,
‘aeroelastic’ is a misnomer, as that matrix covers gases as well as liquids.  In any case, the
concept allows us to derive the following equation describing the general FSI problem in
modal coordinates:

    The aeroelastic equation of motion expressed in modal coordinates is recognized as the
structural dynamic equation with an additional  term that  includes the aeroelasticity  matrix
which describes the fluid - structure interaction; (14):

- ω2 [ M ] { q } + iω[ C ]{ q } + [ K ] { q } = [ A ] { q } + { F }                 (14)

with the left side representing the structure and the right side the fluid (gas or liquid), and
where [ M ] is the mass matrix, [ C ] the damping matrix, and [ K ] the stiffness matrix, [ A]
is the aeroelastic matrix, { F } is the field strength, and  { q } a displacement vector.

    In LF, the above equation is used to solve stability problems. The method for identifying
instabilities  is  to set the external  force to zero,  and check if  there are eigenmodes in the
system that are undamped or exponentially growing. Implemented in LINFLOW are the V-g
method and the p-k method for finding inflow velocities that make the system unstable. These
methods are iterative  since  the  aeroelasticity  matrix  is  velocity  and frequency dependent,
hence making the problem non-linear,convergence is usually obtained within two or three
iterations. The methods is the way iterations are performed. In the V-g method a fictitious
internal structural damping is introduced such that the stiffness and damping matrices are
written in the form ( 1 + ig ) [ K ] ≡ iω [ C ] + [ K ] . In the V-g method one assumes a value
for the critical velocity V, and solves for the value of the damping factor that makes the most
unstable mode critical. Instabilities are identified by required damping factors that are greater
than the available structural damping in the system. This solution gives a new value for the
critical velocity V, and the procedure is repeated until the assumed and obtained values for V
are consistent.
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5 IDENTIFYING PIPING VIBRATION PROBLEMS 

    To better explaining the method for identifying piping vibration problems, we will expand
on  what  is  said  on  utilizing  eigenfrequencies  and  eigenmodes  in  engineering  above.
Eigenvalue analysis as such gives valuable info about the dynamics of a structure. Moreover,
it  can  be  utilized  as  the  foundation  for  linear  transient  dynamic  analysis  of  structures
(i.e.‘harmonic  response  by  the  normal  modes  method’).  One  of  the  big  advantages  of
eigenvalue analysis is that the results are concise and easy to interpret, another advantage is
that  phase  information  may  be  considered  with  input  as  well  as  with  output;  eigenvalue
analysis is well suited to optimize a structure with respect to vibrations.  Assuming a perfectly
straight and perfectly circular pipe geometry and corresponding supports, it is known that the
eigenforms  come  in  orthogonal  pairs  at  the  same  eigenfrequency;  this  will  describe  the
movement of the pipe in 3-D.  If there is damping in the system, the pairs of orthogonal
modes  will  no  longer  be  in  phase  and  the  pipe  will  perform a  rotating  movement.   All
engineering  materials  have internal  damping,  so  we have  to  account  for  damping  in  our
evaluation of the vibrational characteristics of the pipe.

    In pipe system engineering,  there are two basic items of interest regarding the piping
structure with respect to vibrations:  The eigenfrequencies of the pipe as such, and whether
the vibrational amplitudes due to force excitation by the flowing media internal and external
to the pipe can be expected to be within limits.  Further, the eigenfrequencies are essential for
determining the response to excitation by outside forces.  To assess the likelihood of growing
amplitudes,  we check whether  material  damping or other  damping effects  are sufficiently
strong to inhibit amplitudes grow out of bonds.

    The most pronounced physical effects in the context of harmonic vibrations or effects
triggering vibrations we do not consider here, are: Water hammer effects or slugs (may trigger
unwanted vibrations after the event), vortex shedding or cavitation internal and external to the
pipe (triggering effect; may be introduced as concentrated, pulsating forces if applicable), and
varying  fluid  mass  densities.   Further,   the  influence  of  a  free  surface  is  generally  not
considered.

    We can  safely  assume  that  pipe  material  and  medium  have  some internal  damping.
Damping means energy transfer to the material and to the medium. The energy loss due to
material  damping  is increasing  with  growing  amplitudes.  As  we  are  assuming  small
displacements and looking for growing amplitudes, the effects of growing amplitudes onto
system damping will not be discussed henceforth.

There are several factors that directly or indirectly influence the vibrational characteristics.
Some of the factors are depending on one or more of the other factors, this means that the
problem is most likely nonlinear.  Consider the following (extreme) example: A structure,
connected to the submerged pipe to be checked for vibrations, has a part that may vibrate due
to a farfield flow,  this may influence the external fluid flowfield hitting the pipe; this implies
that  a)  it  must  be  considered  whether  there  will  be  any  influence  from an  unconnected
structure on the flowfield reaching the pipe, b) how strong the influence superimposed on any
flowfield influences from attached structures will be, and c) multiple simulations involving all
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relevant combinations of items ‘a’ and ‘b’ should be performed.  In reality, this example is
most likely far fetched, but it shows the potentially complex physics that a pipe flow FSI
analysis should take into account.

    One factor  not  addressed above is  the  deviations  between real  and modeled  physics,
examples  hereto  would  be  perfectly  straight  and perfectly  circular  pipe  geometry  vs  real
geometry,  assuming  perfectly  symmetric  support  vs  real  support  characteristics,  assumed
material  properties, etc.  Neglecting such effects usually gives sufficiently accurate results
with structural analysis,  what effects  small  deviations will  give in case of piping FSI are
uncharted waters.

    The assessment of vibrational behavior of the vibrations of a straight pipe is easy once you
know the kind and frequencies of the excitation(s) and the eigenfrequencies of the pipe at rest.
In the case you do not have data specific to a particular case, you have basically three options
to remedy that, namely by performing a simulation with respect to fluctuations by utilizing a
Navier-Stokes  solver,  using  data  based  on  on  experience,  and/or  using  intelligent
assumptions.  When modeling the pipe structure, it is recommended using at least 36 (solid)
elements circumferentially, as the accuracy of the FSI simulation is strongly dependent on a
correct pipe stiffness representation.  The discretization of the system should also account for
the mass density of the fluid, the higher the mass density, the coarser the discretization.  It is
mandatory that the discretization is such that it accurately captures structural eigenfrequencies
near those exiting the system.  To model the fluid, the interior of the pipe is covered with
boundary  elements  matching  the  discretization  of  the  structure.   With  the  LF  concept,
computer time is not an issue for a system part, this having the effect that system changes can
easily be simulated in a short time.

    Finally: An often overlook fact is that the pipe eigenfrequencies are a function of the speed
of the medium. Some maintain that this effect can be neglected; we disagree with this as we
have seen changes of thirty percent and more with a changed medium speed. 

6 CONCLUDING

    The purpose of  this paper is drawing attention to a disregarded (and often contested) fact,
namely that the eigenfrequencies of pipes conveying a medium are depending on the speed of
the medium, and to briefly hint onto the theoretical basis for a software that can address that
phenomenon is given in [3]. References [4, 5, 6] point to the fact that such dependency really
exists. 

    An efficient numerical concept  based on The Boundary Element Method (‘BEM’) has
been  outlined,  experience  with  the  LINFLOW software  shows  that  it  yields  engineering
information with minimal computer resources; is remarkable in the sense that no error has
been found in the software after approximately 20 years of usage.
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5 IDENTIFYING PIPING VIBRATION PROBLEMS 

    To better explaining the method for identifying piping vibration problems, we will expand
on  what  is  said  on  utilizing  eigenfrequencies  and  eigenmodes  in  engineering  above.
Eigenvalue analysis as such gives valuable info about the dynamics of a structure. Moreover,
it  can  be  utilized  as  the  foundation  for  linear  transient  dynamic  analysis  of  structures
(i.e.‘harmonic  response  by  the  normal  modes  method’).  One  of  the  big  advantages  of
eigenvalue analysis is that the results are concise and easy to interpret, another advantage is
that  phase  information  may  be  considered  with  input  as  well  as  with  output;  eigenvalue
analysis is well suited to optimize a structure with respect to vibrations.  Assuming a perfectly
straight and perfectly circular pipe geometry and corresponding supports, it is known that the
eigenforms  come  in  orthogonal  pairs  at  the  same  eigenfrequency;  this  will  describe  the
movement of the pipe in 3-D.  If there is damping in the system, the pairs of orthogonal
modes  will  no  longer  be  in  phase  and  the  pipe  will  perform a  rotating  movement.   All
engineering  materials  have internal  damping,  so  we have  to  account  for  damping  in  our
evaluation of the vibrational characteristics of the pipe.

    In pipe system engineering,  there are two basic items of interest regarding the piping
structure with respect to vibrations:  The eigenfrequencies of the pipe as such, and whether
the vibrational amplitudes due to force excitation by the flowing media internal and external
to the pipe can be expected to be within limits.  Further, the eigenfrequencies are essential for
determining the response to excitation by outside forces.  To assess the likelihood of growing
amplitudes,  we check whether  material  damping or other  damping effects  are sufficiently
strong to inhibit amplitudes grow out of bonds.

    The most pronounced physical effects in the context of harmonic vibrations or effects
triggering vibrations we do not consider here, are: Water hammer effects or slugs (may trigger
unwanted vibrations after the event), vortex shedding or cavitation internal and external to the
pipe (triggering effect; may be introduced as concentrated, pulsating forces if applicable), and
varying  fluid  mass  densities.   Further,   the  influence  of  a  free  surface  is  generally  not
considered.

    We can  safely  assume  that  pipe  material  and  medium  have  some internal  damping.
Damping means energy transfer to the material and to the medium. The energy loss due to
material  damping  is increasing  with  growing  amplitudes.  As  we  are  assuming  small
displacements and looking for growing amplitudes, the effects of growing amplitudes onto
system damping will not be discussed henceforth.

There are several factors that directly or indirectly influence the vibrational characteristics.
Some of the factors are depending on one or more of the other factors, this means that the
problem is most likely nonlinear.  Consider the following (extreme) example: A structure,
connected to the submerged pipe to be checked for vibrations, has a part that may vibrate due
to a farfield flow,  this may influence the external fluid flowfield hitting the pipe; this implies
that  a)  it  must  be  considered  whether  there  will  be  any  influence  from an  unconnected
structure on the flowfield reaching the pipe, b) how strong the influence superimposed on any
flowfield influences from attached structures will be, and c) multiple simulations involving all
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relevant combinations of items ‘a’ and ‘b’ should be performed.  In reality, this example is
most likely far fetched, but it shows the potentially complex physics that a pipe flow FSI
analysis should take into account.

    One factor  not  addressed above is  the  deviations  between real  and modeled  physics,
examples  hereto  would  be  perfectly  straight  and perfectly  circular  pipe  geometry  vs  real
geometry,  assuming  perfectly  symmetric  support  vs  real  support  characteristics,  assumed
material  properties, etc.  Neglecting such effects usually gives sufficiently accurate results
with structural analysis,  what effects  small  deviations will  give in case of piping FSI are
uncharted waters.

    The assessment of vibrational behavior of the vibrations of a straight pipe is easy once you
know the kind and frequencies of the excitation(s) and the eigenfrequencies of the pipe at rest.
In the case you do not have data specific to a particular case, you have basically three options
to remedy that, namely by performing a simulation with respect to fluctuations by utilizing a
Navier-Stokes  solver,  using  data  based  on  on  experience,  and/or  using  intelligent
assumptions.  When modeling the pipe structure, it is recommended using at least 36 (solid)
elements circumferentially, as the accuracy of the FSI simulation is strongly dependent on a
correct pipe stiffness representation.  The discretization of the system should also account for
the mass density of the fluid, the higher the mass density, the coarser the discretization.  It is
mandatory that the discretization is such that it accurately captures structural eigenfrequencies
near those exiting the system.  To model the fluid, the interior of the pipe is covered with
boundary  elements  matching  the  discretization  of  the  structure.   With  the  LF  concept,
computer time is not an issue for a system part, this having the effect that system changes can
easily be simulated in a short time.

    Finally: An often overlook fact is that the pipe eigenfrequencies are a function of the speed
of the medium. Some maintain that this effect can be neglected; we disagree with this as we
have seen changes of thirty percent and more with a changed medium speed. 

6 CONCLUDING

    The purpose of  this paper is drawing attention to a disregarded (and often contested) fact,
namely that the eigenfrequencies of pipes conveying a medium are depending on the speed of
the medium, and to briefly hint onto the theoretical basis for a software that can address that
phenomenon is given in [3]. References [4, 5, 6] point to the fact that such dependency really
exists. 

    An efficient numerical concept  based on The Boundary Element Method (‘BEM’) has
been  outlined,  experience  with  the  LINFLOW software  shows  that  it  yields  engineering
information with minimal computer resources; is remarkable in the sense that no error has
been found in the software after approximately 20 years of usage.
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Abstract. By directly solving the three-dimensional unsteady Navier-Stokes equations,
the wake flow behind a step cylinder with diameter ratio D/d = 2 at Reynolds number
ReD = 150 was investigated. The dominating frequency components and vortex inter-
actions in the wake were studied in detail. Same as in previous studies, three spanwise
vortex cells (the S-cell vortex behind the small cylinder, the L-cell vortex behind the large
cylinder and the N-cell vortex between them) with different shedding frequencies were pre-
cisely captured in the present paper. Complex vortex interactions occur between these
vortex cells. We focused on the vortex dislocations between the N- and L-cell vortices.
A long periodicity of the vortex dislocation is reported and analyzed. Several long time
numerical simulations (more than 3000 D/U time units) were conducted to illustrate and
analyze the wake flow. Benefit from it, a long period characteristic of the vortex dislo-
cation was reported and analyzed. Additionally, the challenges of the grid resolution for
investigating the long period phenomenon were discussed.

1 INTRODUCTION

In recent years, the wake flow behind a step cylinder has attracted more and more
attention from researchers. Due to the abrupt change in diameter, the vortical structures
in the near wake behind the step cylinder are complex even at a low Reynolds number,
e.g. ReD = 150, as shown in figure 7.

When considering flow past a step cylinder, there are two important parameters, i.e.
the ratio between the large cylinder and the small cylinder (diameter ratio D/d) and the
Reynolds number (ReD). By doing laboratory experiments, Lewis & Gharib [1] observed
and reported two vortex interaction modes, direct and indirect modes. When the diam-
eter ratio is smaller than 1.25, only two dominating vortex shedding frequencies can be
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captured in the wake of the step cylinder, corresponding to the vortices shed from the
large cylinder and the small cylinder, respectively. These two vortex cells directly connect
to each other, and the vortex interactions between them occur in a narrow region behind
the step. This mode is called the direct mode. The indirect mode happens when the
diameter ratio (D/d) becomes larger than 1.55. Besides the two dominating vortex shed-
ding frequencies of the small and large cylinder, a distinct frequency can be detected in
the region downstream of the step. Lewis & Gharib [1] defined the region containing this
distinct frequency as the modulation zone (the N-cell area in the present paper, see figure
1). Based on the shedding frequencies and locations of different vortex cells, Dunn &
Tavoularis [2] defined three vortex cells behind the step cylinder with D/d = 2: (1) S-cell
vortex shedding from the small cylinder with the highest vortex shedding frequency; (2)
L-cell vortex shedding from the large cylinder; (3) N-cell vortex shedding near the step
position between the S- and L-cell vortices, with the lowest vortex shedding frequency.
The shedding areas of these three vortex cells are illustrated in figure 1. The terminologies
S-cell, N-cell and L-cell were later used in many studies [3, 4, 5, 6], and are also used in
the present study.

Figure 1: The shedding areas of the three vortex cells, i.e. S-, N- and L-cell area.

Due to the different shedding frequencies, neighbouring vortex cells move either in-
phase or out-of-phase with each other. When they move out-of-phase, the contorted
’tangle’ of vortices appears at the boundary between them, which looks like the disloca-
tions that appear in solid materials. Williamson [8] defined this kind of vortex interaction
as the vortex dislocation. The similar physical phenomena were also observed in the
wake behind the step cylinder. In 1992, Lewis & Gharib [1] observed that an inclined
interface between the N-cell and L-cell area appears at the beat frequency (fL − fN).
They suspected that this inclined interface might be caused by the variation of the actual
spanwise length of the N-cell vortices. In 2010, Morton & Yarusevych [3] proved this
suspicion. By doing numerical simulations, they clearly presented a cyclic variation of the
N-cell vortices. In their studies, as N- and L-cell vortices move out-of-phase, in parallel
with the appearances of the vortex dislocation, the spanwise length of the N-cell vortices
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and the position of the N-L cell interface change periodically with the beat frequency
(fL-fN). Morton & Yarusevych [3] defined these cyclic variations as the N-cell cycle. In
2017, Tian et al. [6] further investigated the vortex dislocation between N- and L-cell
vortices in detail. They identified two new loop structures: the NL-loop (the fake loop)
structure formed between a N-cell and a L-cell vortex, and the NN-loop (the real loop)
structure formed between two adjacent N-cell vortices. Based on careful observations of
the formation processes of these loop structures, an antisymmetric vortex interaction was
also reported between two adjacent N-cell cycles.

In 2015, McClure et al. [9] were the first reported the long period characteristic of
the vortex dislocation by investigating flow past dual step cylinders (1 < D/d < 4) at
ReD = 150. They found that there is a continuous variation in the vortex dislocations, i.e.
the neighboring vortex dislocations are not exactly the same. They also defined the time
period between two identical vortex dislocations as the fundamental dislocation cycle.

Compare to the interesting observations in this wake, what was much less focus on
in the literature is the computational challenges in conducting simulations of the step
cylinder wakes. Many complex and small vortical structures play important roles in the
vortex interactions in this wake. These vortices are far more difficult to capture compared
to the primary vortices. In addition, insufficient grid resolution may have little influence
on the primary vortices, but will have strong effects on the vortex dislocations. When we
discuss the long period phenomena, this becomes even more critical.

In the present paper, we investigate and report some interesting long period phenom-
ena, and a subsequent computational challenge. In order to achieve this, the flow past
a step cylinder (D/d = 2) at ReD = 150 is studied by means of solving the full three-
dimensional unsteady Navier-Stokes equations. The isosurface of λ2 and the time trace
of velocity are plotted and observed for a relatively long time period (more than 2000
D/U). Last but not least, the challenges of investigating the long periodic phenomenon
are discussed.

2 COMPUTATIONAL METHOD AND FLOW CONFIGURATION

2.1 Computational method

For all simulations in the present study, the full three-dimensional incompressible
Navier-Stokes equations were directly solved by the code MGLET [10, 11]. In this second-
order finite-volume solver, the governing equations are in integral form:

∫

A

u · n dA = 0 (1)

∂

∂t

∫∫∫

Ω

ui dΩ +

∮

A

ui u·n dA = −1

ρ

∮

A

p ii · n dA+ ν

∮

A

grad ui · n dA (2)

where A and Ω are the control surface and the control volume, respectively. n is the
unit vector on dA pointing out of Ω, and ii is the Cartesian unit vector in xi direction.
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All simulations are done on a staggered Cartesian mesh. After discretizing equation (2),
we get

∂u

∂t
= D(u) + C(u) +G(p) = f(u, p) (3)

in which D(u) represents the discretized diffusive term, C(u) represents the discretized
convective term, and G(p) represents the discretized pressure term. The midpoint rule is
used to approximate the surface integral, leading to second-order accuracy in space. The
diffusive term is approximated by a central-difference formulation, which preserves the
second-order accuracy. The time integration of equation (3) is conducted by a third-order
explicit low-storage Runge-Kutta scheme [12] (details can be found in [13]). The pressure
term is corrected by solving a Poisson equation to fulfill a divergence-free velocity field:

div[(G(δp))]∆t = div(u∗) (4)

where δp is the pressure correction, u∗ is an intermediate velocity field calculated by
omitting the pressure term in equation (3) and ∆t is the constant time step that ensures
a CFL number smaller than 0.7. At every marching time step, this discretized Poisson
equation is represented by a linear equation system, which is solved by Stone’s Strongly
Implicit Procedure (SIP) [14].

The solid boundaries of the step cylinder is handled by an immersed boundary method
(IBM). In MGLET, we use an unstructured triangular mesh to represent the surface of
the geometry, and directly transfer information to IBM to block grid cells bounded by
this surface. Then the grid cells at the fluid-solid interface will be set as internal cells by
interpolating the flow variables from the surrounding cells. A more detailed description
of the IBM used in MGLET can be found in [15].

2.2 Flow configuration

The geometry of the step cylinder investigated in the present paper is shown in figure 2
(a), in which D is the diameter of the large circular cylinder, and d is the diameter of the
small cylinder. l and L are the length of the small and large cylinder, respectively. The
origin locates at the center of the interface between the small and large cylinder. In figure
2 (b), the coordinate system and the computational domain are shown, where x−, y− and
z−directions correspond to the streamwise, crossflow and spanwise direction, respectively.
The computational domain is a rectangular box spanning 20D in the crossflow direction,
30D in the streamwise direction and 45D in the spanwise direction. The total length of
the step cylinder equals 45D. These parameters are larger than that used by Morton
and Yarusevych [3] for modeling a step cylinder with the same D/d and ReD. Boundary
conditions applied in the present study are as follow:

- The inlet boundary: uniform velocity profile u=U , v=0, w=0;
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- The outlet boundary: Neumann boundary conditions for velocity components (∂u/∂x =
∂v/∂x = ∂w/∂x = 0) and constant zero pressure condition;

- The other four planes of the computational domain: free-slip boundary conditions.
For the two vertical planes: v = 0, ∂u/∂y = ∂w/∂y = 0, For the two horizontal
planes: w = 0, ∂u/∂z = ∂v/∂z = 0;

- The step cylinder surfaces: no-slip and impermeable wall condition;

Figure 2: (a) The step cylinder geometry investigated in the present study; (b) Computational domain
size, origin and coordinate system illustrated from different viewpoints. Diameter of the large cylinder, D,
is the length unit. The origin locates at the center of the interface between the small and large cylinder.

3 Grid study

3.1 Grid overview

Table 1: Grid information of all cases. The Reynolds number is 150 for all cases (ReD = UD/ν = 150).
Grid levels are illustrated in figure 3.

Case
Min grid
cell size

Number of
grid levels

Number of grid cells
in one grid box

Time step
∆t

Total number of
grid cells (million)

1 0.025 5 30× 30× 30 0.0080 30.2
2 0.020 5 36× 36× 36 0.0067 48.8
3 0.015 6 24× 24× 24 0.0050 81.0
4 0.012 6 30× 30× 30 0.0040 173.8
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- The outlet boundary: Neumann boundary conditions for velocity components (∂u/∂x =
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3 Grid study

3.1 Grid overview

Table 1: Grid information of all cases. The Reynolds number is 150 for all cases (ReD = UD/ν = 150).
Grid levels are illustrated in figure 3.
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Number of
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Number of grid cells
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Time step
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Detailed grid information of all cases simulated is summarized in table 1. The Reynolds
number is calculated based on the uniform free-stream velocity (U) and the diameter of
the large cylinder (D), i.e. ReD = UD/ν = 150 (ν is the kinematic viscosity of the fluid).
The computational domain is divided into many cubic Cartesian grid boxes. In each grid
box, N ×N ×N cubic Cartesian grid cells are uniformly distributed. In the areas where
complex flow phenomena take place, such as in the region around the ’step’, the area where
the vortex dislocation happens, etc., the grid is refined by equally splitting grid boxes (e.g.
the level-1 box) into eight smaller cubic grid boxes (i.e. the level-2 box). Hence, the grid
resolution on level-2 is two times better than that on level-1. This refinement process goes
on automatically until the finest grid level (varies with cases shown in table 1) is reached.
In figure 3, a schematic illustration of the grid for Case2 is shown.

3.2 Grid convergence study

Motivated by ensuring that the grid resolution is good enough to resolve all impor-
tant fluid phenomena, especially the complicated flow around the step, four grids were
generated for thegrid study, as shown in table 1.

First, we did a rough check by comparing vortex shedding frequencies of the three
vortex cells in all cases. In table 2, by conducting Fast Fourier Transform of the time-series
of the streamwise velocity u along a sampling line at (x/D, y/D)=(0.6, 0.2), the Strouhal
number (St) of the three dominating vortex cells (S-cell StS = fSD/U , N-cell StN =
fND/U and L-cell StL = fLD/U) in the wake of the step cylinder are calculated and
presented. One can see that the differences in St of the same vortex cell are small among
all cases. The largest difference is (StS of Case2-StS of Case3)/(StS of Case3)=1.7%,
which is considerably small. Moreover, the difference between Case3 and Case4 (the
finest two cases) is smaller than 0.7%.

Table 2: The Strouhal number (St) of three dominating vortex cells (S-cell StS = fSD/U , N-cell
StN = fND/U and L-cell StL = fLD/U) for all cases investigated. The results of one previous numerical
study [3] and two previous laboratory experiments [16, 17] are also shown. [Note: in our case, StS is
calculated based on the diameter of the large cylinder, a factor 2 is used when obtain data from [16, 17].]

Case StS StN StL
1 0.2943 0.1532 0.1769
2 0.2950 0.1531 0.1771
3 0.2895 0.1545 0.1780
4 0.2921 0.1549 0.1784

Morton and Yarusevych [3] 0.320 0.157 0.179
Norberg [16] 0.297 - -

Williamson [17] 0.298 - -
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Figure 3: (a) A slice of the computational domain in the x−z plane at y/D = 0. Each square represents
the slice of a corresponding cubic Cartesian grid box which contains N ×N ×N grid cells. In this figure,
there are five levels of grid boxes, where the first four levels are indicated by numbers (1-4). Due to
different minimum grid sizes, different cases have either five or six levels of grid boxes. (b) Same as (a)
but the slice positioned in the x− y plane at z/D = 0− (at the large cylinder area). (c) A zoom-in plot
of the grid cells in the step region (red rectangle in (a)) for Case2; (d) Same as (c) but the zoom-in area
is indicated by a red rectangle in (b).

Second, the mean streamwise velocity (ū/U) distributions are checked along a line AB
(as indicated in the subplot figure 4 (c)) and a line CD (as indicated in the subplot figure
5 (b)) to illustrate the time averaged flow conditions close to the step. The curves in
figure 4 (a) are almost identical, and the zoom-in plot 4 (b) clearly shows a convergent
tendency form Case1 to Case4. Additionally, the difference between Case3 and Case4
is negligible. The flow field behind the step is more complicated than that in front of the
step. As shown in figure 5 (a), the curve from Case1 shows obvious differences compared
with the curves from the other three cases. From the two zoom-in plots, figure 5 (c) and
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Detailed grid information of all cases simulated is summarized in table 1. The Reynolds
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Table 2: The Strouhal number (St) of three dominating vortex cells (S-cell StS = fSD/U , N-cell
StN = fND/U and L-cell StL = fLD/U) for all cases investigated. The results of one previous numerical
study [3] and two previous laboratory experiments [16, 17] are also shown. [Note: in our case, StS is
calculated based on the diameter of the large cylinder, a factor 2 is used when obtain data from [16, 17].]
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Morton and Yarusevych [3] 0.320 0.157 0.179
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Figure 3: (a) A slice of the computational domain in the x−z plane at y/D = 0. Each square represents
the slice of a corresponding cubic Cartesian grid box which contains N ×N ×N grid cells. In this figure,
there are five levels of grid boxes, where the first four levels are indicated by numbers (1-4). Due to
different minimum grid sizes, different cases have either five or six levels of grid boxes. (b) Same as (a)
but the slice positioned in the x− y plane at z/D = 0− (at the large cylinder area). (c) A zoom-in plot
of the grid cells in the step region (red rectangle in (a)) for Case2; (d) Same as (c) but the zoom-in area
is indicated by a red rectangle in (b).

Second, the mean streamwise velocity (ū/U) distributions are checked along a line AB
(as indicated in the subplot figure 4 (c)) and a line CD (as indicated in the subplot figure
5 (b)) to illustrate the time averaged flow conditions close to the step. The curves in
figure 4 (a) are almost identical, and the zoom-in plot 4 (b) clearly shows a convergent
tendency form Case1 to Case4. Additionally, the difference between Case3 and Case4
is negligible. The flow field behind the step is more complicated than that in front of the
step. As shown in figure 5 (a), the curve from Case1 shows obvious differences compared
with the curves from the other three cases. From the two zoom-in plots, figure 5 (c) and
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(d), one can see that the maximum difference in ū/U between Case2, Case3 and Case4
is only around 0.005. This means that, except for Case1, the flow field from the other
three cases fit each other well.

Figure 4: (a) Distributions of mean streamwise velocity ū
U along a sampling line AB in the x− z plane

at y/D = 0; (b) A zoom-in plot of the upper part of curves in (a) (black rectangle in (a)); (c) A sketch
of the sampling line AB of length 0.8D, positioned 0.15D in front of the small cylinder.

Figure 5: (a) Distributions of mean streamwise velocity ū
U along a sampling line CD in the x− z plane

at y/D = 0; (b) A sketch of the sampling line CD of length 6D, positioned 1D behind the large cylinder;
(c) and (d) Zoom-in plots of the lower part of curves in (a) (black rectangles in (a)).

Furthermore, the time traces of the instantaneous spanwise velocity w in the N-cell
area where the velocity varies dramatically with time are plotted for Case2, Case1 and
Case4 in figure 6. The mean values and the fluctuations of these curves coincide well.
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Figure 6: Time traces of the spanwise velocity (w/U) at point (x/D, y/D, z/D)=(1, 0, -2.5) in the
N-cell area. The red line is obtained from paper [3]. T is the period of one N-cell cycle which is the same
time scale as Morton and Yarusevych used in [3].

3.3 Comparing with previous studies

In figure 7 (a), an overview of the vortex structures behind the step cylinder is il-
lustrated by plotting the isosurface of λ2 = −0.05 [7]. The overall vortical structures
from previous numerical simulations [3] and laboratory experiments [2] are presented in
figure 7 (b) and (c), respectively. The wake structures compare well with each other in
these three plots. In figure 7 (a), three vortex cell areas (the S-, N- and L-cell areas)
are also clearly illustrated. As Morton & Yarusevych [3], we also captured three domi-
nating frequency components in the wake flow, as shown in table 2. The StL from our
simulations fits well with theirs. Our StS and StN , however, are somewhat lower than
that from their simulations. As mentioned in previous papers [2, 18, 19], the shedding
of S-cell vortices is seldomly affected by the step. Two laboratory experiments [16, 17]
are introduced to validate our StS. From table 2, one can see that our results compare
better with the experimental values. Moreover, the spanwise velocity data from paper [3]
is inserted in figure 6. The match between the present study and Morton & Yarusevych
[3] is convincing, except for small differences in the lower part of the curves.

Based on all these careful comparisons, we believe that, except for Case1, the con-
vergent tendency from Case2 to Case4 is clear. Moreover, the difference between Case3
and Case4 is small, and both of them fit well with previous results. However, due to the
smaller time step size and large number of grid cells, the computational cost of Case4 is
significantly higher that that of Case3. All discussions in the present paper are therefore
based on data from Case3.

9



88 89

Cai Tian, Fengjian Jiang, Bjørnar Pettersen and Helge I. Andersson

(d), one can see that the maximum difference in ū/U between Case2, Case3 and Case4
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lustrated by plotting the isosurface of λ2 = −0.05 [7]. The overall vortical structures
from previous numerical simulations [3] and laboratory experiments [2] are presented in
figure 7 (b) and (c), respectively. The wake structures compare well with each other in
these three plots. In figure 7 (a), three vortex cell areas (the S-, N- and L-cell areas)
are also clearly illustrated. As Morton & Yarusevych [3], we also captured three domi-
nating frequency components in the wake flow, as shown in table 2. The StL from our
simulations fits well with theirs. Our StS and StN , however, are somewhat lower than
that from their simulations. As mentioned in previous papers [2, 18, 19], the shedding
of S-cell vortices is seldomly affected by the step. Two laboratory experiments [16, 17]
are introduced to validate our StS. From table 2, one can see that our results compare
better with the experimental values. Moreover, the spanwise velocity data from paper [3]
is inserted in figure 6. The match between the present study and Morton & Yarusevych
[3] is convincing, except for small differences in the lower part of the curves.

Based on all these careful comparisons, we believe that, except for Case1, the con-
vergent tendency from Case2 to Case4 is clear. Moreover, the difference between Case3
and Case4 is small, and both of them fit well with previous results. However, due to the
smaller time step size and large number of grid cells, the computational cost of Case4 is
significantly higher that that of Case3. All discussions in the present paper are therefore
based on data from Case3.
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Figure 7: Vortex shedding in the wake behind a step cylinder: (a) Isosurfaces of λ2 = −0.05 [7] from our
simulation, ReD = 150 and D/d = 2; (b) Isosurfaces of Q ≈ 2× 10−3 from [3], ReD = 150 and D/d = 2;
(c) Flow visualization image from [2], ReD = 150 and D/d = 2;

4 RESULTS

4.1 Long periodicity of the vortex dislocations

In the present study, as in the previous investigations [2, 3], three vortex cells (S-, N-
and L-cell vortices) are captured in the wake behind the step cylinder. Complex vortex
interactions occur between them, especially between the N- and L-cell vortices. Due to
different shedding frequencies, the N- and L-cell vortices move either in-phase or out-of-
phase. During this process, vortex dislocations and vortex loop structures form. As shown
in figure 8, the formation of the 1st N-cell cycle is illustrated by consecutive snapshots
of isosurface of λ2. The time t is set to t=t*-2378.1D/U , where t* is the actual time in
the simulation (this applies through the paper). All N- and L-cell vortices are labeled
by a combination of capital letters and numbers; ’N’ and ’L’ represent N- and L-cell
vortices, respectively, while the number indicates the shedding order. To differentiate
vortices shed from the different sides of the step cylinder, we use capital letters with
primes (N’ and L’) to represent vortices shed from the ’+Y’ side; and capital letters (N
and L) to represent vortices shed from the ’-Y’ side. From figure 8 (a) to (f), every N-cell
vortex has one corresponding L-cell vortex shed from the same side (e.g. N0 and L0;
N’1 and L’1...). As the phase difference between the N- and L-cell vortex accumulates
[3], loop structures appear when corresponding N- and L-cell vortices are out of phase.
From figure 8 (g) to (j), loop structures (N8-L’9) and (N’9-L10) form, and are indicated
by green and red curves, respectively. Detailed descriptions of the formation process of
those loop structures can be found in paper [6]. Based on the order of their appearances,
we name the green curve as the NL-loop1, and the red curve as the NL-loop2. Meantime,
we define the side of a NL-loop structure as the side of its N-cell vortex component. For
example, the NL-loop1 N8-L’9 (shown by green curves) in figure 8 (h) is identified to form
at the ’-Y’ side, because the N-cell vortex (N8) in this loop is at the ’-Y’ side.

In figure 9, by plotting the isosurface of λ2 = −0.05, the NL-loop structures in the
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Figure 8: Isosurface of λ2 = −0.05 [7] showing the development of the 1st N-cell cycle on the ’-Y’ side of
the step cylinder. The time t is set to t=t*−2378.1D/U (t* is the actual time). Solid and dashed curves
indicate the loop structures on the ’-Y’ and ’+Y’ side, respectively.

1st and 2nd N-cell cycles are shown. The same colors and definitions in figure 8 are used
here. One can see that the NL-loop1 (N8-L’9) in the 1st N-cell cycle (figure 9 (a)) and
the NL-loop1 (N’21-L24) in the 2nd N-cell cycle (figure 9 (c)) are on different sides of the
step cylinder. This is the antisymmetry reported in our previous paper [6]. However, by
comparing figure 9 (a) and (c); (b) and (d), one can see that the corresponding NL-loops
have small differences (highlighted by black circles), which means the conventional anti-
symmetry is not perfect. These differences are also reflected in the time traces of crossflow
velocity (v) in the center plane. When a vortex dislocation occurs, the adjacent vortices
move out phase. Meanwhile, the induced velocity fluctuations at the boundary between
the adjacent vortex cells are excepted to diminish. For different dislocation processes,
the corresponding distinct vortex alignments cause different amount of reductions in the
induced crossflow velocity (v). In figure 10, the time trace of the crossflow velocity (v/U)
is plotted at the position (x/D, y/D, z/D)=(1.5, 0, -6), which is at the boundary between
the N- and L-cell vortices. The instants where the vortex dislocations in the 1st and 2nd
N-cell cycle occur are marked by ’Dis1’ and ’Dis2’, respectively. One can see that the
obvious reductions in the induced crossflow velocity are different at these two positions.
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here. One can see that the NL-loop1 (N8-L’9) in the 1st N-cell cycle (figure 9 (a)) and
the NL-loop1 (N’21-L24) in the 2nd N-cell cycle (figure 9 (c)) are on different sides of the
step cylinder. This is the antisymmetry reported in our previous paper [6]. However, by
comparing figure 9 (a) and (c); (b) and (d), one can see that the corresponding NL-loops
have small differences (highlighted by black circles), which means the conventional anti-
symmetry is not perfect. These differences are also reflected in the time traces of crossflow
velocity (v) in the center plane. When a vortex dislocation occurs, the adjacent vortices
move out phase. Meanwhile, the induced velocity fluctuations at the boundary between
the adjacent vortex cells are excepted to diminish. For different dislocation processes,
the corresponding distinct vortex alignments cause different amount of reductions in the
induced crossflow velocity (v). In figure 10, the time trace of the crossflow velocity (v/U)
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the N- and L-cell vortices. The instants where the vortex dislocations in the 1st and 2nd
N-cell cycle occur are marked by ’Dis1’ and ’Dis2’, respectively. One can see that the
obvious reductions in the induced crossflow velocity are different at these two positions.
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Figure 9: NL-loop structures at the 1st and 2nd N-cell cycles are plotted in [(a), (b)] and [(c), (d)],
respectively. The same colors and definitions used in figure 8 are also used here.

Figure 10: Time trace of the crossflow velocity (v) at a sampling point (x/D, y/D, z/D)=(1.5, 0, -6).
”Dis1” represents the dislocation process that occurs in the 1st N-cell cycle defined in figure 9, same for
”Dis2”.

The different alignments of N- and L-cell vortices induce slightly different NL-loops and
different reductions in the induced crossflow velocity in the 1st and 2nd N-cell cycles. From
the NL-loop1 (N8-L’9) of the 1st N-cell cycle in figure 9 (a) to the NL-loop1 (N’21-L24) of
the 2nd N-cell cycle in figure 9 (c), there are 13 N-cell and 15 L-cell vortices. Compared to
the vortex pairs in the 1st N-cell cycle, the fact that 15× 1

2fL
− 13× 1

2fN
= 0.064 (fN and

fL are obtained from table 2-Case3) induces a small phase shift to every vortex pair (a
N-cell vortex and its counterpart L-cell vortex) in the 2nd N-cell cycle. It means that the
vortex alignment varies from one N-cell cycle to another. Only when the vortex alignment
becomes exactly the same in two N-cell cycles, the corresponding vortex dislocations can
be exactly the same.

Considering vortices shed alternatingly from the ’+Y’ and ’-Y’ sides of the step cylinder,
the exactly same vortex alignment can appear at the same side or different sides of the
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step cylinder. When the same vortex alignment appears at the same side of the step
cylinder in two N-cell cycles, their subsequent NL-loop structures should be identical (i.e.
perfect symmetric). On the other hand, perfect antisymmetric NL-loop structures are
expected. We assume that there are two neighboring vortex cells: vortex cell-1 with a
shedding frequency f1, and vortex cell-2 with a shedding frequency f2. If the number of
cell-1 and cell-2 vortices are ’k’ and ’j’ between the two N-cell cycles which have the same
vortex alignment, expression 5

k × 1

2f1
= j × 1

2f2
(5)

should be satisfied. We keep the number ’2’ as a factor in both sides of expression (5),
because the shedding frequency should be doubled when we consider vortices from the
’+Y’ and ’-Y’ side separately (normally, the vortex shedding frequency in a Karman
vortex street is the shedding frequency of a pair of vortices).

Figure 11: NL-loop structures at the 1st and 2nd N-cell cycles are plotted in [a), b)] and [c), d)],
respectively. The same colors and definitions as in figure 8 are used here.

After long time of observation, we found that the corresponding NL-loop structures
(NL-loop1: N8-L’9; NL-loop2: N’9-L10) in the 1st N-cell cycle, and (NL-loop1: N’205-
L236; NL-loop2: N206-L’237) in the 16th N-cell cycle are perfect antisymmetric, as shown
in figure 9 a), b) and figure 11 a) b). Details are highlighted by black circles. Between
these two N-cell cycles, there are 183 N-cell vortices and 211 L-cell vortices which satisfy
equation (5), i.e.183× 1

2fN
= 211× 1

2fL
= 592 (fN and fL are obtained from table 2-Case3).

In addition, the NL-loop structures in the 31th and the 46th N-cell cycle are plotted in
figure 11 (c), (d), (e) and (f). One can see that, after every 15 N-cell cycles, the perfect
antisymmetric phenomenon appears. In figure 12, the time traces of the crossflow velocity
v are plotted at the position (x/D, y/D, z/D)=(1.5, 0, -6). The y-coordinate of figure
12 (b) is reversed (from v to −v) to ease the comparison. The position where a vortex
dislocation happens is marked by a combination of the capital letter ’D’ and its series
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Figure 9: NL-loop structures at the 1st and 2nd N-cell cycles are plotted in [(a), (b)] and [(c), (d)],
respectively. The same colors and definitions used in figure 8 are also used here.

Figure 10: Time trace of the crossflow velocity (v) at a sampling point (x/D, y/D, z/D)=(1.5, 0, -6).
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fL are obtained from table 2-Case3) induces a small phase shift to every vortex pair (a
N-cell vortex and its counterpart L-cell vortex) in the 2nd N-cell cycle. It means that the
vortex alignment varies from one N-cell cycle to another. Only when the vortex alignment
becomes exactly the same in two N-cell cycles, the corresponding vortex dislocations can
be exactly the same.
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v are plotted at the position (x/D, y/D, z/D)=(1.5, 0, -6). The y-coordinate of figure
12 (b) is reversed (from v to −v) to ease the comparison. The position where a vortex
dislocation happens is marked by a combination of the capital letter ’D’ and its series
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number. One can see that these two plots almost coincide, which proves that all of the
vortex alignments and the corresponding NL-loop structures are perfectly antisymmetric
between D1-D15 and D16-D30.

Figure 12: Time trace of the crossflow velocity (v) at a sample point (x, y, z)/D=(1.5, 0, -6). ”D1”
means the dislocation process that occurs in the 1st N-cell cycle defined in figure 9, same for ”D2”, etc.

This long cyclic process (around 650 D/U) is quite similar to the ’fundamental dislo-
cation cycle’ defined by McClure et al. [9]. They focused on the flow around a dual step
cylinder. In their study, the same vortex dislocations appeared at the same side of the dual
step cylinder at certain intervals, i.e. the perfect symmetry defined in the present paper.
Moreover, they proposed equation (6) to measure the duration of the phase realignment
process (the same assumption used in equation (5) is also used here).

f1
f2

=
m

n
(6)

The ’m’ and ’n’ are measured to the lowest possible integer value.
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However, our observations clearly show that there is another type of the fundamental
dislocation cycles, i.e. the perfect antisymmetric cycle. Behind the cylindrical structure,
vortices alternatingly shed at the two sides of the structure. The alignment of vortices
appears at one side of the structure is possible to repeat at either the same side or the
other side of the structure. By using equation (6), the anticipated number of vortices in
one fundamental vortex dislocation cycle can only be even (2m cell-1 vortices, and 2n cell-
2 vortices). It makes equation (6) only suitable for the cases with perfectly symmetric
fundamental dislocation cycles. In addition, when f1 and f2 are close, it is impossible
to get the accurate value of ’m’ and ’n’. For example, in our case, f1 = 0.1545 and
f2 = 0.1780. It results in 197 N-cell vortices and 227 L-cell vortices in one fundamental
vortex dislocation cycle. Without observations, it seems impossible to get the correct
value of ’m’ and ’n’.

In general, there are two types of the fundamental dislocation cycles, i.e. the perfect
symmetric cycle and the perfect antisymmetric cycle. The different duration of 13 N-
cell and 15 L-cell vortices brings the small phase shift to every vortex pair of the N-
and L-cell vortex in neighboring N-cell cycles, and finally results in the ’fundamental
dislocation cycle’. Ideally, the duration of the cycle can be measured by equation (5).
But, in practice, it might be hard to get the accurate number of vortices without careful
observations, especially when the shedding frequencies of neighboring vortices are close.

4.2 Computational challenges for investigating a long periodic phenomenon

As discussed in section 3.2, the results of our four cases show good convergence, and
compare well with previous studies [3, 6]. However, considering the long periodicity of
the fundamental dislocation cycle discussed in section 4.1, the simulation time of our
convergence tests might not be long enough. Further investigations proves this.

Firstly, after another 1000 time units (D/U) simulation of Case 4, the exact same
fundamental vortex dislocation was observed. However, different from Case 3, in Case 4,
the same vortex dislocation appears at the same side of the step cylinder, and there are
131 N-cell and 151 L-cell vortices in one fundamental vortex dislocation cycle.

Furthermore, we set up a new case (named as Case5) to continue refining our grid size
from 0.012D to 0.010D. Still we cannot get exactly the same result as we obtained from
the Case 4. In the Case 5, in one fundamental vortex dislocation cycle, the number of N-
and L-cell vortices are 170 and 196, respectively.

Although, the number of vortices in one fundamental vortex dislocation cycle varies
for different cases, further investigation proves that all the different cases converge to the
same physical mechanism.

In figure 13, the isosurface of λ2 = −0.05 is plotted to illustrate the NL-loop structures
for different cases. Details of the loop structures are highlighted by black circles. The
figure is divided into three parts by two dashed black lines: the left, middle and right part.
As shown in the left part of figure 13 ((a), (b), (g), (h), (m) and (n)), the same NL-loop
structures are observed in all three cases (Case3, Case4 and Case5). Even the details of
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number. One can see that these two plots almost coincide, which proves that all of the
vortex alignments and the corresponding NL-loop structures are perfectly antisymmetric
between D1-D15 and D16-D30.
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means the dislocation process that occurs in the 1st N-cell cycle defined in figure 9, same for ”D2”, etc.
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cation cycle’ defined by McClure et al. [9]. They focused on the flow around a dual step
cylinder. In their study, the same vortex dislocations appeared at the same side of the dual
step cylinder at certain intervals, i.e. the perfect symmetry defined in the present paper.
Moreover, they proposed equation (6) to measure the duration of the phase realignment
process (the same assumption used in equation (5) is also used here).
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However, our observations clearly show that there is another type of the fundamental
dislocation cycles, i.e. the perfect antisymmetric cycle. Behind the cylindrical structure,
vortices alternatingly shed at the two sides of the structure. The alignment of vortices
appears at one side of the structure is possible to repeat at either the same side or the
other side of the structure. By using equation (6), the anticipated number of vortices in
one fundamental vortex dislocation cycle can only be even (2m cell-1 vortices, and 2n cell-
2 vortices). It makes equation (6) only suitable for the cases with perfectly symmetric
fundamental dislocation cycles. In addition, when f1 and f2 are close, it is impossible
to get the accurate value of ’m’ and ’n’. For example, in our case, f1 = 0.1545 and
f2 = 0.1780. It results in 197 N-cell vortices and 227 L-cell vortices in one fundamental
vortex dislocation cycle. Without observations, it seems impossible to get the correct
value of ’m’ and ’n’.

In general, there are two types of the fundamental dislocation cycles, i.e. the perfect
symmetric cycle and the perfect antisymmetric cycle. The different duration of 13 N-
cell and 15 L-cell vortices brings the small phase shift to every vortex pair of the N-
and L-cell vortex in neighboring N-cell cycles, and finally results in the ’fundamental
dislocation cycle’. Ideally, the duration of the cycle can be measured by equation (5).
But, in practice, it might be hard to get the accurate number of vortices without careful
observations, especially when the shedding frequencies of neighboring vortices are close.
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As discussed in section 3.2, the results of our four cases show good convergence, and
compare well with previous studies [3, 6]. However, considering the long periodicity of
the fundamental dislocation cycle discussed in section 4.1, the simulation time of our
convergence tests might not be long enough. Further investigations proves this.

Firstly, after another 1000 time units (D/U) simulation of Case 4, the exact same
fundamental vortex dislocation was observed. However, different from Case 3, in Case 4,
the same vortex dislocation appears at the same side of the step cylinder, and there are
131 N-cell and 151 L-cell vortices in one fundamental vortex dislocation cycle.

Furthermore, we set up a new case (named as Case5) to continue refining our grid size
from 0.012D to 0.010D. Still we cannot get exactly the same result as we obtained from
the Case 4. In the Case 5, in one fundamental vortex dislocation cycle, the number of N-
and L-cell vortices are 170 and 196, respectively.

Although, the number of vortices in one fundamental vortex dislocation cycle varies
for different cases, further investigation proves that all the different cases converge to the
same physical mechanism.

In figure 13, the isosurface of λ2 = −0.05 is plotted to illustrate the NL-loop structures
for different cases. Details of the loop structures are highlighted by black circles. The
figure is divided into three parts by two dashed black lines: the left, middle and right part.
As shown in the left part of figure 13 ((a), (b), (g), (h), (m) and (n)), the same NL-loop
structures are observed in all three cases (Case3, Case4 and Case5). Even the details of
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the loop structures highlighted by black circles are almost exactly the same. It means, at
this moment, all the three grid resolutions are able to give the same vortex alignments,
and the same vortex structures. For all three cases, the N-cell cycle containing the NL-
loop structures shown in the left part of figure 13, is set up to the 1*st N-cell cycle. By
comparing the following N-cell cycles, we found that the differences between these three
cases are gradually accumulated.

Figure 13: Isosurface of λ2 = −0.05 [7] showing the NL-loop structures in Case3, Case4 and Case5 on
both ’+Y’ and ’-Y’ sides. The details of the loop structures are highlighted by black circles. Two dashed
lines divide the figure into three parts: the left part (the NL-loop structures in the 1*st N-cell cycle), the
middle part (the NL-loop structures in the 2*nd N-cell cycle) and the right part (the NL-loop structures
in the 5*th N-cell cycle).

In the middle part of figure 13, the NL-loop structures in the 2*nd N-cell cycle are
plotted for all three cases. One can see that the differences in details of the NL-loop
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structures are still very small between the different cases. However, as shown in the right
part of figure 13, the loop structures in the 5*th N-cell cycle are completely different for all
three cases. This transformation is caused by the accumulations of the minor differences
in the vortex shedding frequencies (fN and fL) between these three cases.

Table 3: The Strouhal number (St) of N-cell vortex (StN = fND/U) and L-cell vortex (StL = fLD/U)
for Case3, Case4 and Case5.

Case Mean grid size (D) StN StL
3 0.015 0.1545 0.1780
4 0.012 0.1547 0.1783
5 0.010 0.1549 0.1784

As shown in table 3, the differences of the shedding frequencies (fL and fN) are very
small between these three cases. Normally, it is reasonable to claim that these three cases
are already converged. Actually, in a relatively short time period, e.g. from the 1*st N-cell
cycle (the left part of the figure 13) to the 2*nd N-cell cycle (the middle part of the figure
13), the wake flow and vortex structures agree well between Case3, Case4 and Case5.
But after long time accumulations, e.g. from the 1*st N-cell cycle (the left part of figure
13) to the 5*th N-cell cycle (the right part of the figure 13), even the small differences in
the shedding frequencies can affect the wake flow. Only when the shedding frequencies of
different grid cases are exactly the same, the vortex alignment and vortex structures can
be exactly the same.

In general, we admit that even in Case5, the mesh resolution is still not fully converged
for fundamental vortex dislocations. It is very difficult to get complete grid convergence
when investigating the exceptionally long period phenomenon. After a long time accumu-
lation, even a tiny difference could become big enough to affect the flow field. However
we clearly show that Case3, Case4 and Case5 are all able to give the same instantaneous
vortical structures in the near wake. The different detailed information (the number of N-
and L-cell vortices) in one fundamental vortex dislocation cycle is caused by the accumu-
lation of the minor difference in the vortex shedding frequencies between these cases. The
mechanism and the existence of the two kinds of fundamental vortex dislocation cycles
are valid for all cases.

5 CONCLUSION

The present results show good agreement with previous studies [3, 6, 9], such as the
three dominating spanwise vortices (i.e. S-, N- and L-cell vortices), vortex dislocations be-
tween the N- and L-cell vortex, loop structures (NL-loop1 and NL-loop2) generated during
the vortex dislocation process and the antisymmetric phenomena between the neighboring
N-cell cycles. In addition, the long period characteristic of the vortex dislocation, i.e. the
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the loop structures highlighted by black circles are almost exactly the same. It means, at
this moment, all the three grid resolutions are able to give the same vortex alignments,
and the same vortex structures. For all three cases, the N-cell cycle containing the NL-
loop structures shown in the left part of figure 13, is set up to the 1*st N-cell cycle. By
comparing the following N-cell cycles, we found that the differences between these three
cases are gradually accumulated.

Figure 13: Isosurface of λ2 = −0.05 [7] showing the NL-loop structures in Case3, Case4 and Case5 on
both ’+Y’ and ’-Y’ sides. The details of the loop structures are highlighted by black circles. Two dashed
lines divide the figure into three parts: the left part (the NL-loop structures in the 1*st N-cell cycle), the
middle part (the NL-loop structures in the 2*nd N-cell cycle) and the right part (the NL-loop structures
in the 5*th N-cell cycle).

In the middle part of figure 13, the NL-loop structures in the 2*nd N-cell cycle are
plotted for all three cases. One can see that the differences in details of the NL-loop
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structures are still very small between the different cases. However, as shown in the right
part of figure 13, the loop structures in the 5*th N-cell cycle are completely different for all
three cases. This transformation is caused by the accumulations of the minor differences
in the vortex shedding frequencies (fN and fL) between these three cases.

Table 3: The Strouhal number (St) of N-cell vortex (StN = fND/U) and L-cell vortex (StL = fLD/U)
for Case3, Case4 and Case5.

Case Mean grid size (D) StN StL
3 0.015 0.1545 0.1780
4 0.012 0.1547 0.1783
5 0.010 0.1549 0.1784

As shown in table 3, the differences of the shedding frequencies (fL and fN) are very
small between these three cases. Normally, it is reasonable to claim that these three cases
are already converged. Actually, in a relatively short time period, e.g. from the 1*st N-cell
cycle (the left part of the figure 13) to the 2*nd N-cell cycle (the middle part of the figure
13), the wake flow and vortex structures agree well between Case3, Case4 and Case5.
But after long time accumulations, e.g. from the 1*st N-cell cycle (the left part of figure
13) to the 5*th N-cell cycle (the right part of the figure 13), even the small differences in
the shedding frequencies can affect the wake flow. Only when the shedding frequencies of
different grid cases are exactly the same, the vortex alignment and vortex structures can
be exactly the same.

In general, we admit that even in Case5, the mesh resolution is still not fully converged
for fundamental vortex dislocations. It is very difficult to get complete grid convergence
when investigating the exceptionally long period phenomenon. After a long time accumu-
lation, even a tiny difference could become big enough to affect the flow field. However
we clearly show that Case3, Case4 and Case5 are all able to give the same instantaneous
vortical structures in the near wake. The different detailed information (the number of N-
and L-cell vortices) in one fundamental vortex dislocation cycle is caused by the accumu-
lation of the minor difference in the vortex shedding frequencies between these cases. The
mechanism and the existence of the two kinds of fundamental vortex dislocation cycles
are valid for all cases.

5 CONCLUSION

The present results show good agreement with previous studies [3, 6, 9], such as the
three dominating spanwise vortices (i.e. S-, N- and L-cell vortices), vortex dislocations be-
tween the N- and L-cell vortex, loop structures (NL-loop1 and NL-loop2) generated during
the vortex dislocation process and the antisymmetric phenomena between the neighboring
N-cell cycles. In addition, the long period characteristic of the vortex dislocation, i.e. the
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fundamental dislocation cycle, was for the first time captured and analyzed in the wake
of the single step cylinder. We have clearly shown that the different duration of 13 N-cell
and 15 L-cell vortices during one N-cell cycle brings the small phase shift to every vortex
pair of N- and L-cell vortex, and finally causes the ’fundamental vortex dislocation cycle’.
In addition, there are two kinds of fundamental dislocation cycles, i.e. the symmetric fun-
damental dislocation cycle, and the antisymmetric fundamental dislocation cycle, which
are determined by whether the same vortex alignment appears on the same side of the
step cylinder or not. Last but not least, we discussed challenges of the grid resolution on
investigating the long period characteristic. We found that, for the present case, although
the detailed information (e.g. the number of N- and L-cell vortices) in one fundamental
vortex dislocation cycle varies when continuing to refine the grid, the mechanism of the
fundamental vortex dislocation cycle is valid for all cases.

In the future, other Reynolds numbers and diameter ratios will be investigated to
explore how the vortex shedding frequencies of N- and L-cell vortices affect the formation
and the length of the fundamental vortex dislocation cycle.
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Abstract. A new numerical wave model in the framework of REEF3D solves the Laplace
equation for the flow potential and the nonlinear kinematic and dynamics free surface
boundary conditions with HYPRE’s massively parallel stabilized bi-conjugated gradient
solver and a geometric multi-grid preconditioner. The validation of the new module is
based on the comparison of measured time series against the simulation results. In the
first phase of the validation regular wave experiments are compared, where the wave
propagation is recorded over 160 m (model scale) using 19 wave probes placed at different
locations in the long wave flume at Marintek, Trondheim [1]. The measured time series
near the wavemaker in the flume is used to generate waves in the simulation. This gives
the unique possibility to identify dispersion (phase) error in relation to the distance from
the wavemaker with good accuracy. During the convergence studies, it was observed that
the wave dispersion is sensitive to the variation of the vertical grid. In order to reduce the
uncertainty around the choice of the best vertical distribution, a new method based on
the constant truncation error was developed and validated. The new method is described
in this paper as well as the improvement is also demonstrated.

1 INTRODUCTION

Several universities and research institutes are developing numerical wave tanks which
can use todays hardware and software possibilities such as HOS [2], OceanWave3D [3] and
HAWASSI [4]. One of them is developed under the framework of REEF3D [5]. REEF3D
CFD module has already been used as numerical wave tank (NWT) [6]. The module solve
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the wavemaker with good accuracy. During the convergence studies, it was observed that
the wave dispersion is sensitive to the variation of the vertical grid. In order to reduce the
uncertainty around the choice of the best vertical distribution, a new method based on
the constant truncation error was developed and validated. The new method is described
in this paper as well as the improvement is also demonstrated.

1 INTRODUCTION

Several universities and research institutes are developing numerical wave tanks which
can use todays hardware and software possibilities such as HOS [2], OceanWave3D [3] and
HAWASSI [4]. One of them is developed under the framework of REEF3D [5]. REEF3D
CFD module has already been used as numerical wave tank (NWT) [6]. The module solve
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the Navier-Stoke Equations with a two-phase fluid model which makes the software able
to simulate breaking waves [7], [8] and [9]. This module can be applied at all relevant
scales as was demonstrated in [10] where sloshing is simulated with this module.

The new numerical wave model FNPF of REEF3D solves the Laplace equation for the
flow potential and the nonlinear kinematic and dynamics free surface boundary conditions.
This approach requires reduced computational resources compared to CFD based NWTs.
This new module can use the already implement functionality of REEF3D [11], where solid
boundaries are incorporated through a ghost cell immersed boundary method. Therefore
it is capable of simulating wave-structure interaction such as complex sea bottom topog-
raphy by solving the non-linear potential theory problem. The Laplace equation together
with the enclosure of the boundary conditions are solved with a finite difference method
on a stretched σ-coordinate system similar to OceanWave3D [12]. The stretching of the
grid is applied to reduce the numerical error at the same number of the grid points. The
vertical distribution of the grid points is defined at the Chebysev-Gauss-Loboto locations
in OceanWave3D [3]. This grid is defined by several of parameters:

• the water depth d

• the number of the vertical grid points Nz.

There are several stretching method implemented in REEF3D and therefore, two addi-
tional parameters must be given to define the vertical grid distribution:

• the stretching method

• the stretching factor.

In the first phase of the validation, regular wave experiments are compared. During the
convergence studies it was observed that the vertical grid spacing has the largest influence
on the regular wave propagation velocity in the numerical wave tank. Similar phenomena
was reported in [12]. It was observed that the above mentioned stretching factor has
the largest influence on the dispersion. Sometimes a simulation with a lower number of
vertical grid points yields better results than the one with a larger number of Nz.

Grid stretching is introduced in order to reduce the numerical error from the same
number of grid points. The main idea behind the new method is that this error can be
linked to the truncation error of the applied numerical scheme and the vertical distribution
of the error influences the wave propagation. This paper discusses the background of the
method and shows the procedure which defines the location of the grid points for a given
wave condition and a given truncation error.

2 MODEL TEST SETUP

The experiment was carried out in the long wave flume at Marintek, Trondheim, Nor-
way (see [13] for details on the wave tank). The length of the tank is 270 m and its width
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Figure 1 Test set-up and wave probe location in the towing tank. 
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Figure 1: Location of the wave probes with the horizontal dimension of the flume

is 10.5 m as shown in Fig. (1). The depth of the tank is 10 m for the first 85 m and then 5
m for the rest of the flume. The effect of the jump from 10 m to 5 m is insignificant for the
waves of 1.5 s considered here [14]. The free surface elevation is measured simultaneously
by 19 probes placed at different locations along the flume.

3 NUMERICAL MODEL

3.1 Boundary Value Problem

The governing equation for the proposed fully nonlinear potential flow model is the
Laplace equation:

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0. (1)

Boundary conditions are required in order to solve for the velocity potential Φ from this
elliptic equation, especially at the free surface and at the bed. These are the kinematic
and dynamic boundary conditions which must be fulfilled at all times and are prescribed
as follows:
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where η is the free surface elevation, Φ̃ = Φ(x, η, t) is the velocity potential at the free
surface, x = (x, y) represents the location at the horizontal plane and w̃ is the vertical
velocity at the free surface.

The bottom boundary condition represents an impervious solid boundary:

∂Φ

∂z
+

∂h

∂x

∂Φ

∂x
+

∂h

∂y

∂Φ
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= 0, z = −h. (4)
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the Navier-Stoke Equations with a two-phase fluid model which makes the software able
to simulate breaking waves [7], [8] and [9]. This module can be applied at all relevant
scales as was demonstrated in [10] where sloshing is simulated with this module.

The new numerical wave model FNPF of REEF3D solves the Laplace equation for the
flow potential and the nonlinear kinematic and dynamics free surface boundary conditions.
This approach requires reduced computational resources compared to CFD based NWTs.
This new module can use the already implement functionality of REEF3D [11], where solid
boundaries are incorporated through a ghost cell immersed boundary method. Therefore
it is capable of simulating wave-structure interaction such as complex sea bottom topog-
raphy by solving the non-linear potential theory problem. The Laplace equation together
with the enclosure of the boundary conditions are solved with a finite difference method
on a stretched σ-coordinate system similar to OceanWave3D [12]. The stretching of the
grid is applied to reduce the numerical error at the same number of the grid points. The
vertical distribution of the grid points is defined at the Chebysev-Gauss-Loboto locations
in OceanWave3D [3]. This grid is defined by several of parameters:

• the water depth d

• the number of the vertical grid points Nz.

There are several stretching method implemented in REEF3D and therefore, two addi-
tional parameters must be given to define the vertical grid distribution:

• the stretching method

• the stretching factor.

In the first phase of the validation, regular wave experiments are compared. During the
convergence studies it was observed that the vertical grid spacing has the largest influence
on the regular wave propagation velocity in the numerical wave tank. Similar phenomena
was reported in [12]. It was observed that the above mentioned stretching factor has
the largest influence on the dispersion. Sometimes a simulation with a lower number of
vertical grid points yields better results than the one with a larger number of Nz.

Grid stretching is introduced in order to reduce the numerical error from the same
number of grid points. The main idea behind the new method is that this error can be
linked to the truncation error of the applied numerical scheme and the vertical distribution
of the error influences the wave propagation. This paper discusses the background of the
method and shows the procedure which defines the location of the grid points for a given
wave condition and a given truncation error.

2 MODEL TEST SETUP

The experiment was carried out in the long wave flume at Marintek, Trondheim, Nor-
way (see [13] for details on the wave tank). The length of the tank is 270 m and its width
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Figure 1: Location of the wave probes with the horizontal dimension of the flume

is 10.5 m as shown in Fig. (1). The depth of the tank is 10 m for the first 85 m and then 5
m for the rest of the flume. The effect of the jump from 10 m to 5 m is insignificant for the
waves of 1.5 s considered here [14]. The free surface elevation is measured simultaneously
by 19 probes placed at different locations along the flume.

3 NUMERICAL MODEL

3.1 Boundary Value Problem

The governing equation for the proposed fully nonlinear potential flow model is the
Laplace equation:
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= 0. (1)

Boundary conditions are required in order to solve for the velocity potential Φ from this
elliptic equation, especially at the free surface and at the bed. These are the kinematic
and dynamic boundary conditions which must be fulfilled at all times and are prescribed
as follows:
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where η is the free surface elevation, Φ̃ = Φ(x, η, t) is the velocity potential at the free
surface, x = (x, y) represents the location at the horizontal plane and w̃ is the vertical
velocity at the free surface.

The bottom boundary condition represents an impervious solid boundary:
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+
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where h = h(x) is the water depth measured from the still water level to the seabed.
The Laplace equation with the boundary conditions is solved with a finite difference

method on a σ-coordinate system. A σ-coordinate system deforms with the free surface
and is also flexible in the handling of irregular boundaries. The relationship between a
Cartesian grid and a σ-coordinate is as follows:

σ =
z + h (x)

η(x, t) + h(x)
. (5)

Several methods are implemented in REEF3D for grid stretching in horizontal and vertical
direction. One of them uses the sinh function as the stretching function:

z̃ = d
sinh (δz)

sinh (δ)
(6)

where z is the uniform vertical grid location, δ is the above mentioned stretching factor
and z̃ is the new vertical location. This stretching method gives the closest grid location
to the optimal grid positions and this is used in the simulations.

Once the velocity potential Φ is obtained in the σ-domain, the velocities can be calcu-
lated as follows:

u (x, z) =
∂Φ (x, z)

∂x
=

∂Φ (x, σ)

∂x
+

∂σ

∂x

∂Φ (x, σ)

∂σ
, (7)

v (x, z) =
∂Φ (x, z)

∂y
=

∂Φ (x, σ)

∂y
+

∂σ

∂y

∂Φ (x, σ)

∂σ
, (8)

w (x, z) =
∂Φ (x, z)

∂z
=

∂σ

∂z

∂Φ (x, σ)

∂σ
. (9)

Wave generation in the numerical wave tank is handled using a Neumann boundary
condition. Here, the spatial derivatives of the velocity potential are prescribed accord-
ing to the wavemaker kinematics. The velocity potential at the boundary can then be
calculated as follows:

ϕi−1 = −u(x, z, t)�x+ ϕi (10)

where u(x, z, t) is the analytical horizontal velocity. The wavemaker motion is defined
through a file where a time series of the angle of the flaps are defined. The measured flap
angles are used in this paper to generate the waves.

The numerical beach uses the relaxation method [15] to mitigate wave reflection. The
relaxation function used in the model is shown in Eqn. (11).

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1]. (11)

where x̃ is scaled to the length of the relaxation zone.
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The Laplace equation is discretized using a second-order central difference scheme
and is solved using a parallelized geometic multigrid pre-conditioned conjugated gradient
solver provided by Hypre [16].

The convection terms at the free-surface are discretized with the fifth-order Hamilton–
Jacobi weighted essentially non-oscillatory (WENO) scheme [17]. A WENO discretization
stencil is based on smoothness of three local ENO-stencils. The local stencil with the
highest smoothness is assigned the highest weight and contributes the most significantly
to the solution. The scheme is therefore capable of handling large gradients without
instability.

For the time treatment, a third-order accurate TVD Runge-Kutta scheme [18] is used
with constant time step.

The model is fully parallelized following the domain decomposition strategy. Ghost
cells are used to exchange information between adjacent domains and are updated with
the values from the neighboring processors using the Message Passing Interface (MPI).

4 THE NEW METHOD TO FIND AN OPTIMAL VERTICAL GRID DIS-
TRIBUTION

4.1 Main idea

The solution of the Airy wave theory is based on the separation of variables method
[19]:

φ(x, z, t) = Φ(z)Ξ(x)Υ(t). (12)

The main idea of the new procedure is based on the observation that the shape of the
solution of the function Φ(z)1:

Φ(z) = Cekz (13)

is governed only by the wave number k which value is defined by the linear dispersion
relationship between the wave frequency ω and the wave number:

ω2 = gk (14)

where g is the gravity acceleration.
Due to numerical error, the numerically estimated values of the potential along a

vertical line define a different shape than prescribed by theory. This has the consequence
of changing the wave number in the numerical simulation, because the wave propagation
velocity depends on the wave number and the wave frequency. The wave number changes
the wave propagation velocity in the numerical simulation.

The truncation error of a finite differential scheme depends on the distance between
the grid points (z and ζ) which can be seen from the Taylor series of a function f(z) (15)

1For simplicity, the linear deep water solution will be used in this paper.
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where h = h(x) is the water depth measured from the still water level to the seabed.
The Laplace equation with the boundary conditions is solved with a finite difference

method on a σ-coordinate system. A σ-coordinate system deforms with the free surface
and is also flexible in the handling of irregular boundaries. The relationship between a
Cartesian grid and a σ-coordinate is as follows:

σ =
z + h (x)

η(x, t) + h(x)
. (5)

Several methods are implemented in REEF3D for grid stretching in horizontal and vertical
direction. One of them uses the sinh function as the stretching function:

z̃ = d
sinh (δz)

sinh (δ)
(6)

where z is the uniform vertical grid location, δ is the above mentioned stretching factor
and z̃ is the new vertical location. This stretching method gives the closest grid location
to the optimal grid positions and this is used in the simulations.

Once the velocity potential Φ is obtained in the σ-domain, the velocities can be calcu-
lated as follows:
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Wave generation in the numerical wave tank is handled using a Neumann boundary
condition. Here, the spatial derivatives of the velocity potential are prescribed accord-
ing to the wavemaker kinematics. The velocity potential at the boundary can then be
calculated as follows:

ϕi−1 = −u(x, z, t)�x+ ϕi (10)

where u(x, z, t) is the analytical horizontal velocity. The wavemaker motion is defined
through a file where a time series of the angle of the flaps are defined. The measured flap
angles are used in this paper to generate the waves.

The numerical beach uses the relaxation method [15] to mitigate wave reflection. The
relaxation function used in the model is shown in Eqn. (11).

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1]. (11)

where x̃ is scaled to the length of the relaxation zone.
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The Laplace equation is discretized using a second-order central difference scheme
and is solved using a parallelized geometic multigrid pre-conditioned conjugated gradient
solver provided by Hypre [16].

The convection terms at the free-surface are discretized with the fifth-order Hamilton–
Jacobi weighted essentially non-oscillatory (WENO) scheme [17]. A WENO discretization
stencil is based on smoothness of three local ENO-stencils. The local stencil with the
highest smoothness is assigned the highest weight and contributes the most significantly
to the solution. The scheme is therefore capable of handling large gradients without
instability.

For the time treatment, a third-order accurate TVD Runge-Kutta scheme [18] is used
with constant time step.

The model is fully parallelized following the domain decomposition strategy. Ghost
cells are used to exchange information between adjacent domains and are updated with
the values from the neighboring processors using the Message Passing Interface (MPI).

4 THE NEW METHOD TO FIND AN OPTIMAL VERTICAL GRID DIS-
TRIBUTION

4.1 Main idea

The solution of the Airy wave theory is based on the separation of variables method
[19]:

φ(x, z, t) = Φ(z)Ξ(x)Υ(t). (12)

The main idea of the new procedure is based on the observation that the shape of the
solution of the function Φ(z)1:

Φ(z) = Cekz (13)

is governed only by the wave number k which value is defined by the linear dispersion
relationship between the wave frequency ω and the wave number:

ω2 = gk (14)

where g is the gravity acceleration.
Due to numerical error, the numerically estimated values of the potential along a

vertical line define a different shape than prescribed by theory. This has the consequence
of changing the wave number in the numerical simulation, because the wave propagation
velocity depends on the wave number and the wave frequency. The wave number changes
the wave propagation velocity in the numerical simulation.

The truncation error of a finite differential scheme depends on the distance between
the grid points (z and ζ) which can be seen from the Taylor series of a function f(z) (15)

1For simplicity, the linear deep water solution will be used in this paper.
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:

f(z) =f(ζ) +
df(ζ)

dz
(z − ζ) +

1

2

d2f(ζ)

dz2
(z − ζ)2 +

(1
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d3f(ζ)

dz3
(z − ζ)3

+
1

24

d4f(ζ)

dz4
(z − ζ)4 +O((z − ζ)5)

(15)

Based on the observation that the variation of the vertical grid has the largest influence
on the wave propagation, the error of the shape is considered to be directly related to
the truncation error of the applied numerical scheme. The new method is based on
the assumption that a constant absolute truncation error at every vertical location can
preserve the correct shape of the function Φ(z) and yield the correct wave number.

For example, the second order central differentiation scheme is a second-order scheme.
This means that its residual can be estimated as an error of order O((z−ζ)3 of the Taylor
series in (15) i.e., the truncation error at the location ζ can be defined as:

E(z, ζ) = f(z)−
(
f(ζ) +

df(ζ)

dz
(z − ζ) +

1

2

d2f(z = ζ)

dz2
(z − ζ)2

)
(16)

If the size of the absolute error is set to a constant E for every location ζ and the function
f(z) and its derivatives are known, one can find a maximum step ∆z(ζ) = z − ζ to this
condition at every location ζ:

0 = E − f(ζ +∆z) +

(
f(ζ) +

df(ζ)

dz
∆z +

1

2

d2f(ζ)

dz2
∆z2

)
. (17)

4.2 Estimation of the vertical grid spacing based on the velocity potential
function of the Airy wave theory for infinite water depth

Only the result for the infinite water depth case is presented for the second- and fourth-
order schemes in this paper. According to the Airy wave theory for infinite water depth,
the function of the solution which only depends on the variable z is defined as:

Φ(z) =
ζAg

ω
ekz (18)

where ζA is the wave amplitude. We can normalize this function with
ζAg

ω
, which gives a

more general result for the analysis. The Taylor series of ekz at z = ζ +∆z is well known:

ek(ζ+∆z) = ekζ + ekζk∆z +
1

2
ekζk2∆z2 +

1

6
ekζk3∆z3 +

1

24
ekζk4∆z4 +O(∆z5) (19)

Using the condition defined in (17) with f(z) = ekz we can define a grid size for each ζ
by solving:

0 = Ee−kζ −
∞∑

n=O+1

(k∆z)n

n!
(20)
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for a scheme of order O. It is possible to generalize this equation for all wave numbers by
introducing two dimensionless variables: kz = kζ and kdz = k∆z:

0 = Ee−kz −
∞∑

n=O+1

kdzn

n!
(21)

This equation has no analytical solution and must solved numerically. The series in (21)
is calculated up to O + 20.

The solution for different E is presented in Figure 2a for the fourth order scheme
(O = 4). The x-axis defines the normalized grid height at the normalized z location
shown on the y-axis of the diagram. Reduction of the error constant E yields a smaller
grid height. Because Φ exponentially decreases with increasing depth, the grid size can
increase. The solutions are shown up to 2π because one can assume that Φ(z < −2π/k) =
const. below one wavelength from the mean water level z = 0 and the same grid size can
be used below this depth. The solution for different E for the second order scheme (O = 2)
is shown in Figure 2b. One can see a reduction of the grid height for the fourth order
scheme at an almost quadratic rate.

4.3 Iterative procedure to estimate the vertical spacing for a given wave
period

The ideal vertical spacing curves as a function of the normalized distance from the
mean water level (MWL) at z = 0 are shown in Figure 2. Using these solutions one can
define the vertical grid spacing at z1 = 0. This value defines the location of the next grid
point z2 as z1−k∆z(kz = 0). The the location of the next grid point z3 can be estimated
from the vertical grid spacing value at z2 from Figure 2 as z3 = z2 − k∆z(kz = z2). This
way the vertical spacing can be estimated along the water depth generally for all waves:

kzi+1 = kzi − k∆z(kz = zi) , i = 1 . . . Nz. (22)
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Figure 2: Grid size for different absolute error levels E
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Based on the observation that the variation of the vertical grid has the largest influence
on the wave propagation, the error of the shape is considered to be directly related to
the truncation error of the applied numerical scheme. The new method is based on
the assumption that a constant absolute truncation error at every vertical location can
preserve the correct shape of the function Φ(z) and yield the correct wave number.

For example, the second order central differentiation scheme is a second-order scheme.
This means that its residual can be estimated as an error of order O((z−ζ)3 of the Taylor
series in (15) i.e., the truncation error at the location ζ can be defined as:
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If the size of the absolute error is set to a constant E for every location ζ and the function
f(z) and its derivatives are known, one can find a maximum step ∆z(ζ) = z − ζ to this
condition at every location ζ:

0 = E − f(ζ +∆z) +
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4.2 Estimation of the vertical grid spacing based on the velocity potential
function of the Airy wave theory for infinite water depth

Only the result for the infinite water depth case is presented for the second- and fourth-
order schemes in this paper. According to the Airy wave theory for infinite water depth,
the function of the solution which only depends on the variable z is defined as:

Φ(z) =
ζAg

ω
ekz (18)

where ζA is the wave amplitude. We can normalize this function with
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, which gives a

more general result for the analysis. The Taylor series of ekz at z = ζ +∆z is well known:

ek(ζ+∆z) = ekζ + ekζk∆z +
1

2
ekζk2∆z2 +

1

6
ekζk3∆z3 +

1

24
ekζk4∆z4 +O(∆z5) (19)

Using the condition defined in (17) with f(z) = ekz we can define a grid size for each ζ
by solving:

0 = Ee−kζ −
∞∑

n=O+1

(k∆z)n

n!
(20)
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for a scheme of order O. It is possible to generalize this equation for all wave numbers by
introducing two dimensionless variables: kz = kζ and kdz = k∆z:

0 = Ee−kz −
∞∑

n=O+1

kdzn

n!
(21)

This equation has no analytical solution and must solved numerically. The series in (21)
is calculated up to O + 20.

The solution for different E is presented in Figure 2a for the fourth order scheme
(O = 4). The x-axis defines the normalized grid height at the normalized z location
shown on the y-axis of the diagram. Reduction of the error constant E yields a smaller
grid height. Because Φ exponentially decreases with increasing depth, the grid size can
increase. The solutions are shown up to 2π because one can assume that Φ(z < −2π/k) =
const. below one wavelength from the mean water level z = 0 and the same grid size can
be used below this depth. The solution for different E for the second order scheme (O = 2)
is shown in Figure 2b. One can see a reduction of the grid height for the fourth order
scheme at an almost quadratic rate.

4.3 Iterative procedure to estimate the vertical spacing for a given wave
period

The ideal vertical spacing curves as a function of the normalized distance from the
mean water level (MWL) at z = 0 are shown in Figure 2. Using these solutions one can
define the vertical grid spacing at z1 = 0. This value defines the location of the next grid
point z2 as z1−k∆z(kz = 0). The the location of the next grid point z3 can be estimated
from the vertical grid spacing value at z2 from Figure 2 as z3 = z2 − k∆z(kz = z2). This
way the vertical spacing can be estimated along the water depth generally for all waves:

kzi+1 = kzi − k∆z(kz = zi) , i = 1 . . . Nz. (22)
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Figure 2: Grid size for different absolute error levels E
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Figure 3: Locations of the vertical grid points for the second and fourth order schemes
for different error levels E

The normalized vertical locations of the grid for different truncation errors are shown
in Figure 3. The horizontal axis shows the index of the grid locations and the vertical
axis the normalized location. The use of the high-order scheme significantly reduces the
number of the necessary vertical grid points for the same level of truncation error due to
the larger grid spacing at the low error levels.

5 VALIDATION

5.1 Measurement of the similarity of the time series

Time series are compared each other with the magnitude of the signals and with their
correlation to each other. In order to measure the magnitudes of the signal, several
methods are used in this paper. One of this is the Fourier analysis where the amplitude
spectrum is estimated for a given time window with help of the Fourier Transformation of
the time series. However, this method does not show the change of the magnitude of the
signal over time. Therefore, the Hilbert envelope of the full time series is calculated and
compared. In these time series, the Hilbert envelope includes a minimal phase information
too. The definition of these transformation is not shown in this paper.

In order to show how the time series are in phase to the measured time series, the cosine
similarity is calculated [20] within a convolution window over the whole time series. The
cosine similarity is defined for two vector of attributes, A and B, as:

Correlation =

n∑
i=1

AiBi

√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

(23)

where Ai and Bi are the components of vectors and A as well as B are the two time
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series respectively. The resulting correlation ranges from -1 meaning anti-phase, to 1
meaning exactly in phase, with 0 indicating orthogonality or de-correlation, while in-
between values indicate intermediate similarity or dissimilarity. This way the correlation
between the time series can be displayed over the time axis.

5.2 Simulation setup

For testing the new procedure, a regular wave with a wave period of T = 1.5 s is used.
A setup of this wave was found before the development of this method which gives good
agreement with the model test data. A uniform grid spacing in the horizontal direction
with 35 cells per wavelength is used with the second-order central differences scheme
solving the Laplace equation. The time step is constant and set to dt = 0.02 s. The sinh
stretching method defined in (6) is used in the simulation.

5.3 Results

The comparison of the applied grid distribution with the sinh method parameters
against the ”optimal” grid distribution defined by the new method is shown in Figure
4a. The vertical grid location Zi is shown over the grid index number i for still water.
One can see that the black curve, the ”optimal” locations are very close to the applied
grid distribution (green curve) down to one wavelength depth z = −3.5m. After this
depth, the black line shows equidistant grid spacing where the green curve shows smaller
grid spacing first up to i = 23 and larger grid spacing afterwards compared to the black
curve. After the development of the above described method, a new grid spacing based
on the method estimated. The number of the vertical grid points Nz and the stretching
factor δ in REEF3D’s sinh stretching method are tuned to obtaining the best match to
the ”optimal” distribution, shown in Figure 4b. The number of the grid points is reduced
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Figure 4: Comparison of the optimal grid spacing against the applied REEF3D’s grid
spacing

9



108 109

C. Pakozdi, W. Wang, A. Kamath and H. Bihs

5 10 15 20 25 30 35
i

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

kz
i [-

]

Infinite water depth, order 4

E = 1.00e-01
E = 1.00e-02
E = 1.00e-03
E = 1.00e-04
E = 1.00e-05
E = 1.00e-06
E = 1.00e-07

(a) Fourth order scheme

5 10 15 20 25 30
i

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

kz
i [-

]

Infinite water depth, order 2

E = 1.00e-01
E = 1.00e-02
E = 1.00e-03
E = 1.00e-04

(b) Second order scheme

Figure 3: Locations of the vertical grid points for the second and fourth order schemes
for different error levels E

The normalized vertical locations of the grid for different truncation errors are shown
in Figure 3. The horizontal axis shows the index of the grid locations and the vertical
axis the normalized location. The use of the high-order scheme significantly reduces the
number of the necessary vertical grid points for the same level of truncation error due to
the larger grid spacing at the low error levels.

5 VALIDATION

5.1 Measurement of the similarity of the time series

Time series are compared each other with the magnitude of the signals and with their
correlation to each other. In order to measure the magnitudes of the signal, several
methods are used in this paper. One of this is the Fourier analysis where the amplitude
spectrum is estimated for a given time window with help of the Fourier Transformation of
the time series. However, this method does not show the change of the magnitude of the
signal over time. Therefore, the Hilbert envelope of the full time series is calculated and
compared. In these time series, the Hilbert envelope includes a minimal phase information
too. The definition of these transformation is not shown in this paper.

In order to show how the time series are in phase to the measured time series, the cosine
similarity is calculated [20] within a convolution window over the whole time series. The
cosine similarity is defined for two vector of attributes, A and B, as:

Correlation =

n∑
i=1

AiBi

√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

(23)

where Ai and Bi are the components of vectors and A as well as B are the two time
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series respectively. The resulting correlation ranges from -1 meaning anti-phase, to 1
meaning exactly in phase, with 0 indicating orthogonality or de-correlation, while in-
between values indicate intermediate similarity or dissimilarity. This way the correlation
between the time series can be displayed over the time axis.

5.2 Simulation setup

For testing the new procedure, a regular wave with a wave period of T = 1.5 s is used.
A setup of this wave was found before the development of this method which gives good
agreement with the model test data. A uniform grid spacing in the horizontal direction
with 35 cells per wavelength is used with the second-order central differences scheme
solving the Laplace equation. The time step is constant and set to dt = 0.02 s. The sinh
stretching method defined in (6) is used in the simulation.

5.3 Results

The comparison of the applied grid distribution with the sinh method parameters
against the ”optimal” grid distribution defined by the new method is shown in Figure
4a. The vertical grid location Zi is shown over the grid index number i for still water.
One can see that the black curve, the ”optimal” locations are very close to the applied
grid distribution (green curve) down to one wavelength depth z = −3.5m. After this
depth, the black line shows equidistant grid spacing where the green curve shows smaller
grid spacing first up to i = 23 and larger grid spacing afterwards compared to the black
curve. After the development of the above described method, a new grid spacing based
on the method estimated. The number of the vertical grid points Nz and the stretching
factor δ in REEF3D’s sinh stretching method are tuned to obtaining the best match to
the ”optimal” distribution, shown in Figure 4b. The number of the grid points is reduced

0 5 10 15 20 25 30
i

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Z
i

T=1.50s, H=0.100m, =3.513m, depth=10.00m

Error 1.00e-03; Nz = 29, Order = 2
REEF3D:  3.00, Nz = 25

(a) Nz = 25, δ = 3.00

0 5 10 15 20 25 30
i

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Z
i

T=1.50s, H=0.100m, =3.513m, depth=10.00m

Error 1.00e-03; Nz = 29, Order = 2
REEF3D:  = 3.00, Nz = 25
Error 1.00e-02; Nz = 14, Order = 2
REEF3D:  = 3.25, Nz = 12

(b) Nz = 12, δ = 3.25

Figure 4: Comparison of the optimal grid spacing against the applied REEF3D’s grid
spacing

9



110

C. Pakozdi, W. Wang, A. Kamath and H. Bihs

-0.1

0

0.1

(t
) 

[m
]

CO8102: x = 10m

0 20 40 60 80 100 120 140 160 180
0

0.05

|H
ilb

er
t| 

[m
]

REEF3D: E=10-2;Nz=25

REEF3D: E=10-1;Nz=12
Model test

Time [s]
-1

0

1

C
or

re
la

tio
n 

[-
]

60 62 64 66 68 70 72 74 76

Time [s]

-0.1

0

0.1

(t
) 

[m
]

0 1 2

f [Hz]

0

0.05

A
(f

) 
[m

]

(a) x = 10m

-0.1

0

0.1

(t
) 

[m
]

CO8102: x = 35m

0 20 40 60 80 100 120 140 160 180
0

0.05

|H
ilb

er
t| 

[m
]

REEF3D: E=10-2;Nz=25

REEF3D: E=10-1;Nz=12
Model test

Time [s]
-1

0

1

C
or

re
la

tio
n 

[-
]

80 85 90 95 100

Time [s]

-0.1

0

0.1

(t
) 

[m
]

0 1 2

f [Hz]

0

0.05

A
(f

) 
[m

]

(b) x = 35m

-0.1

0

0.1

(t
) 

[m
]

CO8102: x = 75m

0 20 40 60 80 100 120 140 160 180
0

0.05

|H
ilb

er
t| 

[m
]

REEF3D: E=10-2;Nz=25

REEF3D: E=10-1;Nz=12
Model test

Time [s]
-1

0

1

C
or

re
la

tio
n 

[-
]

116 118 120 122 124 126 128 130 132

Time [s]

-0.05

0

0.05

(t
) 

[m
]

0 1 2

f [Hz]

0

0.05

A
(f

) 
[m

]

(c) x = 75m

CO8102

0

0.02

0.04

0.06

0.08

|H
ilb

er
t| 

[m
]

REEF3D: E=10-2;Nz=25

REEF3D: E=10-1;Nz=12
Model test

x=
10

.0
0m

x=
30

.0
0m

x=
35

.0
0m

x=
40

.0
0m

x=
45

.0
0m

x=
60

.0
0m

x=
65

.0
0m

x=
70

.0
0m

x=
75

.0
0m

-1

-0.5

0

0.5

1

C
or

re
la

tio
n 

[-
]

REEF3D: E=10-2;Nz=25

REEF3D: E=10-1;Nz=12

(d) Overview of the comparisons

Figure 5: Validation of the simulations

which gives a ten times reduction of the error level E. However, the comparison of the
simulations against the model test time series at different distances from the wavemaker
gives almost the same good agreement with the model test time series as it shown in
Figure 5. The top diagram in Figure 5a shows the whole time series of the simulation and
the experiment at 10 m from the wave maker. The Hilbert envelopes of these time series
in the next diagram show a good agreement between the simulations and the experiments
regarding the magnitude of the time series, and the two curves of the numerical simulations
are almost identical. The correlation curves, which quantify the similarity between the
experiment and the two simulations show that the numerical simulations are in phase with
the model test record. The lowest diagram shows the time windows where the Fourier
analysis is applied and its results in the form of an amplitude spectrum is shown on the
right. Here one can see some differences between the experiment and the numerical results.
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Figure 6: Comparison of the optimal grid spacing against the applied REEF3D’s grid
spacings

One can observe the trend at all other locations as shown in Figure 5b and 5c. The two
bar diagrams in Figure 5d give an overview of the average of the Hilbert envelopes in the
upper diagram and the average correlations at nine locations.

Based on this overview, one can conclude that the two simulations with different setups
gives about the same accuracy regrading the magnitude and phase in spite of the different
error levels. This supports the assumption regarding the importance of the constant error
distribution in the vertical direction.
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Figure 7: Validation of the simulations
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Figure 5: Validation of the simulations

which gives a ten times reduction of the error level E. However, the comparison of the
simulations against the model test time series at different distances from the wavemaker
gives almost the same good agreement with the model test time series as it shown in
Figure 5. The top diagram in Figure 5a shows the whole time series of the simulation and
the experiment at 10 m from the wave maker. The Hilbert envelopes of these time series
in the next diagram show a good agreement between the simulations and the experiments
regarding the magnitude of the time series, and the two curves of the numerical simulations
are almost identical. The correlation curves, which quantify the similarity between the
experiment and the two simulations show that the numerical simulations are in phase with
the model test record. The lowest diagram shows the time windows where the Fourier
analysis is applied and its results in the form of an amplitude spectrum is shown on the
right. Here one can see some differences between the experiment and the numerical results.
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One can observe the trend at all other locations as shown in Figure 5b and 5c. The two
bar diagrams in Figure 5d give an overview of the average of the Hilbert envelopes in the
upper diagram and the average correlations at nine locations.

Based on this overview, one can conclude that the two simulations with different setups
gives about the same accuracy regrading the magnitude and phase in spite of the different
error levels. This supports the assumption regarding the importance of the constant error
distribution in the vertical direction.
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In order to further investigate this assumption, a set of simulations with the same
setup as the simulation with Nz=12 except the stretching factor δ, are run. The effect
of the stretching factor on the vertical grid spacing is shown in Figure 6. The stretching
factors which are less than 3.25 define the grid spacing with little variation in the grid
height. The smallest one gives an almost uniform grid distribution (magenta curve).
A stretching factor larger than 3.25 gives a more dense grid distribution compared to
the ”optimal” grid distribution. The comparison of the time series at 10 m from the
wavemaker in Figure 7a shows that the almost uniform grid spacing gives a wrong wave
propagation velocity. The value of the correlation to the model test time series is about
-0.5, which indicates intermediate dissimilarity. However, the magnitude of the signal
is over predicted based on the Hilbert envelopes and the amplitude spectrum, but the
error is much lower than the phase error. One can see that with increasing distance from
the wavemaker, the correlation decreases in all simulations. This indicates a numerical
dispersion error, except in the simulation with the ”optimal” stretching δ = 3.25 for the
regular wave. The magnitude error of the simulations are less sensitive to the distance
which indicates that the numerical dissipation is low.

6 CONCLUSIONS

The new potential theory based module of REEF3D is presented in this paper. The
effect of the vertical grid distribution on the wave propagation is also demonstrated. A
new method is described which finds the optimal vertical grid distribution and this method
is validated against model test data. The comparison shows that the grid distribution
based on the new method gives small phase error.

The validation is shown in this paper only for one regular wave. This method is used to
define the grid in the vertical direction in several other simulations, where a regular wave
with different periods and wave amplitude as well as three hours irregular sea state are
simulated with similar good results as presented here. In the future work, it is necessary
to find the mathematical background for the good performance of the presented method.
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Abstract. A novel approach to calculating TNT equivalencies and safety distances
for explosives, using a combination of thermochemical computations and computational
fluid dynamics, is presented. This enables the estimation of safety distances for spe-
cific explosives and charge geometries based on physical principles rather than empirical
parametrizations. The methodology inherently allows for the simulation of subsequent
shock propagation and interaction with surrounding structures, following the detonation
of an explosive. Presented results include examples of computed TNT equivalencies for
selected commercial explosives, as well as simulated pressure distributions around a det-
onating stack of dynamite.

1 Introduction

Globally, billions of kilograms of commercial explosives are used annually for purposes
such as mining, quarrying, construction work, demolitions and weaponry. The manufac-
turing, transportation and storage of such materials pose considerable safety risks. Two
aspects central to safe storage of explosive materials are investigated in this work by
combining thermochemical computations and computational fluid dynamics (CFD).

The first part of this investigation details a novel approach for the establishment of
robust TNT equivalency values in air for detonating explosives, including both pure sub-
stances or mixtures of several compounds (both being referred to herein simply as an
explosive). The determination of reliable TNT equivalencies is essential for any realistic
comparison of explosive materials with regards to evaluation of safety distances.
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parametrizations. The methodology inherently allows for the simulation of subsequent
shock propagation and interaction with surrounding structures, following the detonation
of an explosive. Presented results include examples of computed TNT equivalencies for
selected commercial explosives, as well as simulated pressure distributions around a det-
onating stack of dynamite.

1 Introduction

Globally, billions of kilograms of commercial explosives are used annually for purposes
such as mining, quarrying, construction work, demolitions and weaponry. The manufac-
turing, transportation and storage of such materials pose considerable safety risks. Two
aspects central to safe storage of explosive materials are investigated in this work by
combining thermochemical computations and computational fluid dynamics (CFD).

The first part of this investigation details a novel approach for the establishment of
robust TNT equivalency values in air for detonating explosives, including both pure sub-
stances or mixtures of several compounds (both being referred to herein simply as an
explosive). The determination of reliable TNT equivalencies is essential for any realistic
comparison of explosive materials with regards to evaluation of safety distances.
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The concept of TNT equivalency is confusing because it may relate to various facets of
relative explosive output [1, 2]. Firstly, the term can refer to a unit of energy, defined by
convention and used typically to express the power of nuclear weapons or cosmic events.
Secondly, it can be a relative measure for air blast phenomena (overpressure or impulse).
Thirdly, TNT equivalency is often used rather arbitrarily as a relative effectiveness factor,
in terms of “demolition power”, for comparison of explosives. Unfortunately, the second
and third aspects are regularly mixed up.

It is the second aspect above that is relevant for evaluation of safety distances, in this
context being defined as the amount of TNT (in pure form and shaped as a hemisphere)
which, during detonation on the ground level and at a precise distance, yields the same
blast overpressure or blast impulse as the mass unit of the considered explosive. Although
strictly defined, TNT equivalencies for different explosives have traditionally been derived
by simply comparing an easily obtained attribute of the performance of the explosive in
question to that for TNT, e.g. directly relating the heats of detonations or the total
energies of detonations.

In this work, more realistic TNT equivalencies are derived by carrying out
one-dimensional gas-dynamic simulations of spherical-charge detonations (in air) for var-
ious explosives. The simulations are compared to corresponding simulations of TNT.
This results in TNT equivalencies, either by peak overpressures or impulses, that are
applicable for evaluation of the safety distances relevant to storage of explosives. The
material properties and detonation parameters for specific explosives are obtained using
a thermochemical code.

The second part of the study regards the detonation of pallets loaded with stacked
cardboard boxes holding dynamite, this being the conventional way of storing such car-
tridged explosives. Gas-dynamic simulations are used to map peak pressures in the volume
surrounding detonating stacks for different initiation scenarios. Geometrical effects, e.g.
from corners, have large effects on the pressure distributions in the near-field of the det-
onation. These effects can possibly be exploited to improve safety or efficiency in storage
facilities containing such palleted stacks.

The method detailed herein enables the estimation of safety distances for specic explo-
sives and charge geometries based on physical principles rather than empirical parametriza-
tions. Furthermore, the methodology inherently allows for the simulation of subsequent
shock propagation and interaction with surrounding structures, following the detonation
of an explosive.

This paper is structured as follows: Section 2 provides an overview of the thermochem-
ical computations, the gas-dynamic simulation framework and the computational setup.
Section 3 contains the simulation results. The results from the one-dimensional compu-
tations are presented first, followed by the simulations of dynamite stack detonations.
Finally, concluding remarks are contained in section 4.

2
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2 Method

2.1 General procedure

The simulations in this study have been performed via a two-step approach.
Firstly, a thermochemical code, EXPLO5 [3, 4], is used to compute material properties

and detonation parameters for a specified explosive.
Secondly, the gas dynamics of the detonating explosive is simulated in a shock-capturing

compressible-fluid flow solver, CharLES [5, 6]. Output from EXPLO5 is used to define
the material properties of the explosive, as well as the initial conditions, in CharLES.

The output from the second step is a time-dependent, three-dimensional flow field
describing the detonation by means of pressure, density and velocity fields. These data
are post-processed in order to extract useful information, such as pressure levels at selected
distances from the detonating explosive.

2.2 Thermochemical solution

EXPLO5, v6.03, is a thermochemical code that can estimate, among others, the equi-
librium composition and thermodynamic parameters of state of detonation products along
the shock adiabat of the detonation products for ideal detonations. The program contains
a precompiled database with hundreds of chemical reactants and products with associated
enthalphies of formation.

The detonation parameters are calculated based on a chemical-equilibrium, steady-
state detonation model. The equilibrium composition of detonation products is calculated
by applying the free-energy minimization tecnique of Dantzig, Johnson and White [7],
giving a set of equations solved iteratively by a modified Newton-Raphson method.

The state of detonation products can be described by various equations of state (EOS),
such as the Becker-Kistiakowsky-Wilson (BKW) EOS or the Jacobs-Cowperthwaite-Zwisler
(JCZ3) EOS for gaseous products. The thermodynamic functions of the products are de-
rived using the BKW EOS (for gases) or the Murnaghan EOS (for condensed products).

The thermochemical calculations assume that the detonation is well represented by a
Chapman-Jouget (CJ) detonation. The CJ point is computed by numerical determination
of the minimum value of the detonation velocity along the shock adiabat of the detonation
products. Detonation parameters (pressure, velocity, heat, etc.) at the CJ point is found
from the EOS for the products.

From the CJ point, the isentropic expansion of the products is calculated (by numerical
integration), and non-linear curve-fitting [8] yields coefficients for the Jones-Wilkins-Lee
(JWL) EOS. The JWL EOS enables the calculation of the released detonation energy
which will be available to perform mechanical work. Highly resolved density domains were
used both in the calculations of the detonation-products adiabat and the JWL coefficients.

The relevant parameters from EXPLO5 for subsequent gas-dynamics simulations are
the JWL coefficients, the detonation velocity, and the released detonation energy.
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integration), and non-linear curve-fitting [8] yields coefficients for the Jones-Wilkins-Lee
(JWL) EOS. The JWL EOS enables the calculation of the released detonation energy
which will be available to perform mechanical work. Highly resolved density domains were
used both in the calculations of the detonation-products adiabat and the JWL coefficients.

The relevant parameters from EXPLO5 for subsequent gas-dynamics simulations are
the JWL coefficients, the detonation velocity, and the released detonation energy.
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2.3 Gas-dynamic solution

The motion of the gas phases are governed by the compressible Navier-Stokes equa-
tions. However, the equations of state describing the detonation-product gases and the
ambient air are very different, and thus a multi-component model is required. Allaire’s
five equation model [9] is used for this purpose, with viscous terms included.

In index notation, with summation on double indices and i ∈ {1, 2, 3}, the governing
equations can be written

∂ρ1z1
∂t

+
∂ρ1z1ui

∂xi

= 0, (1)

∂ρ2z2
∂t

+
∂ρ2z2ui

∂xi
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∂t
+

∂ (ρuiuj + p)

∂xj

=
∂τij
∂xj

, (4)

∂
(
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2
ρuiui

)
∂t

+
∂
(
ρeuj +

1
2
ρuiuiuj + ujp

)
∂xj

=
∂ (uiτij − qj)

∂xj

, (5)

where ρk and zk = zk(x, t) are the phase-specific mass density and the volume fraction of
component k, respectively. ui = ui(x, t) is the velocity in the i’th direction, p = p(x, t) is

the static pressure, τij = τij(x, t) = µ
(

∂ui

∂xj
+

∂uj

∂xi

)
− 2µ

3
δij

∂ui

∂xi
is the viscous stress tensor,

e = e(x, t) is the specific internal energy and q = q(x, t) = λ∂T/∂xj is the heat flux, where
λ is the heat conductivity. Viscosity is assumed to vary with temperature as a power law,
so that µ = µ0(T/T0)

0.76, where µ0 and T0 are the kinematic viscosity and temperature at
reference conditions. A constant Prandtl number of 0.7 relates the thermal conductivity
and viscosity. The position vector is defined by x = xi = (x, y, z).

Additionally, an equation of state is required for each gas component. In the current
work, the Jones-Wilkins-Lee (JWL) equation of state (EOS) and the ideal gas EOS are
used to model detonation gases and air, respectively.

The multi-component model described by (1)–(5) is implemented in the compress-
ible fluid solver, resulting in a modified version of CharLES. In CharLES, the numerical
method used for the gas phase is a finite-volume method with low dissipation and disper-
sion, developed for Large Eddy Simulations on unstructured grids [5]. The Harten-Lax-van
Leer-Contact (HLLC) Riemann solver [10] is used to compute fluxes between neighbouring
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cells, and the solution is advanced in time by a third order explicit Runge-Kutta scheme.
The solver is highly parallellized.

For the one-dimensional simulations of spherical detonations, the face values are recon-
structed using an Essentially Non-Oscillatory (ENO)-scheme to ensure sharp resolution
of shocks. With the present implementation of the multi-component model, this scheme
is not robust enough for general three-dimensional simulations. Therefore, a simpler first-
order reconstruction of face values are used instead in this case.

2.3.1 Initial conditions from a similarity solution

For the spherical-detonation simulations, it is assumed that the detonation of the
explosive is adequately described as a CJ detonation. The chemical reactions are assumed
to occur within an infinitely thin layer immediately behind the shock front, and this layer
terminates at the CJ point. The flow behind this point is assumed to be described by a
similarity solution.

The similarity solution is described in e.g. [11]. Some of the results are repeated here
for completeness. The basic assumptions required of this model are as follows:

The flow is one-dimensional and self-similar.

The adiabatic index (heat capacity ratio) of the detonation products is constant.

The latter assumption can be avoided, e.g., by using the phase-plane method of Kuhl [12].
However, the differences in density, pressure and velocity profiles between these methods
are roughly between 1 and 2 % [12].

With these assumptions, the solution of the gas-dynamic equations is given in terms
of a chosen set of similarity variables. Let ξ = r (Dt)−1 where r is the radial coordinate,
D is the detonation velocity and t is time, φ (ξ) = u/D, where u is the gas velocity,
η (ξ) = c/D, where c is the speed of sound. Then the steady flow solution is given by:

φ′ =

(
jφ

ξ

)
η2

(φ− ξ)− η2
, (6)

η′ = −
(
γ − 1

2

)(
jηφ

ξ

)
φ− ξ

(φ− ξ)2 − η2
, (7)

where j = 0, 1, 2 corresponds to planar, cylindrical and spherical geometry respectively,
and γ is the adiabatic index. These equations can be integrated from the CJ-point, where
ξ = 1, φ = φ1 and η = η1. For j = 1 or j = 2 the equations are singular at the front,
and the solution in the immediate proximity of this point is instead computed by the
first-order series expansion:

φ (ξ) = φ1 −

√
2jφ1η1
γ + 1

(1− ξ)1/2 + ..., (8)
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cells, and the solution is advanced in time by a third order explicit Runge-Kutta scheme.
The solver is highly parallellized.

For the one-dimensional simulations of spherical detonations, the face values are recon-
structed using an Essentially Non-Oscillatory (ENO)-scheme to ensure sharp resolution
of shocks. With the present implementation of the multi-component model, this scheme
is not robust enough for general three-dimensional simulations. Therefore, a simpler first-
order reconstruction of face values are used instead in this case.

2.3.1 Initial conditions from a similarity solution

For the spherical-detonation simulations, it is assumed that the detonation of the
explosive is adequately described as a CJ detonation. The chemical reactions are assumed
to occur within an infinitely thin layer immediately behind the shock front, and this layer
terminates at the CJ point. The flow behind this point is assumed to be described by a
similarity solution.

The similarity solution is described in e.g. [11]. Some of the results are repeated here
for completeness. The basic assumptions required of this model are as follows:

The flow is one-dimensional and self-similar.

The adiabatic index (heat capacity ratio) of the detonation products is constant.

The latter assumption can be avoided, e.g., by using the phase-plane method of Kuhl [12].
However, the differences in density, pressure and velocity profiles between these methods
are roughly between 1 and 2 % [12].

With these assumptions, the solution of the gas-dynamic equations is given in terms
of a chosen set of similarity variables. Let ξ = r (Dt)−1 where r is the radial coordinate,
D is the detonation velocity and t is time, φ (ξ) = u/D, where u is the gas velocity,
η (ξ) = c/D, where c is the speed of sound. Then the steady flow solution is given by:
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where j = 0, 1, 2 corresponds to planar, cylindrical and spherical geometry respectively,
and γ is the adiabatic index. These equations can be integrated from the CJ-point, where
ξ = 1, φ = φ1 and η = η1. For j = 1 or j = 2 the equations are singular at the front,
and the solution in the immediate proximity of this point is instead computed by the
first-order series expansion:
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η (ξ) = η1 −
γ − 1

2

√
2jφ1η1
γ + 1

(1− ξ)1/2 + ... (9)

The series expansion is used to compute a single point behind the CJ point, and the
rest of the profile follows by integration of equations 6 and 7. Since the expansion behind
the CJ point is isentropic, pressure and density profiles are found by

p(ξ) = p(1)

(
η(ξ)

η(1)

)2γ/(γ−1)

, (10)

ρ(ξ) = ρ(1)

(
η(ξ)

η(1)

)2/(γ−1)

. (11)

2.3.2 Initial conditions from programmed burn

The evolution of a general detonation front in an explosive with complex charge ge-
ometry is difficult to compute accurately. Direct numerical simulations are infeasible,
due to the conflicting requirements of high resolution of the reaction zone and the large
amounts of explosives. Thus, programmed burn has emerged as an engineering solution.
The programmed-burn approach has been shown to produce acceptable results without
large computational cost [13, 14].

Based on the results from the thermochemical code, the detonation velocity is pre-
scribed throughout the explosive. With this procedure, virtually no computational effort
is spent on the detonation front and reaction zone calculations per se. Only the rest of
the gas-dynamics problem, where the detonation energy performs mechanical work, is
simulated directly.

In the present implementation, the programmed burn model is defined simply by a
scalar field representing a local initiation time,

tinit(x) = dI/D.

Here, dI = dI(x) is the distance to the closest detonation initiation point. Once the
simulation time reaches tinit for a given computational cell, the appropriate detonation
energy (given by the thermochemical code) is released at that location.

3 Results

3.1 Spherical detonations

For the free-space spherical detonations, several common commercial explosives have
been simulated. Selected coefficients for the JWL EOS for each (fully reacted) explosive
are listed in Table 1, as are the detonation velocities and detonation-energy releases
calculated in the thermochemical solver. Only parameters relevant to the gas-dynamics
simulations are shown.
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Table 1: Selected detonation parameters from the thermochemical codeI; JWL constants
(A, B, R1, R2, and ω), detonation velocity (D), and detonation energy (ED) are shown.

Explosive A
[GPa]

B
[GPa]

R1 R2 ω D
[m/s]

ED[
kJ/cm3]

TNT 698.754 20.9134 5.30235 1.69442 0.425571 7158.2 7.1229
EGDN 635.736 16.3697 5.20740 1.47310 0.312138 7519.3 10.2795
HMX 1200.182 41.8148 5.14251 1.70474 0.516399 9194.8 11.2751
Nitroglycerine 802.456 19.4111 5.29319 1.51644 0.343281 7786.9 10.1127
PETN 812.029 24.8674 4.90760 1.53975 0.431519 8423.4 10.8304
Picric acid 789.910 23.2665 5.14538 1.67083 0.463379 7628.2 7.7859
RDX 906.164 31.5984 4.88605 1.60997 0.497743 8881.3 10.7488
Tetryl 743.711 24.1145 5.03631 1.61632 0.464622 7871.2 8.5857
AN
(ρ = 800 kg/m3)

102.441 2.4722 5.65876 1.85368 0.390625 3723.5 1.5584

ANFO
(ρ = 800 kg/m3)

94.244 3.2328 4.99013 1.42873 0.347341 4790.5 3.4817

Blasting gelatin 629.476 15.9885 5.21995 1.47715 0.316859 7408.6 9.8517
Comp. A-3 1139.844 34.2849 5.53357 1.71944 0.483375 8429.8 9.1571
Comp. B 867.256 28.3582 5.19281 1.65308 0.475931 8122.7 8.9343
Comp. C-4 1121.466 34.4409 5.47924 1.71300 0.488059 8455.1 9.2536
Octol 75-25 1072.979 34.6360 5.20599 1.66865 0.501066 8665.9 10.0424
Pentolite 50-50 657.216 23.8726 4.95074 1.59822 0.467663 7754.1 8.5708

I The EXPLO5 density increase ratio was set to 1.005 for the calculation of the shock adiabat of the
products, and the density decrease ratio was set to 1.01 for the calculation of the expansion isentrope
of the products (with a freeze temperature of 1800 K). Only formation of solid carbon as graphite (i.e.,
not diamond) was allowed in the EXPLO5 calculations. All explosives have densitites close to their
theoretical maximum densities unless otherwise noted.
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The programmed-burn approach has been shown to produce acceptable results without
large computational cost [13, 14].

Based on the results from the thermochemical code, the detonation velocity is pre-
scribed throughout the explosive. With this procedure, virtually no computational effort
is spent on the detonation front and reaction zone calculations per se. Only the rest of
the gas-dynamics problem, where the detonation energy performs mechanical work, is
simulated directly.

In the present implementation, the programmed burn model is defined simply by a
scalar field representing a local initiation time,
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Here, dI = dI(x) is the distance to the closest detonation initiation point. Once the
simulation time reaches tinit for a given computational cell, the appropriate detonation
energy (given by the thermochemical code) is released at that location.
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For the free-space spherical detonations, several common commercial explosives have
been simulated. Selected coefficients for the JWL EOS for each (fully reacted) explosive
are listed in Table 1, as are the detonation velocities and detonation-energy releases
calculated in the thermochemical solver. Only parameters relevant to the gas-dynamics
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For the gas-dynamics simulations, a series of expanding one-dimensional computational
grids have been used, in which consecutive cell widths (and hence also cell volumes) expand
in the x-direction, as shown in Figure 1. Cell widths in both y- and z-direction expand
(corresponding to the two angular directions) with increasing x, though only one direction
is visible in the figure. Using multiple meshes is significantly more efficient than using a
single mesh for the entire simulation. Interpolation between meshes introduces a small
error that a single mesh would avoid. However, that error was found to be insignificant
for the current simulations.

The initial mesh represents a 0.5◦ spherical sector from x = 0.01R to x = 2R, where
R = (3M/4∗ρ∗π)1/3. Note thatR is simply the radius of the explosive charge, based onM ,
the total mass of explosive (typically 1 kg in the present simulations), and ρ, the density
of the explosive material. Once the shock wave reaches x = 0.85R in the initial mesh, the
simulation data is interpolated to a new mesh with twice the resolution and domain size,
and the simulation is continued. This interpolation procedure is repeated iteratively on
successively coarser meshes until a desired distance (or time) of shock propagation has
been calculated.

All the successive one-dimensional meshes comprise 1188 computational cells and use
a spherical sector of 0.5◦ (in both angular directions). The meshes are uniformly spaced
in the x-direction. The time-steps are determined based on a constant CFL number of
0.5, based on the cell width in the x-direction.

From the results of the simulated detonations, TNT equivalencies can be calculated as
follows. The recorded shock pressure and impulse of the positive phase are recorded for all
locations within 5 ≤ Z ≤ 40. Then, these results are compared to a similar simulation of
TNT. Since the results are a function of the scaled distance, Z = x/ 3

√
M , the TNT mass

can be scaled so that the pressure or impulse at a certain (unscaled) distance matches
for both explosives. The TNT equivalency is the ratio of the mass of the matching TNT
charge to the mass of the other explosive. The TNT equivalency computed in this way
is generally a function of scaled distance. The results of the calculations are listed in
Table 2.

From a practical point of view, the TNT equivalency values in Table 2 for ammonium
nitrate (AN) and ammonium nitrate/fuel oil (ANFO) hold particular importance with

Figure 1: Schematic illustration of the one-dimensional mesh used in the spherical-
detonation simulations.
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Table 2: TNT equivalencies for selected commercial explosives, as computed with the
two-step procedure. As the results did not depend significantly on distance, Z, only the
average TNT equivalency is reported for each explosive.

Explosive TNT equivalency
by impulse

TNT equivalency
by peak overpressure

TNT 1 1
EGDN 1.88 1.38
HMX 1.83 1.37
Nitroglycerine 1.71 1.31
PETN 1.76 1.34
Picric acid 1.09 1.05
RDX 1.79 1.35
Tetryl 1.31 1.15
AN (ρ = 800 kg/m3) 0.20 0.42
ANFO (ρ = 800 kg/m3) 0.69 0.80
Blasting gelatin 1.74 1.32
Comp. A-3 1.43 1.20
Comp. B 1.42 1.20
Comp. C-4 1.46 1.22
Octol 75-25 1.61 1.28
Pentolite 50-50 1.34 1.17
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regard to explosives safety due to the enormous quantities of these materials being stored
and transported at any time. For AN, which is by far the most important constituent
of most civilian explosives, the TNT equivalency depends heavily on the choice of over-
pressure or impulse as the determining air-blast parameter. This may partly explain
the difficulties associated with the establishment of robust equivalency values for this
particular explosive.

In addition to the values in Table 2, we have also calculated the corresponding TNT
equivalencies for a number of emulsion-matrix compositions (the non-sensitized precursor
to emulsion explosives) obtained from a number of major producers of civilian explosives.
All of these have TNT equivalencies, according to the method reported here, in the range
of roughly 0.80 by overpressure and between approximately 0.65 and 0.70 by impulse.

When comparing the simulated pressure field for TNT to experimental data, shown in
Figure 2, the results show good agreement; the underprediction of the simulated detona-
tion pressure (between 20 % and 35 %) is acceptable given the wide pressure range (three
orders of magnitude), and the results are in line with previously published simulation
data [15]. The evolution of the pressure field with distance matches the experiment very
well.

The peak pressure is underpredicted partly due to the finite size of the control volumes
used in these simulations. However, since that effect will similarly reduce peak pressures
for all explosives, it is not likely to have much impact on TNT equivalencies.

The results presented in the above is indicative of both the quality and usefulness of
the two-step approach. In the following, an analogous procedure is applied to simulate
detonations in more complicated cases, thereby assessing required safety distances for
storage of explosive materials.

3.2 Detonating stacks of dynamite

Most calculations of detonation pressures, and hence related safety distances, are based
on spherical detonations and TNT equivalencies. With the approach outlined in previous
sections, case-specific calculations can be performed, allowing more accurate estimates of
realistic pressure fields.

In the following, detonations of a stack of dynamite are simulated, with different points
and planes of initiation. The particular dynamite formulation used in this study has been
obtained from a leading European manufacturer. The composition contains ammonium
nitrate (AN), ethylene glycol dinitrate (EGDN), nitrocellulose (NC) and various additives.

The simulation domain is illustrated in Figure 3a; the geometry represents a stack on
a standard Euro-pallet (EUR 1; 1.2 by 0.8 m2) sitting on the ground, loaded with 1,000
kg of cartridged dynamite, contained in five layers of cardboard boxes. The pallet itself
is 0.144 m tall, and the height of the stack of dynamite is 1.4 m. The ground surface is
included as a fully shock-reflecting surface in the simulations, whereas the materials of
the pallet and stack are not.

The coordinate system of the computational domain is defined such that the longer
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Figure 2: TNT-detonation pressure data from the present simulations ( ), the experi-
mental data compiled by Kingery and Bulmash [16] (−−−), and the numerical simulation
of Grisaro [15] (·······).
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(a) Schematic illustration of the
pallet and stack geometry.

(b) Computational domain, with a cutplane at y = 0, colored
by the cubic root of local cell volume. The stack of dynamite is
marked in red.

Figure 3: The geometry (left) and computational domain (right) of the detonating-
dynamite simulations.

edge of the pallet (1.2 m in length) runs along the x-direction, and z is the vertical
coordinate. In the following, the left side of the stack detones the side that is parallell
to the y-axis and placed at the negative x-value. The back side of the stack detones the
side that is parallell to the x-axis and placed at the negative y-value. The right and front
sides are defined analogously (and with opposite signs of the left and back side positions,
respectively).

The computational domain is shown in Figure 3b, where the mesh resolution is also
indicated; the cutplane at y = 0 (through the middle of the stack) is colored by the
cubic root of the local cell volume, i.e. an estimate of a typical local edge length for a
computational cell. The smallest edge in the mesh, inside the explosive (i.e. inside the
stack of dynamite) is 8.33 mm, whereas the largest edge, at the outer boundary, is 56.4
mm. The total number of computational cells is 25,666,560. Case L3 has a different
resolution, to be discussed.

Given the three-dimensional nature of the problem, the mesh must also be three-
dimensional. To allow reasonable computation times, the mesh resolution will be signif-
icantly reduced compared to the one-dimensional cases of Section 3.1, but the reduction
in mesh density is somewhat mitigated by using a non-uniform mesh; as shown in Figure
3b, the mesh is most finely resolved in and near the explosive, where the peak pressures
are highest.

All simulations, except L3, used a computational time step of ∆t = 0.12 µs. 15,000
time steps were simulated, giving a total simulation time of 1.8 ms. Each simulation
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required roughly 3,200 CPU-hours to complete.
Table 3 lists the 14 cases simulated. The simulations are divided into three case series;

K, L, and M. The rationale and results for each of the series are discussed in the following.

Table 3: Overview of simulation cases and their initation locations. Case L3 (*) is a
high-resolution ENO-reconstruction version of case K2.

Case Initiation location Illustration

K1 Point, center of upper-left edge

K2 Point, center of upper-left edge

K3 Point, center of upper-left edge

L1 Point, upper-front-left corner

L2 Point, centroid of stack

L3* Point, center of upper-left edge

L4 Point, center of left side

L5 Point, center of top side

M1 Plane, left side

M2 Plane, front side

M3 Plane, top side

3.2.1 Case series K: Worst-case pressure field

The cases in series K are simulated to determine the appropriate choice of density for
the explosive material. Whereas the real density of the simulated dynamite is ρreal =
1,500 kg/m3, the stack is not packed 100 % efficiently; only 49.6 % of the stack volume
consists of dynamite. It is therefore possible to define a new pseudo-dynamite material
with 49.6 % of the real density, i.e. use ρpseudo = 744 kg/m3. The pseudo-material density
can be used both in the thermochemical and gas-dynamical simulations (case K1) or only
for the gas dynamics (case K3). Alternatively, the real dynamite density can be used
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1,500 kg/m3, the stack is not packed 100 % efficiently; only 49.6 % of the stack volume
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in both steps, accompanied by a reduction in stack volume to account for the packing
inefficiency (case K2). All of the K simulations are initiated in a point on the center of
one of the upper edges of the stack.

Given the difficulty involved in determining which of the three K simulations represent
the most realistic macroscopic model of a stack inefficiently packed with dynamite, the
worst case (in terms of maximum pressure values) is used as a basis for the other case
series (L and M).

Figure 4 shows the maximum pressure values, pmax in the (x, z)-plane (with y = 0)
for the three cases in series K. In this and following figures, pmax always refers to the
maximum in time and in the vertical direction up to the stack height, i.e.,

pmax(x, y) = max
t>0

∧
z<1.544 m

p(x, t). (12)

In the specific case of the present simulations, pmax is an accurate estimate of the maximum
of the peak pressure trailing the shock front, also referred to as the shock pressure.

From the data shown in Figure 4, it is clear that case K2 represents the highest
maximum-pressure values. Hence, simulating a smaller stack with 100 % packing effi-
ciency is the most conservative model for inefficient packing. For case series L and M,
each stack dimension is thus reduced by a factor (ρpseudo/ρreal)

1/3, and ρreal is used as the
density of the explosive. The bottom of the stack remains at z = 0.144 m above ground
level and horizontally centered at (x, y) = (0, 0).

3.2.2 Case series L: Point initiations

In case series L, various point initiations on the stack are considered, specifically in one
corner, one of the edge centers, one of the side centers, and the stack centroid. Comparison
of these simulations may reveal information about the dependence of the pressure field on
initiation-point location. Note that case L3 is merely a high-resolution version of case K2,
thereby allowing for an indicative mesh-resolution study, briefly discussed in Appendix
A.

Figure 5 shows the maximum pressures, pmax in the (x, z)-plane (with y = 0) for cases
L2, L4 and M1. As expected, the pressure field is symmetric for simulation L2. Within
4 meters from the center of the stack, the maximum pressure falls below 1 kbar. In
comparison, case L4 yields higher pressure values on the right side of the stack relative
to the left; at 4 m from the stack centroid, the pressure is more than twice as high on
the right side. This is consistent with the fact that the rightward detonation propagates
through more explosive material.

Another way of comparing the geometric effects of the initiation point on the pressure
field is by considering isocurves in the xy-plane, as shown in Figure 6. The symmetry
of case L5 is apparent, as expected. It is also worth noting that the highest pressure
values (for a given distance from the stack) are encountered in the x- and y-directions
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Figure 4: Maximum pressure, pmax, as a function of x-distance (with y = 0) from the
center of the dynamite stack for cases K1 ( ), K2 (−−−), and K3 (·······). The edges
of the dynamite stack (real dimensions) are marked by vertical red (dashed) lines.

Figure 5: Maximum pressure, pmax, as a function of x-distance (with y = 0) from the
center of the dynamite stack for cases L2 ( ), L4 (−−−), and M1 (·······). The edges
of the dynamite stack (real dimensions) are marked by vertical, red (dashed) lines.
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Figure 4: Maximum pressure, pmax, as a function of x-distance (with y = 0) from the
center of the dynamite stack for cases K1 ( ), K2 (−−−), and K3 (·······). The edges
of the dynamite stack (real dimensions) are marked by vertical red (dashed) lines.
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of the dynamite stack (real dimensions) are marked by vertical, red (dashed) lines.
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(i.e. directly to the front, back, left and right of the stack), even for case L1, which is
initiated in the upper-left-front corner.

From Figure 6, it appears that the initation point is not critical for the evolution of
the pressure field, although the effects of altering the initation point are clearly visible.
Case L4 generally seems to produce the smallest values of pmax, whereas there is no clear
“worst-case” for all the horizontal directions considered. Also, given how pmax is defined,
any high-pressure regions above the height of the stack are not accounted for in the data
considered here.

Figure 6: Isocurves in the xy-plane of pmax(x, y) = 0.2 kbar for cases K2 (red), L1 (blue),
L4 (green), and L5 (black). The edges of the dynamite stack (real dimensions) are marked
by red, dashed lines.

To obtain more information about the spatial structure of the detonation dynamics,
density gradients can be considered. Figure 7 shows a representation of the density-
gradient field at simulation time t = 0.612 ms for cases L4 and M1. To improve the
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visualization of the gradients, a pseudo-Schlieren tecnique is used; the shading in Figure
7 indicates the value of

F (ρ) = exp

(
−30

|∇ρ|
|∇ρ|max

)
,

in which ∇ρ = ∂ρ/∂xi is the density gradient, and |∇ρ|max = maxplane |∇ρ| is the in-plane
spatially maximal norm of the density gradient.

From Figure 7, the qualitative features of cases L4 and M1 look generally similar;
several triple points can be identified, and a reflecting shock from the ground is seen as
a black flattened structure in the lower part of the stack outline in both cases. However,
the reflecting shock is more clearly seen in Figure 7b, indicating that the reflected shock
is relatively (to the other pressure gradients in the domain) much stronger in case M1
than case L4.

The left part of the shock structure differs in the two cases; the shock front of case M1
is more smooth than that of case L4, which has a visible kink. The kink is a result of
geometric effects of the explosive charge, specifically the effect of the upper-left edge of
the stack. In the case of M1, the entire left side initates the detonation, whereas for case
L4 only a single point at the left side acts as a trigger. In the latter case, a shock front
thus approaches the upper-left edge perpendicularly.

It can also be seen that the detonation front is closely followed by another density
gradient, giving the front the appearance of an expanding shell. This second gradient
is an inward propagating shock wave caused by overexpansion of the detonation gases.
Eventually, that shock wave will implode towards the detonation center and create a
secondary outward shock wave.

3.2.3 Case series M: Plane initiations

Case series M covers various full-plane initiations. By the symmetry of the problem,
the simulations in this case series cover initiations from all possible sides of the stack
(except the bottom).

From Figure 5, it is evident that the plane initiation, case M1, yields a higher maximum
pressure than the two point initiations. This result also holds when considering all the
point-initiation simulations as a whole compared to all the plane-initiation simulations as a
whole; the plane initiations represent worst-case scenarios in terms of resulting maximum
pressures.

In order to estimate the highest possible peak pressure levels around a stack of dyna-
mite, it is thus sufficient to consider only all possible plane initiations, i.e. cases M1–M3
and their relevant reflections. By accumulating data from all such initiations, a worst-
case pressure field can be calculated simply by using the pointwise maximum over all the
initiations1. Such a worst-case pressure field is shown in Figure 8.

1Of course, the computed pmax field for each case is itself a casewise worst case, as defined by Equa-
tion (12).
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To obtain more information about the spatial structure of the detonation dynamics,
density gradients can be considered. Figure 7 shows a representation of the density-
gradient field at simulation time t = 0.612 ms for cases L4 and M1. To improve the

16

Hannibal E. Fossum, Andreas N. Osnes and Tor E. Kristensen

visualization of the gradients, a pseudo-Schlieren tecnique is used; the shading in Figure
7 indicates the value of

F (ρ) = exp

(
−30

|∇ρ|
|∇ρ|max

)
,

in which ∇ρ = ∂ρ/∂xi is the density gradient, and |∇ρ|max = maxplane |∇ρ| is the in-plane
spatially maximal norm of the density gradient.

From Figure 7, the qualitative features of cases L4 and M1 look generally similar;
several triple points can be identified, and a reflecting shock from the ground is seen as
a black flattened structure in the lower part of the stack outline in both cases. However,
the reflecting shock is more clearly seen in Figure 7b, indicating that the reflected shock
is relatively (to the other pressure gradients in the domain) much stronger in case M1
than case L4.

The left part of the shock structure differs in the two cases; the shock front of case M1
is more smooth than that of case L4, which has a visible kink. The kink is a result of
geometric effects of the explosive charge, specifically the effect of the upper-left edge of
the stack. In the case of M1, the entire left side initates the detonation, whereas for case
L4 only a single point at the left side acts as a trigger. In the latter case, a shock front
thus approaches the upper-left edge perpendicularly.

It can also be seen that the detonation front is closely followed by another density
gradient, giving the front the appearance of an expanding shell. This second gradient
is an inward propagating shock wave caused by overexpansion of the detonation gases.
Eventually, that shock wave will implode towards the detonation center and create a
secondary outward shock wave.

3.2.3 Case series M: Plane initiations

Case series M covers various full-plane initiations. By the symmetry of the problem,
the simulations in this case series cover initiations from all possible sides of the stack
(except the bottom).

From Figure 5, it is evident that the plane initiation, case M1, yields a higher maximum
pressure than the two point initiations. This result also holds when considering all the
point-initiation simulations as a whole compared to all the plane-initiation simulations as a
whole; the plane initiations represent worst-case scenarios in terms of resulting maximum
pressures.

In order to estimate the highest possible peak pressure levels around a stack of dyna-
mite, it is thus sufficient to consider only all possible plane initiations, i.e. cases M1–M3
and their relevant reflections. By accumulating data from all such initiations, a worst-
case pressure field can be calculated simply by using the pointwise maximum over all the
initiations1. Such a worst-case pressure field is shown in Figure 8.

1Of course, the computed pmax field for each case is itself a casewise worst case, as defined by Equa-
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(a) Case L4.

(b) Case M1.

Figure 7: Snapshots at time t = 0.612 ms of the xz-plane (with y = 0), colored by a
function of the density gradient, F (ρ). Dark shading indicates higher gradients. The
edges of the dynamite stack (real dimensions) are marked by blue, dashed lines.
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Figure 8: Contours in the xy-plane of the case-maximum of pmax(x, y) for cases M1–M3
and their reflections. Contour levels increase by a factor two for each band and equal
0.2 < pmax < 0.4 (dark blue), 0.4 < pmax < 0.8 (blue), 0.8 < pmax < 1.6 (turquoise) and
1.6 < pmax < 3.2 (orange). The edges of the dynamite stack (real dimensions) are marked
by red, dashed lines.
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Figure 8: Contours in the xy-plane of the case-maximum of pmax(x, y) for cases M1–M3
and their reflections. Contour levels increase by a factor two for each band and equal
0.2 < pmax < 0.4 (dark blue), 0.4 < pmax < 0.8 (blue), 0.8 < pmax < 1.6 (turquoise) and
1.6 < pmax < 3.2 (orange). The edges of the dynamite stack (real dimensions) are marked
by red, dashed lines.
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The contours in the figure are symmetric around the x- and y-axes, since plane initi-
ations from all sides of the stack are included in the case-maximum. As seen earlier (in
Figures 6 and 7), there are obvious corner effects in the pressure contours. The pressure
quickly drops with distance, from more than 3 kbar (just outside of the stack) to less than
0.2 kbar (at around 3.5 m or less from the sides of the stack), consistent with previously
shown data.

3.2.4 Discussion: Safety distances

The rationale for defining pmax as a maximum up to stack height is as follows. Assuming
a detonating stack in a storage of multiple stacks of equal height, it is only the pressure
values occuring up to stack height that pose a risk to surrounding stacks. Potentially
higher pressures above the level of the stack height is irrelevant. The definition of Equation
(12) thus allows for the easy estimation of safety distances for storing multiple stacks
alongside each other

If the sensitivity of a given explosive is known (e.g. based on gap-tests in air), it is thus
trivial to estimate required safety distances based directly on the results of the previous
section. Assuming the sensitivity of a hypothetical explosive to be, say, 0.4 kbar, a circular
safety distance of 2.2 m can be determined based on Figure 8.

More useful information can also be extracted with regards to safety distances: It is
clear from Figure 8 that the required safety distance is much larger in the directions
perpendicularly from the sides of the stack than diagonally from the side edges. In the
latter case, the required safety distance for the hypothetical explosive is merely 0.7 m.
Hence, a staggered arrangement of stacks will allow for more compact storage without
increasing the risk of sympathetic detonation.

Moreover, the simulation methodology presented in the above enables further testing of
case-specific storage, such as effects of shock reflections from ceilings (for indoor storage),
or quantitative investigations of clustered storage, in which several stacks are stored close
together (allowing for a limited stack-to-stack propagation), but with correspondingly
larger distances between stack clusters.

Note, however, that the pressure sensitivity of an explosive – if known – only constitutes
one risk factor. Sensitivity to mechanical impacts, specifically from any solid fragments
from nearby explosions, represents another real and considerable risk which has not been
considered in the foregoing discussion.

4 Concluding remarks

A novel two-step approach to simulating detonations of explosives has been demon-
strated, combining thermochemical calculations with gas-dynamical computations. The
methodology allows for the simulated detonation of several different explosives and charge
geometries, as well as subsequent shock interaction with surrounding structures, in up to
three spatial dimensions.
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The simulation methodology has been validated against earlier experimental and nu-
merical work on TNT detonations. New TNT equivalencies have been computed for a
selection of common commercial explosives.

Data has also been presented on simulated detonations of a stack of dynamite, using
a variety of initiation locations, and resulting pressure fields and implied safety distances
have been discussed.

For a detonating stack of dynamite, plane intitiations of the detonation generally yields
the highest pressure levels. Furthermore, the pressures are significantly higher in the di-
rections perpendicularly from the sides of the stack compared to the directions diagonally
from the side edges of the stack. As expected, the pressure levels drop quickly with dis-
tance, from more than 3 kbar (just outside of the stack) to less than 0.2 kbar (at around
3.5 m or less from the sides of the stack).

The simulations and data processing demonstrated here can be easily used to determine
required safety distances for storage of an explosive, given that empirical data on the
pressure sensitivity of the explosive is available.

Appendix

A An indication of the mesh-resolution sensitivity

At this time, no rigorous study of the mesh-resolution sensitivity of the results has been
carried out. Moreover, the effect of using first-order face-value reconstruction instead of
the ENO scheme has not been evaluated, since this scheme was not stable for the three-
dimensional simulations. These investigations will be included in future work.

That said, the comparison between case K2 (on a 26 million-cell mesh) and case L3
(on a 47 million-cell mesh) gives an important indication of the significance of the mesh
resolution; as shown in Figure 9, the difference in pressure levels appear to be insignificant
when comparing the high-resolution case to the low-resolution case.

More extensive studies should be carried out to ensure that also the gradients of pres-
sure and density are well represented by the present choice of parameters. Furthermore,
the differences might be more significant at higher pressure levels, such as if plane initia-
tions or detonations of larger amounts of explosive were to be compared.

For now, however, it is tempting to conclude that the present choice of mesh resolution
seems quite sufficient for the results which are the focus of this paper.
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Figure 9: Maximum pressure, pmax, as a function of x-distance (with y = 0) from the
center of the dynamite stack for cases K2 ( ), and L3 (· · · · · · ·). The edges of the
dynamite stack (real dimensions) are marked by vertical, red (dashed) lines.
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[1] R. Jeremić and Z. Bajić, “An approach to determining the TNT equivalent of high
explosives,” Sci. Tech. Rev., vol. 56, no. 1, pp. 58–62, 2006.

[2] R. Panowicz, M. Konarzewski, M. Trypolin, R. Panowicz, and M. K.-M. Trypolin,
“Analysis of criteria for determining a TNT equivalent,” Strojnǐski vestnik-Journal
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Figure 9: Maximum pressure, pmax, as a function of x-distance (with y = 0) from the
center of the dynamite stack for cases K2 ( ), and L3 (· · · · · · ·). The edges of the
dynamite stack (real dimensions) are marked by vertical, red (dashed) lines.
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Abstract. We present implementations of tumor growth models in the open source finite vol-
ume framework OpenFOAM. Three different models are implemented, the Keller–Segel chemotaxis
model, a haptotaxis model for cell invasion and the Chaplain–Lolas model for cell invasion. The
implementation is shown to be straight-forward using the equation-mimicking interface of Open-
FOAM. Numerical experiments indicate that with proper choices for discretization schemes and
solvers, OpenFOAM is a suitable framework for studying tumor growth models.

1 INTRODUCTION

Cancer is the second leading cause of death globally, with close to 10 million deaths each year.
The application of mathematical modelling to the study of tumor growth can lead to improved
understanding of the underlying biological behavior and help design efficient treatment methods.

Tumor growth is a complex topic due to the many biological processes involved and the wide
range of spatial and temporal scales. Models have been applied at various level of complexity to
understand these processes. On the tissue scale, the tumor growth process often involves transport
processes that lend themselves to formulations based on systems of conservation equations. Such
models typically require numerical methods in order to compute reliable solutions, with the most
common methods being the finite volume method and the finite element method. Particular care
must be taken to ensure that the cell concentrations remain positive throughout the simulation.
Negative values can be caused by numerical oscillations near steep gradients due to the discretization
of the convective terms. Examples of the use of the finite volume method are found in e.g. [1], where
they used a fractional-step method with high-resolution advection schemes, in [2], where they used
a second-order, positivity preserving discretization scheme and in [3], where a higher-order scheme
with a non-linear limiter was used. The finite element method was used in [4], where a Galerkin
scheme with TVD flux limiting was used and in [5], where they applied a local discontinuous
Galerkin method. Most previous work has been performed on uniform grids with simple geometries.
A notable exception is [6] who used medical images to generate geometries for simulating breast
tumor growth. They used a standard finite element method with triangular grid elements, since their
mathematical model was a biomechanical model that did not include the numerically challenging
convection terms.

In this work, we investigate the use of the OpenFOAM [7] software for tumor growth problems.
OpenFOAM is an open source library for solving partial differential equations using the finite
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volume method. The built-in applications and models are primarily intended for computational
fluid dynamics, but the underlying library can be applied to any continuum mechanics problem.
The potential benefits of using OpenFOAM are

• easy implementation of new models due to the equation-mimicking interface that tries to keep
close correspondance between the equations and the solver code

• one implementation for 1D, 2D and 3D geometries

• wide range of discretization schemes and equation solvers to choose from

• support for polyhedral, unstructured meshes and built-in mesh generators

• efficient, parallelized code that scales to a large number of cores

Three different models are implemented and the results compared against results from the literature.

2 TUMOR GROWTH MODELS

2.1 Chemotaxis

Chemotaxis is the movement of a cell due to a gradient of a particular substance. This is an
important process in many biological processes, such as cell pattern formation and cell aggregation.
The most well-known mathematical model for this process is the Keller–Segel model [8–10]. This
model can be written in a generic way as

ut + ∇ · (B(v)u∇v)︸ ︷︷ ︸
chemotaxis

= ∇ · (D(u)∇u)︸ ︷︷ ︸
cell motility

+ f(u)︸ ︷︷ ︸
cell growth/death

(1)

vt = ∇ · (D(v)∇v)︸ ︷︷ ︸
diffusion

+ g(u)u︸ ︷︷ ︸
production

− s(u)v︸ ︷︷ ︸
decay

(2)

Here, u is the cell density and v is the chemoattractant. We see that chemotaxis term in the
transport equation for the cell density is essentially a convection term where the gradient of the
chemoattractant represents the velocity. Particular choices for the general functions D, A, B, C,
q, g and s yield specific models. In this work, we consider the following specific model, which was
used in [1] to describe aggregating bacteria behavior,

ut + χ∇ ·
[

u

(1 + v)2 ∇v

]
= du∆u (3)

vt = ∆v + w
u2

1 + u2 − v (4)

2.2 Haptotaxis

Haptotaxis is a similar process to chemotaxis, but for tumor growth haptotaxis can be understood
as cell movement due to gradients of cellular adhesion sites. These gradients are naturally present
in the extracellular matrix (ECM) of the body, which is considered to be stagnant, but can also be
generated by the tumor by the production of an enzyme which degrades the ECM.

2
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We consider the following specific model here [11],

ut + ∇ · (χu∇v)︸ ︷︷ ︸
haptoaxis

= du∆u︸ ︷︷ ︸
cell motility

− Ψu︸︷︷︸
cell death

+ 2w

1 + w
u

︸ ︷︷ ︸
cell division

(5)

vt = − αmv︸ ︷︷ ︸
degradation

(6)

mt = dm∆m︸ ︷︷ ︸
diffusion

+ δu︸︷︷︸
production

− βm︸︷︷︸
decay

(7)

wt = dw∆w︸ ︷︷ ︸
diffusion

+ γv︸︷︷︸
production

− ew︸︷︷︸
decay

− ηw︸︷︷︸
uptake

(8)

Here, u is the tumor cell density, v is the extracellular matrix density, m is the matrix-degradative
enzyme concentration and w is the oxygen concentration. The remaining variables are model
constants.

2.3 Chaplain-Lolas model

The final model considered is the model from [3], which is developed for modelling cancer cell
invasion of tissue. The main element of the model is the inclusion of the urokinase plasminogen
activation system (uPA), which is believed to be important for the regulation of tumor invasion. A
full description of the model is beyond the scope of this work, but the full system of equations is as
follows,

ct = − dc∆c︸ ︷︷ ︸
cell motility

+∇ ·


 χuc∇u︸ ︷︷ ︸

uPA-chemo

+ χpc∇p︸ ︷︷ ︸
PAI-1-chemo

+ χvc∇v︸ ︷︷ ︸
VN-hapto


 + µ1c(1 − c)︸ ︷︷ ︸

proliferation

, (9)

vt = − δvm︸ ︷︷ ︸
degradation

+ φ21up︸ ︷︷ ︸
uPA/PAI-1

− φ22vp︸ ︷︷ ︸
PAI-1/VN

+ µ2v(1 − v)︸ ︷︷ ︸
remodelling

, (10)

ut = du∆u︸ ︷︷ ︸
diffusion

− φ31pu︸ ︷︷ ︸
uPA/PAI-1

− φ33cu︸ ︷︷ ︸
uPA/uPAR

+ α31c︸ ︷︷ ︸
production

(11)

pt = dp∆p︸ ︷︷ ︸
diffusion

− φ41pu︸ ︷︷ ︸
PAI-1/uPA

− φ42pv︸ ︷︷ ︸
PAI-1/VN

+ α41m︸ ︷︷ ︸
production

(12)

mt = dm∆m︸ ︷︷ ︸
diffusion

+ φ52pv︸ ︷︷ ︸
PAI-1/VN

+ φ53cu︸ ︷︷ ︸
uPA/uPAR

− φ54m︸ ︷︷ ︸
degradation

(13)

(14)

Here, c is the cancer cell density, v is the ECM density, u is the uPA concentration, p is the PAI-1
concentration and m is the plasmin concentration. The remaining variables are model constants,
a full description can be found in [3]. We see that the cancer cell density equation contains both
two chemotaxis terms and one haptotaxis term. Also, the source terms in the equations are both
coupled and non-linear.

3 IMPLEMENTATION IN OPENFOAM

OpenFOAM is built for solving continuum mechanics problems using the finite volume method
[7]. It is implemented using object-oriented techniques in C++, and the underlying idea is to have
close to 1:1 mapping between the partial differential equations and the source code.

For instance, the solution of the cell concentration equation of the Keller-Segel system, Equa-
tion 1, is done by the source code shown in Figure 1. The fvm namespace contains implicit methods,
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phi = fvc : : snGrad (v )∗mesh . magSf ( )∗ f v c : : i n t e r p o l a t e ( model .B(v ) ) ;
s o l v e
(

fvm : : ddt (u)
==
fvm : : l a p l a c i a n ( model .Du( ) , u )

− fvm : : div ( phi , u )
+ fvm : : Sp( model . f (u ) , u )

) ;

Figure 1: C++ source code for solving the cell concentration equation in OpenFOAM

which means that each function returns a sparse matrix with the finite volume operator applied to
the supplied field. The fvc namespace contains explicit methods, which returns a new field with
the operator applied directly. The specific discretization scheme to use for each operator is selected
at run-time.

Of particular interest is the convective term, since this is numerically the most challenging aspect
of the models. In the finite volume method, this is treated as

∫

V
∇ · (B(v)u∇v)dV =

∑
f

Sf · (∇v)f B(v)fuf , (15)

where V represents the cell volume, f denotes a cell face and Sf is the cell surface vector, which
points in the normal direction with magnitude equal to the cell face area.

OpenFOAM uses a polyhedral mesh with co-located variables, meaning all variables are stored
in the cell centres. The fvm::div operator takes φf as input, i.e. a field stored at the cell faces.
To calculate this, we apply the fvc::snGrad operator to the v field, which calculates the surface
normal gradient on the cell faces. The mesh.magSf function returns the cell surface area, while
the fvc::interpolate function interpolates a field from the cell centre to the cell faces. This is
typically done using linear interpolation, but other schemes are also available. For the divergence
operator, multiple discretization schemes are available. In this work, best results were obtained
using the limitedLinear scheme. This is a second-order central-upwind scheme which is total
variation diminishing, using the Sweby limiter [12,13].

The source term is linearized by lagging the f(u) function, and then treated in an implicit
manner, which is handled automatically by the fvm::Sp function. Note that this is a crude way of
handling the source term and could lead to problems with stiff source terms.

As seen in Figure 1, the implementation in OpenFOAM also takes advantage of object-orientated
features in the C++ programming language. The solver is implemented for the generic Keller-Segel
model. Specific submodels are then implemented by subclassing the Keller-Segel model base class
and supplying the functions required by the general model. This allows the solver to only be
implemented once, and new models can be added by just specifying these functions.

For time discretization, the Crank-Nicolson scheme is used. The linear equation systems arising
from the discretization are solved with an algebraic multigrid solver.

4 RESULTS

4.1 Chemotaxis

For testing the implementation of the Keller–Segel model from Equation 4, we consider a cubic
3D domain Ω = [0, 8]3 with homogeneous Neumann boundary conditions on δΩ. The parameters
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(a) t = 1.0 (b) t = 2.0

(c) t = 4.0 (d) t = 5.0

Figure 2: Time evolution of bacteria concentration for Keller-Segel model. Contour plot of u = 0.9.

of the model are chosen as du = 1, χ = 80 and w = 1. The initial conditions are set to

u0 = 0.9 + 0.2 · random[0, 1] (16)
v0 = 0 (17)

Here, the random function returns a random float between 0 and 1. The domain is divided into
uniform cells with size h = 0.1 and the time step is set to ∆t = 0.01.

Figure 2 shows the time evolution of the bacteria concentration by visualizing the contour field
with value 1. We see that the initially randomly distributed bacteria gather into spherical clusters.
The concentrations inside these clusters continue to grow with time. These results are in good
agreement with results presented in [4] using a TVD finite element method. No negative cell
concentrations were observed in the results.

4.2 Haptotaxis

For testing the implementation of the haptotaxis model, we consider a square 2D domain Ω =
[0, 6]2 with homogeneous Neumann boundary conditions on δΩ. The parameters of the model are
chosen as du = dw = dm = 0.01, χ = 0.4, Ψ = 1.0, δ = 1.0, β = 0.01, α = 5.0, γ = 5.0 and η = 1.0.
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The initial conditions are set to

u0 = 5 max[0.3 − (x − 3)2 − (y − 3)2, 0], (18)
v0 = 0.05 cos

(
(10π/36)x2

)
sin

(
(13π/72)y2

)
+ 0.3, (19)

m0 = u0, (20)
w0 = 4v0. (21)

The domain is divided into uniform cells with size h = 0.01 and the time step is set to ∆t = 0.001.
Figure 3 shows the time evolution of the tumor cell concentration. The degradation of the ECM

due to the matrix-degenerative enzyme leads to a large gradient, which in turn makes the tumor
cells propagate outwards. The fluctuations in the density are caused by the initial variation in the
ECM density and oxygen concentration, with higher variation in the upper right corner compared
to the lower left. The results are in good agreement with the results presented in [11].

4.3 Chaplain–Lolas model

For testing the Chaplain–Lolas model from Equation 14, we consider a square 2D domain Ω =
[0, 5]2 with homogeneous Neumann boundary conditions on δΩ. In the top 20 % of the domain, the
following values are used as initial conditions: c = 0, v = 0, u = 0.5, p = 0.05, m = 0. The ECM
density is correspondingly set to v = 1 in the remainder of the domain, with the rest of the fields
set to 0. The remaining values for the parameters of the model can be found in [3].

Figure 4 shows the evolved cancer cell density and ECM density after t = 200. The model exhibits
a complex behavior, with cancer cells invading the domain in a heterogeneous and fragmented
pattern. The ECM density is correspondingly heterogeneous with severe degradation. The results
are in good agreement with the numerical results from [3].

5 CONCLUSIONS

This work investigated the implementation of various models relevant to tumor growth modelling
in the finite-volume framework OpenFOAM. The implementation of the models was shown to be
straight-forward, utilizing the equation-mimicking interface of OpenFOAM. Simulations of test cases
from the literature were performed, and the results were in good agreement with results obtained
with other numerical methods.

Future work will be implementation of further models, of particular interest are models taking
into account the multiphase fluid dynamic behavior such as the model developed in [14]. The
present study only considered simple geometries with uniform meshes, future work will also test the
implementation on more complex geometries arising from medical imaging, such as [6]. Addition-
ally, other numerical schemes such as the high-resolution Kurganov–Tadmor schemes [15] could be
interesting to apply for further accuracy and stability. These schemes were used for tumor growth
modelling in [2]. An implementation of these schemes is already available in OpenFOAM for com-
pressible flow modelling in the rhoCentralFoam solver, and these could be adapted to the models
used in this work. Finally, a more rigorous study of the convergence behavior of the implementation
should be performed.
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(a) Initial cell density (b) Initial ECM density

(c) Cell density, t = 3.0 (d) Cell density, t = 10.0

Figure 3: Time evolution of cell concentration for haptotaxis model.
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Figure 4: Time evolution of cell density (left) and ECM density (right) for Chaplain–Lolas model.
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Abstract. This paper presents a numerical study on the response of blast-loaded AA6016
T4 aluminium plates with crack-like defects. Explicit finite element simulations were per-
formed with LS-DYNA, using an uncoupled plasticity and fracture model with through-
thickness damage regularization valid for shell elements. Uniaxial tensile tests are used to
determine the parameters of the constitutive model by inverse modelling. Four different
crack-like defects are considered at a load level resulting in failure and crack propagation
in all the plates. The simulation results obtained with different mesh sizes are evaluated
against experiments conducted in a shock tube facility. The shell element model is able
to predict failure and crack propagation with good accuracy for the finest mesh, i.e., shell
elements with length-to-thickness ratio of 1/3, while the accuracy decreases rapidly as the
mesh size is increased.

1 INTRODUCTION

When modelling structural problems using the finite element method (FEM), shell
elements have been the standard in industrial applications due to their superior computa-
tional efficiency compared to solid elements. They benefit from a versatile formulation and
are especially suitable for structures where two dimensions are much larger than the third
one. Even though shell elements provide good results in the elastic and plastic domains,
predicting failure and crack propagation has always been a challenge. Local necking is
often a precursor to failure in thin-walled structures. In the necking process, the local
stress state of the plate changes from plane stress to a three-dimensional stress state.
Computationally efficient simulations often require large element sizes, which makes it
difficult to capture strain localization. This is due to the local characteristic of a necking
process, where a coarse spatial discretization in a simulation will even out the strain gra-
dients. To overcome the aforementioned problems, different empirical relationships have
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been proposed in an attempt to couple the failure strain to the element size. However,
many of the proposed regularization models are limited to membrane loading. This is a
problem due to the lower ductility exhibited by a plate in stretching compared to bend-
ing, linked to the local neck which is formed in a membrane dominated problem. To
account for this challenge, the damage evolution due to stretching and bending should be
accounted for in problems involving combined loading actions. The uncoupled plasticity
and fracture model used in this study was proposed by Costas et al. [1] and comprises a
through-thickness damage regularization scheme valid for shell elements. The model has
been validated against experiments on a two-chamber extruded profile of the aluminium
alloy AA6005 T6 subjected to quasi-static and dynamic axial crushing and quasi-static
three-point bending. The results showed that the model was able to predict failure in tests
involving both local necking and severe bending of the material. The mesh sensitivity was
found to be reduced with the proposed scheme, providing a more realistic prediction of
the local necking. The simple calibration of the model from a single tensile test using two-
dimensional digital image correlation (2D-DIC) and inverse modelling makes it suitable
for industrial applications.

Numerical simulations of ductile failure using shell elements have been presented in a
number of studies (see e.g. [2, 3, 4]). Woelke et al. [5] investigated an idealized ship
grounding scenario where both phenomenological damage and cohesive zone models for
ductile failure were evaluated. Stiffened and unstiffened steel plates, where the loading
was dominated by biaxial stretching, were considered. Both models were able to repro-
duce the experimentally observed behaviour, despite the differences between them. Pack
and Mohr [6] proposed the concept of Domain of Shell-to-Solid Equivalence (DSSE) to
account for the onset of localized necking with shell elements. Marciniak-Kuczynski type
of localization analyses were used in the calibration of the model and combined with the
Hosford-Coulomb fracture initiation model. The proposed model was validated against
five different tests on DP780 steel, and the displacement at fracture was successfully pre-
dicted in all the tests. The authors emphasized that the DSSE concept should be confined
to the domain where the plane-stress assumption of the shell element solution is meaning-
ful. Morin et al. [7] investigated the behaviour and failure of stiffened aluminium panels
subjected to quasi-static and low-velocity impact loading conditions. A regularized fail-
ure criterion was employed and the effect of mesh size was investigated. The numerical
results showed a good correlation with the experiments for the fine meshes, while the
larger meshes failed to initiate and propagate cracks as observed in the experiments. The
mesh dependence was reduced by employing the regularization model, where five different
length-to-thickness ratios were employed.

Blast-loaded aluminium plates with crack-like defects presented in [8] are investigated
numerically in this study. This is done using an uncoupled plasticity and fracture model
with through-thickness damage regularization. A simplified finite element model of the
blast test set-up is made with shell elements, and the numerical results are evaluated
against blast tests conducted in a shock tube facility on 1.5 mm thick AA6016 T4 plates
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with four different configurations of crack-like defects. The effect of varying the mesh size
is investigated, where the in-plane dimensions of the elements varied from 1/3 to 5 times
the thickness of the plate.

2 MATERIAL AND EXPERIMENTAL WORK

The material considered in this study is the aluminium alloy AA6016 in temper T4,
which is an Al-Mg-Si alloy often used in the automotive industry. The material was
delivered as 1.5 mm thick sheets with in-plane dimensions 625 mm × 625 mm by Hydro
Aluminium Rolled Products in Bonn, Germany. The chemical composition of the alloy
as provided by the supplier is given in Table 1.

Table 1: Chemical composition of AA6016 in wt%.

Si Mg Fe Cu Mn Cr Zn Ti Al
1.3160 0.3490 0.1617 0.0081 0.0702 0.0025 0.0084 0.0175 Balance

Uniaxial tensile tests were carried out on specimens with tensile axis at 0o, 45o and
90o to the rolling direction of the sheet, see Granum et al. [8]. The tests revealed a
slight difference in elongation to failure with the tensile direction and minor scatter was
observed between the repeat tests. The flow stress was practically independent of the
tensile direction. In contrast, the Lankford coefficient, defined as the ratio of the plastic
strain in the width direction to that in the thickness direction, was consistently higher
in the rolling direction than in the other two directions, but always less than unity.
The material exhibits a moderate plastic anisotropy, where the tendency for thinning is
stronger than for an isotropic material.

The blast tests were conducted in the SIMLab Shock Tube Facility at NTNU [9]. The
test program, setup and experimental results are presented in Granum et al. [8], and the
reader is referred to this article for details. In total, four different initial defect geometries
were tested with peak pressure at impact of the blast wave approximately equal to 600
kPa. The clamping of the plate in the shock tube and the different plate configurations are
shown in Figure 1, where each plate configuration is given an abbreviation on the form X-
Y, where X is the number of defects and Y indicates the orientation of the defect(s). These
abbreviations are used in the rest of this study. The defects were cut with wire erosion
as thin slits with an approximate width of 0.1 mm. The blast event was recorded by
two synchronized Phantom v1610 high-speed cameras positioned in a stereovision setup,
recording at 24 000 fps with an image resolution of 768 × 800 pixels.
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90o to the rolling direction of the sheet, see Granum et al. [8]. The tests revealed a
slight difference in elongation to failure with the tensile direction and minor scatter was
observed between the repeat tests. The flow stress was practically independent of the
tensile direction. In contrast, the Lankford coefficient, defined as the ratio of the plastic
strain in the width direction to that in the thickness direction, was consistently higher
in the rolling direction than in the other two directions, but always less than unity.
The material exhibits a moderate plastic anisotropy, where the tendency for thinning is
stronger than for an isotropic material.

The blast tests were conducted in the SIMLab Shock Tube Facility at NTNU [9]. The
test program, setup and experimental results are presented in Granum et al. [8], and the
reader is referred to this article for details. In total, four different initial defect geometries
were tested with peak pressure at impact of the blast wave approximately equal to 600
kPa. The clamping of the plate in the shock tube and the different plate configurations are
shown in Figure 1, where each plate configuration is given an abbreviation on the form X-
Y, where X is the number of defects and Y indicates the orientation of the defect(s). These
abbreviations are used in the rest of this study. The defects were cut with wire erosion
as thin slits with an approximate width of 0.1 mm. The blast event was recorded by
two synchronized Phantom v1610 high-speed cameras positioned in a stereovision setup,
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Figure 1: Sketch of a) plate and clamping frame, and b) blast exposed area of the plates depicting the
four different initial defect geometries. Measurements are in mm.

3 MATERIAL MODELLING

3.1 Constitutive model

Even though the plate material exhibits moderate plastic anisotropy, the assumption
of isotropic material behaviour was employed for simplicity in the constitutive modelling.
The yield surface was defined by the high-exponent Hershey-Hosford yield function [10,
11], which has been shown to be suitable for isotropic Face Centered Cubic (FCC) and
Body Centered Cubic (BCC) materials. The yield surface is expressed as

f = ϕ(σ)− (σ0 +R) = 0 (1)

where ϕ is the equivalent stress, σ is the stress tensor, σ0 is the initial yield stress and R is
the isotropic hardening variable. A rate-independent formulation was selected due to the
low rate sensitivity reported for 6000-series aluminium alloys [12]. Also the temperature
dependence was omitted, as this proved to give negligible differences in the results [8].
The Hershey-Hosford equivalent stress is expressed as

ϕ(σ) =

[
1

2
(|σ1 − σ2|m + |σ2 − σ3|m + |σ3 − σ1|m)

] 1
m

(2)

where σ1, σ2 and σ3 are the principal stresses and m is a parameter controlling the
curvature of the yield surface. Studies on FCC materials like aluminium alloys suggest
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to set m equal to 8, based on polycrystal plasticity calculations [13]. This value was
adopted without further investigation in this study. The hardening variable is given by
the extended Voce hardening rule on the form

R(p) =
3∑

i=1

Ri(p) =
3∑

i=1

Qi(1− exp(−Cip)) (3)

where Ri are hardening terms that saturate at different levels of equivalent plastic strain
p, and Qi and Ci represent the saturation value and the rate of saturation of the hardening
term Ri, respectively.

3.2 Failure model

Failure was modelled by the Cockcroft-Latham failure criterion [14]. Accordingly, the
damage variable D is defined as

D =
1

WC

∫
〈σI〉dp ≤ 1 (4)

where WC is the fracture parameter, σI is the major principal stress and 〈·〉 are the
Macaulay brackets, defined as 〈σI〉 = 1

2
(|σI |+σI). The failure criterion has been modified

as proposed by Costas et al. [1] where the fracture parameter WC is divided into two
parts responsible for pure membrane loading and pure bending. The reader is referred to
Costas et al. [1] for a detailed description of the modified failure criterion. The fracture
parameter W b

C governing pure bending is retrieved from a finite element simulation of
a tensile test using a fine solid element mesh. By conducting similar simulations with
shell elements, the fracture parameter governing membrane loading Wm

C is obtained for
a range of element sizes. The influence of element size is then included by making Wm

C

a function of the element’s aspect ratio le/te, where le is the element length and te is the
initial thickness of the plate [7]

Wm
C = W l

C + (W s
C −W l

C) · exp
(
−c ·

(
le
te

− 1

))
(5)

where W l
C is the fracture parameter for large shell elements, W s

C is the fracture param-
eter for an element with aspect ratio equal to unity, and c is a model parameter. In
elements subjected to combined membrane loading and bending, the fracture parameter
is calculated as

WC = ΩW b
C + (1− Ω)Wm

C (6)

where Ω is a deformation mode indicator determining the relative amount of membrane
loading and bending an element is subjected to. The deformation mode indicator is
defined by the through-thickness plastic strain as
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Figure 1: Sketch of a) plate and clamping frame, and b) blast exposed area of the plates depicting the
four different initial defect geometries. Measurements are in mm.
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as proposed by Costas et al. [1] where the fracture parameter WC is divided into two
parts responsible for pure membrane loading and pure bending. The reader is referred to
Costas et al. [1] for a detailed description of the modified failure criterion. The fracture
parameter W b

C governing pure bending is retrieved from a finite element simulation of
a tensile test using a fine solid element mesh. By conducting similar simulations with
shell elements, the fracture parameter governing membrane loading Wm

C is obtained for
a range of element sizes. The influence of element size is then included by making Wm

C

a function of the element’s aspect ratio le/te, where le is the element length and te is the
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where W l
C is the fracture parameter for large shell elements, W s
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eter for an element with aspect ratio equal to unity, and c is a model parameter. In
elements subjected to combined membrane loading and bending, the fracture parameter
is calculated as
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where Ω is a deformation mode indicator determining the relative amount of membrane
loading and bending an element is subjected to. The deformation mode indicator is
defined by the through-thickness plastic strain as

5



154

Henrik Granum, David Morin, Tore Børvik and Odd Sture Hopperstad

Ω =
1

2

∣∣εTp,33 − εBp,33
∣∣

max
{∣∣εTp,33

∣∣ , ∣∣εBp,33
∣∣} (7)

where εTp,33 and εBp,33 are the through-thickness plastic strains at the top and bottom
integration point of the shell element, respectively. This gives Ω = 1 for pure bending
and Ω = 0 for pure membrane loading.

3.3 Parameter identification

The yield stress σ0 and the hardening parameters Qi and Ci were calibrated based on
a representative tensile test in the rolling direction of the sheet. An initial estimate of the
hardening parameters was obtained in a spreadsheet, using the true stress-strain curve up
to necking. A finite element model of the tensile test was made in Abaqus/Standard, where
only 1/8 of the specimen was modelled, assuming isotropic material behaviour. The gauge
section was modelled with solid elements with characteristic element size of 0.15 mm,
resulting in 10 elements over the thickness. Reduced integration with hourglass control
was employed. An extensometer of length 50 mm was used to extract displacements from
the simulation, coinciding with the virtual extensometer used to extract displacements
from the DIC. Inverse modelling by use of the optimization tool LS-OPT was used to
improve the accuracy of the hardening parameters, where sequential simulations on the
same model with different values of the hardening parameters were conducted. The
engineering stress-strain curve obtained from the test was used as the target curve, and
the mean squared error between the target curve and the simulated curve was calculated
and used in the optimization. The result of the optimization is shown in Figure 2 a) in
terms of the force-displacement curves from the representative tests and the simulation,
where the marker illustrates the assumed point of failure in the simulation. The figure
demonstrates good agreement between the experiments and the simulation all the way
to failure. The equivalent stress-equivalent plastic strain curve from the experiment is
plotted up to necking in Figure 2 b) together with the calibrated flow stress curve. The
moderate anisotropy exhibited by the material suggests that the fit may not be as good
when plotted against test data in the other tensile directions.

The calibrated material parameters for the extended Voce hardening rule are presented
in Table 2. The elastic material properties were taken as standard values for aluminium:
Young’s modulus E = 70000 MPa and Possion’s ratio ν = 0.3. The failure parameter
governing bending W b

C was obtained from a simulation using a fine solid element mesh
and estimated to W b

C = 245.2 MPa. In Costas et al. [1], the failure parameter governing
membrane loading Wm

C was obtained by use of a virtual extensometer to extract DIC
measurements at different length-to-thickness ratios le/te of a uniaxial tensile test. In this
study, Wm

C was found by use of a finite element simulation of the uniaxial tensile test with
a refined solid element mesh. Vectors of different length le spanned across the neck were
used to extract elongations. These elongations were then applied as boundary conditions
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to a single shell element simulation with the same element size le until the point where
fracture occurred in the test. The fracture parameters Wm

C for the different element sizes
le were found by numerical integration. The obtained fracture parameters then served as
discrete points which Equation (5) was curve fitted to, where the optimized parameters
came out as W l

C = 79.1 MPa, W s
C = 116.1 MPa and c = 0.36.

Table 2: Parameters for the extended Voce hardening rule for AA6016 T4.

σ0 Q1 C1 Q2 C2 Q3 C3

[MPa] [MPa] [MPa] [MPa]
112.5 78.6 32.80 109.8 4.9 325.7 0.5

Figure 2: a) Force-displacement curves from representative tests in each direction together with the
curve from the calibrated FE model, and b) experimental and calibrated flow stress curves in terms of
the equivalent stress and equivalent plastic strain.

4 NUMERICAL RESULTS

4.1 Finite element model

The numerical simulations of the blast-loaded plates were conducted in the explicit
solver of LS-DYNA. The edge of the plate was fixed in an attempt to mimic the effect
of the clamping frames in the test setup. Shell elements with reduced integration and
five integration points through the thickness were used, denoted type 2 in LS-DYNA.
This is a Belytschko-Lin-Tsay shell formulation which is based on the Reissner-Mindlin
kinematic assumption [15]. Four different length-to-thickness ratios of the shell elements
were used in the model (le/te = 1/3, 1, 3, 5). A sweep meshing technique was used to
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were used in the model (le/te = 1/3, 1, 3, 5). A sweep meshing technique was used to
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obtain a random mesh, resulting in approximately 450 000 elements for le/te equal to
1/3 and below 2000 elements for le/te equal to 5. The slits were modelled star shaped,
resulting in a single node at each slit end to simplify the meshing of the plate.

The blast load was obtained from blast tests on a massive steel plate, where pressure
sensors mounted directly on the plate recorded the loading [9], and applied to the AA6016
T4 plates as a tabulated uniform pressure-time curve. In addition to the built-in pressure
definition in LS-DYNA, a user-defined subroutine was employed where the magnitude of
the applied pressure was multiplied by the cosine of the angle between the initial load
direction and the normal of the shell element. This allowed the pressure to ”slide off”
as the plate deformed, preventing situations where the pressure pointed in the opposite
direction of the initial pressure load. Failure was handled by element erosion, where the
stress tensor is set to zero in all integration points when the damage variable D is equal
to unity in two integration points on either side of the mid through-thickness integration
point.

4.2 Results and discussion

The effect of updating the pressure magnitude as described above in the simulations
was significant for some defect geometries. In Figure 3, this effect is shown for the 1-
HV configuration with le/te equal to 1. The ”flaps” in the simulation with the original
pressure formulation have folded considerably and the pressure on the flaps is pointing
in the opposite direction of the initial loading direction in the last part of the simulation
due to the Lagrangian description of the loading. In the simulation with the updated
pressure formulation, the pressure ”slides off” as the flaps deform in a petal mode, i.e.,
the pressure is reduced with the rotation of the shell normal. By comparing the two
approaches to the corresponding experiment also shown in the figure, it is concluded that
the correct behaviour is somewhere in-between the two approaches, yet much closer to
the updated pressure formulation. However, to properly account for fluid-structure inter-
actions, coupled Eulerian-Lagrangian simulations are needed, increasing the complexity
and computational cost of the simulations significantly.

Figure 3: The effect of the two pressure formulations on a plate with a slit oriented along the plate axis
compared to the corresponding experiment.

Image series comparing the 1-22.5 simulations to the experiment are shown in Figure
4 at selected points in time, where t = 0 indicates the time of impact of the blast load.
Similar trends were seen for the other geometries and they are omitted for brevity. In the
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experiment, cracks propagate from the slit ends towards the corner of the plate and the
flaps deform in a petal mode. As expected, the discretization of the mesh is important
when modelling failure and crack propagation. For a length-to-thickness ratio le/te = 5,
no failure or cracking is seen as the flaps just deform in a petal mode. The plastic zones
in front of the slit ends are smeared out over the coarse elements, preventing the failure
criterion to be triggered. In the simulation with le/te = 3, the overall response is similar
to the coarsest model. However, failure initiation is predicted, but the mesh discretization
is not fine enough for the cracks to propagate. Failure of two elements in front of each slit
end resulted in a substantial increase in the crack width and led to the sudden arrest of
the crack. First in the simulation with le/te = 1 crack propagation is predicted, where the
experimental behaviour up to t = 1.00 ms is accurately recreated. The cracks are arrested
at t = 1.25 ms and the flaps fold in a petal mode. Further reduction of the length-to-
thickness ratio to le/te = 1/3 proved to enhance the results even more. Shell elements
with smaller in-plane dimension than the thickness are usually not recommended and the
results should be evaluated carefully. However, the smaller in-plane element size makes
the width of the crack narrower when an element is eroded, which is advantageous for the
crack to propagate. Eventually, the cracks are arrested slightly prematurely compared to
the experiment, but the agreement up to t = 1.50 ms is deemed good.

The last frame from the four 1-22.5 simulations is shown from the side in Figure 5.
From the figure it is evident that the global displacement is predicted equally well in the
simulations with le/te = 5 and le/te = 1. Even though the amount of crack propagation
varies between these simulation, the final shape of the plates is almost identical. However,
in the simulation with le/te = 1/3, the flaps have folded considerably and there is a
significant opening of the plate. As seen from the image series in Figure 4, this simulation
gives the most accurate failure mode when compared to the experiment.

The simulations with the different length-to-thickness ratios are compared to the ex-
periments at t = 2.0 ms in Figure 6. The simulations with le/te = 5 are not able to
capture failure in any of the four configurations due to the coarse discretization. Contour
plot of the damage variable D shows that D = 0.76 in the most critical element, substan-
tiating the difficulty to capture localization of plastic strain with a coarse mesh. Even
with le/te = 3 the predictive capability of the model is insufficient. The two elements in
front of the slit ends for the 1-HV and 1-22.5 configurations have failed in these simula-
tions, but no crack propagation is observed. For the 4-HV and 4-45 configurations, no
failure is observed, even though the damage variable D is close to unity in the elements
in front of the slits in the 4-HV simulation. For le/te = 1, the 4-HV simulation is in good
agreement with the experiment, where the centre part of the plate is correctly ejected
from the rest of the plate. However, the 4-45 simulation is not able to predict crack
propagation particularly well and the agreement with the experiment is less good. The
1-HV and 1-22.5 configurations are predicted with acceptable accuracy. The simulations
with the finest mesh (le/te = 1/3) were able to replicate the experiments with reasonable
accuracy for all configurations, where the crack propagation is especially impressive in
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experiment, cracks propagate from the slit ends towards the corner of the plate and the
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when modelling failure and crack propagation. For a length-to-thickness ratio le/te = 5,
no failure or cracking is seen as the flaps just deform in a petal mode. The plastic zones
in front of the slit ends are smeared out over the coarse elements, preventing the failure
criterion to be triggered. In the simulation with le/te = 3, the overall response is similar
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is not fine enough for the cracks to propagate. Failure of two elements in front of each slit
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crack to propagate. Eventually, the cracks are arrested slightly prematurely compared to
the experiment, but the agreement up to t = 1.50 ms is deemed good.

The last frame from the four 1-22.5 simulations is shown from the side in Figure 5.
From the figure it is evident that the global displacement is predicted equally well in the
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front of the slit ends for the 1-HV and 1-22.5 configurations have failed in these simula-
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from the rest of the plate. However, the 4-45 simulation is not able to predict crack
propagation particularly well and the agreement with the experiment is less good. The
1-HV and 1-22.5 configurations are predicted with acceptable accuracy. The simulations
with the finest mesh (le/te = 1/3) were able to replicate the experiments with reasonable
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Figure 4: Image series from test 1-22.5 and corresponding simulations with different length-to-thickness
ratios (le/te) at selected points in time.

Figure 5: Side view of 1-22.5 simulations with different length-to-thickness ratios (le/te).

the 4-HV and 4-45 simulations. The cracks were arrested slightly too early in the 1-HV
and 1-22.5 simulations, but the overall response was predicted. The crack propagation
in the simulations was always less than what was seen in the experiment apart from the
4-HV simulation. In many structural applications, the occurrence of failure is of interest,
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which the two finest meshes were able to predict with satisfying accuracy. However, if
crack propagation is of interest, only the finest mesh is able to give reliable results.

Figure 6: Comparison of tests and simulations with different length-to-thickness ratios (le/te) at t = 2.0
ms.

Figure 7 shows a contour plot of the deformation mode indicator Ω given in Equation
(7) for simulations with le/te = 1 at t = 1.25 ms. The figure shows that the loading is
dominated by membrane actions, but near the defects and the boundary there are areas
with mixed loading. Such a thin plate is not expected to have particularly high bending
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stiffness compared to the membrane capacity. In front of the cracks, the deformation mode
indicator is close to zero in all simulations, indicating pure membrane loading. However,
the 4-HV and 4-45 simulations exhibit areas near the defects where the deformation mode
varies and significant bending is observed. On the other hand, in the 1-HV and 1-22.5
simulations the loading is mostly membrane dominated near the slits. The corners are the
most confined part of the plate, as seen by the bending dominated loading in this region.

Figure 7: Contour plots of the deformation mode indicator Ω for simulations with le/te = 1 at t = 1.25
ms.

In modelling of ductile failure and crack propagation, solid elements are usually the
preferred option as long as it is computationally feasible. The simulation time with shell
elements ranged from 17 seconds for le/te = 5 to above 13 hours for le/te = 1/3 using
8 cores on an Intel Xeon Gold 5120 CPU. To assess the efficiency of the shell element
model, a comparison to a solid element model with the same in-plane dimension as the
finest shell model was conducted. The characteristic element size was set to 0.5 mm,
resulting in three elements over the thickness and around 1 000 000 elements in total.
The model was equivalent to the shell element model apart from the modelling of failure,
where the standard Cockcroft-Latham failure criterion was employed (Equation (4)). The
simulation time was approximately 6 hours on 28 cores, making the computational cost
about 60 % more expensive than for the finest shell element model. The results from the
two simulations are compared to the experiment in Figure 8 at selected points in time. By
inspection of the figure, the shell element model gives similar results as the solid element
simulation. The same trend is observed as in the shell element mode, where the propa-
gating cracks were arrested too early compared to the experiment. However, Granum et
al. [8] showed that the solid element model overall gave satisfactory results with regards
to fracture initiation and crack propagation for various geometries and materials.
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Figure 8: Comparison of a shell element simulation (le/te = 1/3) and a solid element simulation to test
1-22.5 at selected points in time.

5 Conclusions

The behaviour of aluminium plates with crack-like defects subjected to blast loading
was investigated numerically and compared to experiments presented by Granum et al.
[8]. The finite element analyses employed an uncoupled plasticity and fracture model with
through-thickness damage regularization developed for shell elements. The conclusions
from the study are summarized in the following.

• The simulated global displacement field of the plates was similar for all mesh sizes.

• A length-to-thickness ratio of the shell elements equal to unity was sufficient to
describe initiation of failure in the simulations.

• Initiation and crack propagation were only predicted in the simulations with the
finest mesh, i.e., a length-to-thickness ratio of the shell elements equal to 1/3.

• A simulation with solid elements using three elements over the plate thickness gave
similar results as the shell element simulation with the finest mesh, but at a higher
computational cost.
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Abstract. This document describes the typical accidental load requirements of process pipe 
systems and the use of non-linear tools, which describes the physics better than the 
conventional linear elastic methods normally used by the industry.  

 
1 INTRODUCTION 

An offshore platform processes oil and gas with high pressure. Stricter requirements 
regarding accidental loads have resulted in increased weight and costs of the process pipe 
systems. The main reason why the accidental loads have become the governing parameter 
(“design driver”) is the use of simplified linear elastic models and methods. 

 
This document describes how use of non-linear analysis tools and more advanced analysis 

models could give substantial weight and cost reductions of pipe systems. Enhanced 
modelling of both the dynamic characteristics of the accidental loads and the structure gives 
more cost efficient design without compromising the target level of safety. 

 
2 PIPE SYSTEMS 

Processing oil and gas involves a large number of pressurized pipe systems. The pressure 
levels range typically from 10 to 300bar, and the pressure levels are defined in “pressure 
classes” specified in pound per square inch, denoted #150 (low pressure) to #2,500 (high 
pressure). 

 
A pipe system is composed by many components (see Figure 1), and the components are 

standardized within the different pressure classes. The components connecting the straight 
pipes are in general stronger (ultimately) than the pipe itself, and this simplifies the 
assessment. 

 
High-Pressure (HP) pipes are thick-wall, and diameter to thickness ratios (D/T) could be as 

low as 10. The Low Pressure (LP) pipes could be thin-wall with D/T ratio in the order of 100.  
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HP pipe systems are robust and less vulnerable for extreme loads than the LP pipe systems, 

(e.g. the explosion drag loads are not dependent on the pipe thickness, only the outer 
diameter). Extreme heating is also less severe for a thick-wall pipe since the heating process 
goes slower. Focus is therefore normally set on the LP systems regarding assessment for 
extreme accidental loads, such as explosion and fire. 

 
Pipe Supports carry the pipes, but are also supporting the pipes in case of explosion drag 

load. Yielding and even fracture of a pipe support is not critical as such, but in conventional 
design, the linear elastic stress in a single support is often the governing parameter, and has 
become the design driver. The weight of the pipe supports has therefore almost doubled (since 
the early 2000) as a result of the “linear elastic” explosion assessment.  

 
Heavy items attached to the pipes (e.g. safety critical valves) need special attention. In a 

fire situation, the weight of such objects (could be more than 10ton) is normally too big to be 
carried by the pipe, and extra supports under the heavy items are inserted. The additional drag 
loads on the eccentric (to the pipe) valve area needs to be accounted for. 

 

 
Pipe System 

 
Pipe system Pipe Rack 

 
 

Pipe Support 
 

Pipe “shoe”  
Flange 

 
Valves 

 
Joint (“tee”)  

Tank Nozzle 
Figure 1 - Pipe system components and details 
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3 CONVENTIONAL LINEAR RESPONSE ASSESMENT 

A pipe system shall withstand both the operation loads caused by the different conditions 
of the internal fluid such as temperature variation, pressure changes and extreme flow. 

 
Normally the pipes are modelled without the flexible pipe supports included, and the 

boundary conditions free/fix (0/1) are used. The maximum reaction forces are then handed 
over to a separate group of engineers being responsible for designing sufficiently strong 
supports. Both the ultimate limit state loads ULS (e.g. extreme fluid flow) and the fatigue limit 
state FLS (e.g. vibrations and thermal/pressure cycling) are assessed. 

 
Since the pipe system shall withstand both the ULS and FLS loads for the entire design life 

of the pipe system (e.g. 20 years), the system has to respond elastically to these loads. These 
methods are therefore based on linear elastic stress. 

 
In connection with accidental limit state loads ALS, however the use of these simplified 

linear elastic procedures cannot describe the physical response of a complete pipe system.  
 
The simplified linear assessment has two main limitations: 
 

1 : No plasticity is included: neither in the supports nor in the pipes. 
2 : The interaction with the pipes and the supports cannot be described, see Figure 2. 

 
On top of this, the explosion is treated as a static load with different load factors. 

 
This kind of assessing pipe systems exposed to accidents results in unnecessary amount of 

steel for the supports (to handle the explosion) and requirements regarding passive fire 
protection (PFP) on the supports (to handle the pre-defined weight loads during fire). 

 
 
 
 
 
 
 
 
 
 
 

Figure 2 – The presence of the pipe as a structure is ignored in conventional design. 

Gravity loads (during fire) Sideways loads (explosion) 
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4 DESIGN ACCIDENTAL LOAD (DAL) REQUIREMENTS 

In a design project, the accidental load requirements are established in an early phase. 
These loads depend on the choice of concept regarding of the process modules (e.g. 
ventilation conditions) and characteristics of the process system (e.g. time to de-pressurize the 
pipe systems). 

 
Normally, the most severe accidental loads are: 
 
- Explosion 
- Fire  
 

It is required that a pipe system is able to withstand the explosion loads, and then, after the 
explosion, to handle the defined fires.  
 
The definition of “withstand” in this context is that the pipes do not rupture and thus feed 
more fuel into the module (escalating the accident).  
 
However, after a certain time (when personnel has evacuated the area), some escalation is 
often accepted. The longer time since the start of the accident, the larger amount of fuel is 
accepted. (The main structures are designed to withstand such escalated fires). 

 

 
5 ACCEPTANCE CRITERIA 

In the conventional assessment, the linear elastic stress in “most extreme fibre” is used as 
the main criterion. This stress is checked vs. a certain limiting stress level. 

 
Linear elastic stress based criterion is not recommended in connection with accidental 

loads. Instead, since steel is a ductile material, the strain level is better to describe failure 
(fracture) of a pipe system.  

 
In order to avoid conflict with other pipe assessment (internal pressure and “time to burst”) 

the maximum accepted strain level in the pipe is set to a moderate level, e.g. 5%. The 
corresponding level for the supporting structures (pipe support and pipe rack) is set to a 
higher level, e.g. 15%. 

 
It could be argued to use stricter requirements in Design in order to have extra reserves for 

future modifications. (More congested process areas tend to increase the explosion loads). For 
example: to accept that the pipe supports yield, but ensure (in design) that the pipes remain 
elastic in connection with explosion. 
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6 EXPLOSION LOADS 

The impact from an explosion will not occur simultaneously along the whole length of the 
pipe, see Figure 3. The peak travels fast and each element experiences a short pulse. The total 
duration (rise + decay) is typically in the order of 20-100ms. When one element experiences 
the peak drag load, the neighbour elements have almost no load. This means that the loads 
acting on a pipe system are localized and activates only a fraction of the pipe and support at 
the time. This is normally not accounted for in an analysis. 

 

   
Figure 3 Drag loads from CFD analysis. The peaks occur on different times along the pipe 

 
The magnitude of the explosion drag load is normally computed as: Force = p D, where 

“p” is the design accidental drag pressure (with typical levels from 0.2-0.5bar), and “D” is the 
drag diameter of the pipe (accounting for the extra projected area due to e.g. insulation). The 
result is a force per unit length of the pipe. 

 
The normal design load considers simultaneous drag loads on all the pipe members within 

the same blast area. Drag loads on pipes parallel with the drag load direction are set to zero, 
see Figure 4 for example of explosion loads in positive X- and Y-directions.  

 
The design drag pressure gives the maximum level after a certain time after ignition, and a 

linear rise and decay is normally used (triangular pulse). 
 
Since the explosion loads have short durations, it is recommended to perform dynamic 

simulations, where the substantial inertia forces are accounted for.  
 
 
 
 
 
 
 
 
 
 

Figure 4: Typical DAL Drag Pressure Loads acting on pipe 

Y-direction X-direction 

T 

“Triangular Pulse” 
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7 FIRE LOADS 

It is essential to have agreed design fires. The fires need to describe the heat flux or 
temperature in addition to the extent of the fire. 

Turbulent combustion in a large-scale industrial environment due an ignited release of a 
combustible fluid is a dynamic and time-dependent phenomenon inherently coupled to the 
properties of the environment of which the phenomena take place. An important parameter is 
for example the ventilation conditions deciding the supply of oxygen to the chemical reaction. 
Other parameters are the properties of the process system (e.g. pressure and temperature) and 
the safety systems initiated upon detection (Emergency Shut Down, ESD and Blowdown, 
BD) controlling how the leak scenario feeding the fire unfolds. 

The heat load history during a hydrocarbon fire is therefore not easily described. The common 
approach for equipment and secondary structures is to apply generic heat loads found in 
NORSOK S-001. Such simple methods generally leads to over prediction of the heat transferred 
to the objects as it does not reflect the time-dependent behaviour of the phenomena. 

A fire fed by a leak from a process system equipped with a depressurisation system possess a 
dynamic behaviour, both in time and space. An ignited jet or spray (most liquid leaks 
generates spray fires) fire expands from the leak point until it reaches a maximum size. Upon 
initiation of the ESD and BD-systems, the rate feeding the fire starts to decrease according to 
the decrease in pressure. Depending on the ratio between hydrocarbon leak rate and 
ventilation rate, the fire size will start to decrease immediately in most cases. If the module is 
under ventilated (the air supply controls the fire), the fire may continue to grow for some time 
after initiation of blow down, but will eventually start to decrease. 

In Figure 5 the incident thermal radiation and gas temperatures for decreasing leak rate from 
32 to 2 kg/s is presented (simulations performed with Kameleon FireEx, KFX ®). The initial 
large release rate (32 kg/s) generates too rich gas mixture inside the module leading to limited 
fire loads. At the late phase of the fire scenario, the heat loads are quite local, but for the 
intermediate stage, substantial heat loads acts on a much larger fraction of the module. This 
example demonstrates that the fire load exposure experienced by the various objects inside 
the module will vary throughout the lifetime of a fire scenario. 
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Figure 5: CFD simulation with Kameleon FireEx KFX®: incident radiation flux to objects (top) and walls 
and gas temperatures projected on objects in module (bottom) (Ref. /1/) 

 

To analyse the consequences of a transient heat load resulting from a time-dependent fire 
without reflecting the temperature transfer to the objects may result in inaccurate assessment 
of the vulnerability of the objects. The aggregated fire heat load acting on the exposed objects 
is built up of two contributors; radiation and convection. For small objects inside the flame, 
the contribution from convection (i.e. heat transferred between the gas and the solid surface) 
can be equal to the radiation heat flux. In areas where the flow rate is less (typically outside 
the reaction zone), the radiation heat flux is dominating the heat load and convective heat 
transfer may contribute to heat transfer from the object to the surrounding atmosphere rather 
than heating (i.e. the temperature of the object surface is higher than surrounding gas). Hence, 
the fire heat load can hardly be described by a generic heat for all locations inside a fire.  

In order to capture the dynamic behaviour of the fire outlined above, and at the same time 
provide basis for effective structural response analysis, it is suggested to apply a method 
based on a volumetric temperature distribution describing the resulting temperature of the 
various objects at hand. The relationship between temperature and volume could be 
established based on results for fire simulations using CFD tools (such as KFX). A unique 
distribution should be developed for the various types of objects based on their temperature 
response when subjected to the potential fire scenarios in the area. The size and thickness of 
the objects are the decisive parameters in addition to the parameters governing the fire 
behaviour. 



170 171

Tore Holmas and Ingar Fossan. 

 6 

 
7 FIRE LOADS 

It is essential to have agreed design fires. The fires need to describe the heat flux or 
temperature in addition to the extent of the fire. 

Turbulent combustion in a large-scale industrial environment due an ignited release of a 
combustible fluid is a dynamic and time-dependent phenomenon inherently coupled to the 
properties of the environment of which the phenomena take place. An important parameter is 
for example the ventilation conditions deciding the supply of oxygen to the chemical reaction. 
Other parameters are the properties of the process system (e.g. pressure and temperature) and 
the safety systems initiated upon detection (Emergency Shut Down, ESD and Blowdown, 
BD) controlling how the leak scenario feeding the fire unfolds. 

The heat load history during a hydrocarbon fire is therefore not easily described. The common 
approach for equipment and secondary structures is to apply generic heat loads found in 
NORSOK S-001. Such simple methods generally leads to over prediction of the heat transferred 
to the objects as it does not reflect the time-dependent behaviour of the phenomena. 

A fire fed by a leak from a process system equipped with a depressurisation system possess a 
dynamic behaviour, both in time and space. An ignited jet or spray (most liquid leaks 
generates spray fires) fire expands from the leak point until it reaches a maximum size. Upon 
initiation of the ESD and BD-systems, the rate feeding the fire starts to decrease according to 
the decrease in pressure. Depending on the ratio between hydrocarbon leak rate and 
ventilation rate, the fire size will start to decrease immediately in most cases. If the module is 
under ventilated (the air supply controls the fire), the fire may continue to grow for some time 
after initiation of blow down, but will eventually start to decrease. 

In Figure 5 the incident thermal radiation and gas temperatures for decreasing leak rate from 
32 to 2 kg/s is presented (simulations performed with Kameleon FireEx, KFX ®). The initial 
large release rate (32 kg/s) generates too rich gas mixture inside the module leading to limited 
fire loads. At the late phase of the fire scenario, the heat loads are quite local, but for the 
intermediate stage, substantial heat loads acts on a much larger fraction of the module. This 
example demonstrates that the fire load exposure experienced by the various objects inside 
the module will vary throughout the lifetime of a fire scenario. 

Tore Holmas and Ingar Fossan. 

 7 

 

Figure 5: CFD simulation with Kameleon FireEx KFX®: incident radiation flux to objects (top) and walls 
and gas temperatures projected on objects in module (bottom) (Ref. /1/) 

 

To analyse the consequences of a transient heat load resulting from a time-dependent fire 
without reflecting the temperature transfer to the objects may result in inaccurate assessment 
of the vulnerability of the objects. The aggregated fire heat load acting on the exposed objects 
is built up of two contributors; radiation and convection. For small objects inside the flame, 
the contribution from convection (i.e. heat transferred between the gas and the solid surface) 
can be equal to the radiation heat flux. In areas where the flow rate is less (typically outside 
the reaction zone), the radiation heat flux is dominating the heat load and convective heat 
transfer may contribute to heat transfer from the object to the surrounding atmosphere rather 
than heating (i.e. the temperature of the object surface is higher than surrounding gas). Hence, 
the fire heat load can hardly be described by a generic heat for all locations inside a fire.  

In order to capture the dynamic behaviour of the fire outlined above, and at the same time 
provide basis for effective structural response analysis, it is suggested to apply a method 
based on a volumetric temperature distribution describing the resulting temperature of the 
various objects at hand. The relationship between temperature and volume could be 
established based on results for fire simulations using CFD tools (such as KFX). A unique 
distribution should be developed for the various types of objects based on their temperature 
response when subjected to the potential fire scenarios in the area. The size and thickness of 
the objects are the decisive parameters in addition to the parameters governing the fire 
behaviour. 



172

Tore Holmas and Ingar Fossan. 

 8 

The shape of the volume can be represented by a sphere for effective mathematical modelling 
in the response analysis. The real shape will typically deviate somewhat from the ideal shape. 
However, developing the distribution based on the most severe fire scenarios will ensure that 
a simplified shape is an adequate idealisation. The developed volumetric temperature 
distribution (denoted “matruska fire”) can be effectively applied at various locations in a 
response model to check the fire integrity for the various systems. The “matruska fire” can 
alternatively be described as a volumetric heat load distribution, but in this case the 
temperature response has to be computed in the structural response tool.  
 
Hence, the suggested method facilitates effective and consistent reflection of the fire 
characteristics of the module and the response of the exposed critical objects in the design 
process. 

 
Figure 6 shows how to construct a simplified fire using smaller volumes inside bigger (like 

the Russian matruska doll), where each circle represents a certain volume.  
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 6 – Illustration simplified ”matruska fire” to be used for sec-steel. Top: illustration of principle; 

Below: example temperature response of pipe rack for typical “matruska fire” at an offshore installation. 
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8 MODELS FOR ACCIDENTAL LOAD ASSESSMENT OF PIPE SYSTEMS 

In order to perform realistic assessments of pipe systems exposed to e.g. explosion and 
fire, models suited for the purpose is needed. The (over) simplified “component-by-
component” checks cannot be used.  

 
The models of a pipe system will always require that the pipes are included in the analysis 

models. The presence of the pipes makes it possible to simulate the force-redistribution 
if/when one single pipe support becomes weak (fire) or yields (explosion).  

 
An additional benefit is that the loads used in the ALS assessment become as correct as 

possible when the actual pipes are included (since the weight of a given pipe is computed 
accurately). The loads used in an early concept study are often far higher than what is reality 
in a final design. (e.g. if the pressure-class is not 100% settled in the concept phase, a thick-
wall alternative is used to estimate the weights, and this could result in 2-3 times higher 
loads). 

 
 
 
 
 
 
 
 
Figure 7 – Models for Accidental Limit State Assessment of pipe systems.  
 
The pipe has different fixations to the support structure, such as “rest”, “hold”, “guide” and 

“line stop” in order to let the pipe expand/contract as the temperature and pressure of the 
internal fluid changes. It is essential that correct boundary conditions are used: in particular in 
connection with explosion assessment. Since some fixations are non-symmetric (e.g. transfers 
vertical downwards loads only, the rest function), 2-node non-linear springs are 
recommended. 

 
 
 
 
 
 
 
 
Figure 8 – Misc. Support frames and how to model the connection between the pipe and the supports. 
 
Beam elements could be used for both pipes and support frames. 
 

Do not perform single component checks Always include the pipe(s)  

2-node non-linear spring 
connects the pipe to the 
pipe support frame  
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9 EXPLOSION RESPONSE ANALYSIS 

In order to get a realistic response of a pipe system exposed to explosion loads, both non-
linear material and geometry effects have to be included. 

 
It is always useful to start with a non-linear static analysis. Here, the impact from the self-

weight and the internal pressure is found. By scaling the drag forces up to failure (one 
explosion direction at the time) an early indication of the performance of the system is found. 
Mistakes regarding modelling (supporting, etc.) are also easier to detect from a static analysis.  

 
The final simulations use a non-linear dynamic solver. The pipe is exposed to the actual 

drag forces and durations described in the DAL specifications.  
 
A pipe system does not have a “1/0, OK/notOK” response when non-linear methods are 

used, (In contrast to linear elastic methods, where exceeding the yield strength in a single 
component becomes the limit for the entire system). It is therefore useful to divide the non-
linear response into several main groups or “Damage Levels”. Simulations are repeated with 
increasing drag pressures and the response is monitored for the different drag pressure levels: 

 
 
 
 
 
 
 
 
 
 
 
Figure 9 – “Damage Levels” for a Pipe System exposed to explosion loads 
 
Such “damage level” figures for the different pipe systems are easy to communicate with 

the “safety discipline”, (which is responsible for the total safety of a platform).  
 
As mentioned under “acceptance criteria”, it is recommended to use stricter criterion in 

design (easier to change components) compared with a platform modification project later 
(when changes are expensive). Such modifications tend to cause higher explosion loads (more 
congested). If a pipe system handles the DAL loads within the “green zone” in the design, the 
“yellow zone” becomes the margin for future projects. 

 
By accepting that the steel exceeds the elastic range it is found that a given pipe system has 

the order of 3 times higher resistance compared with conventional linear assessment. 
 
The Simulation Loop needed to establish the “Damage Levels” is shown on the next page. 

Increasing Drag Load 

1: All components elastic  

0 

2: Supports yield, pipe elastic  

3: Pipe yields, low strain levels  

4: Larger strain levels in pipe  
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Simulation Loop: 
 

1. Define drag pressure load level. Start with a low level for the first loop and increase 
gradually per loop. Keep the explosion load duration constant. Check for all load-
directions: ± x, ±y and ±z. 

2. Perform non-linear dynamic simulation of the pipe system exposed to the actual 
drag pressure load. 

3. Compute the maximum plastic strain during the entire simulation length.  
Both for the pipes and the pipe supports. 

4. Find the max strain among all pipes and pipe supports for each simulation. Store as 
function of pressure. 
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10 FIRE RESPONSE ANALYSIS 
The main purpose of the fire response analysis of the pipe systems is to identify need for 

thermal insulation (Passive Fire Protection, PFP) of the support structures.  
 
When steel is heated, the performance degrades (becomes both softer and weaker). The 

degraded material parameters (E-mod and Yield stress) are found by using the “degradation 
vs. temperature” curves, which are established for all relevant pipe- and structural -steels. At 
temperature e.g. 1,100C the steel has yield strength of 2% compared with the performance at 
room temperature.  

 
 
 
 
 
 
 
 
 
Figure 10 – Typical degradation vs. time for the yield strength. 
 
It should be emphasized that the stress levels caused by the self-weight of the pipes 

(gravity) are very low, and many systems remain stable also at high temperatures. The 
deformations may increase, but this will introduce beneficial 2nd order effects such as 
membrane action (the pipe carries the vertical loads by axial tension, not bending). 

 
 
 
 
 
 
 
 
 
 
Figure 11 – Simplified assessment (left) and complete FE modelling (right) 

 
 

Simplified systems could be assessed without use of temperature simulations. Since the 
simplified “matruska” fire gives the temperature directly, the E-mod and yield strength could 
be modified manually based on the components’ location vs. the different temperature levels.  
 

Simplified system Real pipe rack 
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For more complex systems like the pipe rack the use of general finite element tools could be 
beneficial. 

The importance of including the pipes (and not just the forces from them) is illustrated in 
Figure 13. This is a case where the pipe rack is exposed to an extreme jet fire hitting the upper 
part including the pipes. In the model to the left, the loads from the pipes are introduced as 
concentrated weights on the “tiny” pipe supports. In this case, the supports fail, and the 
conclusion would be that the supports need PFP.  

 
In the model to the right, the actual pipes are included, and no concentrated weights are 

needed. When the most exposed supports become weak, the pipes will shed the loads to the 
neighbour supports, which are less exposed to the fire. The pipes (which are heated too) 
handle such “free” spans without fracturing, but could deform up to ~½ diameter in order to 
find equilibrium. Here, the conclusion is that the supports do not need PFP.  

 
 
 
 
 
 
 
 
 
 

 
Figure 13 – Response (plastic utilization) without pipe (left) and with the pipes included (right) 

 
 
Figure 14 (on next page) shows the general, full simulation loop for a fire assessment: 
 

o For every design layout (steel and PFP): 
o For every fire design case: 

 For every fire time (e.g.: every minute): 
 Find the ultimate resistance of the pips system 
 Compute the plastic strain of the pipes 

 
Each simulation (ref the load vs. deformation curve) gives one point in the resistance vs. fire 
time curve, which gives an overview of how the structural system degrades over time due to 
the heating.  
 
If the pipe system demonstrates sufficient resistance the required time (and within the 
acceptance criteria) the system layout is accepted. 
 

Disregarding the presence of pipes More realistic response 
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Figure 14 – General fire assessment simulation loop, (finding resistance vs. fire time). 
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10 CONCLUSIONS 

Enforcement of stricter safety requirements of pipe systems (which means that the 
response for accidental loads are investigated in detail) has resulted in increased costs.  

 
One main reason for the increased costs is that linear elastic methods are used for the 

accidental limit state (ALS) assessment.  
 
By accepting that the steel exceeds the elastic range and using non-linear analysis tools in 

combination with a realistic description of the accidental loads, it is found that a given pipe 
system performs far better than found from a linear elastic assessment.  

 
This opens for substantial cost and weight savings for both new design and in connection 

with modification of existing platforms. 
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Abstract. Flow mechanisms around two cylinders in tandem close to a horizontal plane
wall are investigated using the 2D Unsteady Reynolds-averaged Navier-Stokes (URANS)
equations with a k-ω SST turbulence model. The Reynolds number based on the free
stream velocity (U∞) and cylinder diameter (D) is Re = 13100, and the normalised
boundary layer thickness is set to δ/D = 2.98. The objective of the present study is to
investigate numerically the flow-induced vibrations of two cylinders free to vibrate in two
degrees-of-freedom with center-to-center spacing ratio L/D = 5 located near plane wall at
a gap-to-diameter ratio e/D = 2 (e is defined as the distance from the cylinder’s bottom
surface to the wall). The present numerical model results are compared with available ex-
perimental data. A good agreement is found between the predicted hydrodynamic force
coefficient values, maximum vibration amplitudes and the published experimental and
numerical studies. Flow field characteristics are computed and discussed. Three distinct
regimes in the VIV response of the tandem cylinders are found. Complex response be-
haviour of the downstream cylinder is analysed with respect to the hydrodynamic forcing
induced by the upstream cylinder. The extended lock-in range indicates that in the pres-
ence of the wake interference, the downstream cylinder might experience resonance and
large vibration amplitudes outside of the typical reduced velocity range employed in the
design codes for subsea pipelines.
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1 INTRODUCTION

The flow around two cylinders in proximity is of practical engineering and academic
interest and was studied extensively in the past. A comprehensive review of the influence
of the configuration on the flow was carried out by Zdravkovich [21] and updated based on
the more recent advances in the field by Sumner [17]. The most widely adopted classifica-
tion of the wakes of two-cylinder configurations was proposed by Zdravkovich [20]. Four
main regions can be distinguished, i.e. the proximity interference region, the proximity
and wake interference region, the wake interference region and no interference region.
In the proximity interference region the two cylinders are placed close to each other in a
side-by-side configuration or at a high angle α defined as the angle between the freestream
flow direction and the line connecting the centres of the cylinders. Characteristic cou-
pled vortex shedding occurs in this region resulting in the formation of a single vortex
street. Considering two cylinders with identical diameters (D1 = D2 = D) in tandem
arrangement the relative position of the cylinders can be defined as a non-dimensional
spacing ratio (L/D) where L is the centre-to-centre distance between the two cylinders.
For tandem arrangements and slightly staggered arrangements (α < 10◦) the proximity
and wake interference region occurs at 1 < L/D < 4 and transitions into the wake in-
terference region after exceeding the critical value of the spacing ratio, L/D > 4. In
those regions, the downstream cylinder is strongly affected by the wake of the upstream
cylinder. The upstream cylinder is affected by the feedback mechanism for L/D values
up to 8, as demonstrated by Alam et al. [1]. However, the feedback effects become less
significant after exceeding spacing of L/D = 4.

A special class of flow interference problems occurs in the configurations in which the
cylinders are placed near the horizontal plane wall and are free to vibrate in two degrees-of-
freedom (2DoF). An example of such configuration is the case of two free-spanning subsea
pipelines laid next to each other. Near-wall effects were investigated experimentally by
numerous authors (see e.g., Lei et al. [10], Price et al. [16]). Experiments conducted by
Bearman and Zdravkovich [2] revealed that vortex shedding is suppressed when e/D < 0.3
for a static cylinder case. Wang et al. [19] investigated an elastically mounted cylinder
and reported vibrations even at very small gap ratios, e/D � 0.05.

More recently, Computational Fluid Dynamics (CFD) methods have increasingly been
applied in the area of marine hydrodynamics. The flow mechanism around the marine
pipeline close to a plane wall was investigated by Ong et al. [14] using standard k−εmodel
and a satisfactory agreement with published experimental data was found. Li et al. [11]
performed a similar study using Large Eddy Simulations with Smagorinsky subgrid-scale
model. Results reported by Li et al. [11] confirmed that 3D scale resolving simulations are
capable of predicting the hydrodynamic quantities with higher accuracy than 2D RANS
at the expense of significantly higher computational cost. RANS-based turbulence models
are known to yield less accurate predictions of flows with strong anisotropic turbulence
(Ong et al. [13]). When the Reynolds number is large, the numerical response of the
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lift coefficient of flow around a circular cylinder is often smaller than the experimental
values. A common problem occurring in simulations of vortex-induced vibration based
on 2D URANS is manifested by smaller than the experimental values of the transverse
amplitudes of vibration and too fast decay of the amplitude in the lower branch. However,
as evidenced by numerous published studies on vortex-induced vibration employing 2D
numerical simulations (see, e.g., Guilmineau and Queutey [4]; Pan et al. [15]; Wanderley
et al. [18], Kang et al. [8]; Han et al. [5]), prediction of the essential VIV characteristics
shows reasonable agreement with the experimental data.

Majority of the published numerical studies investigating flow around tandem cylin-
ders are concerned with two stationary cylinders at low Re (see e.g., Bhattacharyya and
Dhinakaran [3], Harichandan and Roy [6]). Relatively little attention has been given to
the configuration of two tandem cylinders vibrating near the horizontal plane wall. The
complexity of the flow is increased due to the interaction with the bottom boundary layer
and large vibration amplitudes caused by VIV and wake-induced vibrations (WIV) lock-in
phenomena.

In this study flow around two elastically mounted cylinders in tandem close to a plane
boundary, undergoing 2DOF vibrations is investigated numerically. The present study
focuses on the wake interference regime with centre-to-centre spacing set to L/D = 5,
boundary layer thickness ratio δ/D = 2.89 and gap-to-diameter ratio e/D = 2. The
considered Reynolds number is Re = 13100 and corresponds to the sub-critical regime.
The governing equations and the numerical methodology are presented in Section 2. Grid
and time step convergence study is presented in Section 3. Validation tests are shown in
Section 4, and the results and discussion are presented in Section 5.

2 NUMERICAL MODEL

2.1 Governing equations

The governing equations for the fluid flow considered in this paper are the two di-
mensional incompressible Reynolds-averaged Navier-Stokes equations. The equations of
continuity and momentum conservation, are given by:
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= 0, (1)
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where i, j = 1, 2; x1, x2 are streamwise and wall-normal directions respectively; u1, u2 are
the mean flow velocity components corresponding to directions x1 and x2; ν denotes the
kinematic viscosity of the fluid; νt is the eddy viscosity, ρ is the density of the fluid; p is the
dynamic pressure. The shear stress transport (SST) k−ω turbulence model with updated
coefficients according to Menter et al. [12] is used in the present study to calculate eddy
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1 INTRODUCTION

The flow around two cylinders in proximity is of practical engineering and academic
interest and was studied extensively in the past. A comprehensive review of the influence
of the configuration on the flow was carried out by Zdravkovich [21] and updated based on
the more recent advances in the field by Sumner [17]. The most widely adopted classifica-
tion of the wakes of two-cylinder configurations was proposed by Zdravkovich [20]. Four
main regions can be distinguished, i.e. the proximity interference region, the proximity
and wake interference region, the wake interference region and no interference region.
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and wake interference region occurs at 1 < L/D < 4 and transitions into the wake in-
terference region after exceeding the critical value of the spacing ratio, L/D > 4. In
those regions, the downstream cylinder is strongly affected by the wake of the upstream
cylinder. The upstream cylinder is affected by the feedback mechanism for L/D values
up to 8, as demonstrated by Alam et al. [1]. However, the feedback effects become less
significant after exceeding spacing of L/D = 4.

A special class of flow interference problems occurs in the configurations in which the
cylinders are placed near the horizontal plane wall and are free to vibrate in two degrees-of-
freedom (2DoF). An example of such configuration is the case of two free-spanning subsea
pipelines laid next to each other. Near-wall effects were investigated experimentally by
numerous authors (see e.g., Lei et al. [10], Price et al. [16]). Experiments conducted by
Bearman and Zdravkovich [2] revealed that vortex shedding is suppressed when e/D < 0.3
for a static cylinder case. Wang et al. [19] investigated an elastically mounted cylinder
and reported vibrations even at very small gap ratios, e/D � 0.05.

More recently, Computational Fluid Dynamics (CFD) methods have increasingly been
applied in the area of marine hydrodynamics. The flow mechanism around the marine
pipeline close to a plane wall was investigated by Ong et al. [14] using standard k−εmodel
and a satisfactory agreement with published experimental data was found. Li et al. [11]
performed a similar study using Large Eddy Simulations with Smagorinsky subgrid-scale
model. Results reported by Li et al. [11] confirmed that 3D scale resolving simulations are
capable of predicting the hydrodynamic quantities with higher accuracy than 2D RANS
at the expense of significantly higher computational cost. RANS-based turbulence models
are known to yield less accurate predictions of flows with strong anisotropic turbulence
(Ong et al. [13]). When the Reynolds number is large, the numerical response of the
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lift coefficient of flow around a circular cylinder is often smaller than the experimental
values. A common problem occurring in simulations of vortex-induced vibration based
on 2D URANS is manifested by smaller than the experimental values of the transverse
amplitudes of vibration and too fast decay of the amplitude in the lower branch. However,
as evidenced by numerous published studies on vortex-induced vibration employing 2D
numerical simulations (see, e.g., Guilmineau and Queutey [4]; Pan et al. [15]; Wanderley
et al. [18], Kang et al. [8]; Han et al. [5]), prediction of the essential VIV characteristics
shows reasonable agreement with the experimental data.

Majority of the published numerical studies investigating flow around tandem cylin-
ders are concerned with two stationary cylinders at low Re (see e.g., Bhattacharyya and
Dhinakaran [3], Harichandan and Roy [6]). Relatively little attention has been given to
the configuration of two tandem cylinders vibrating near the horizontal plane wall. The
complexity of the flow is increased due to the interaction with the bottom boundary layer
and large vibration amplitudes caused by VIV and wake-induced vibrations (WIV) lock-in
phenomena.

In this study flow around two elastically mounted cylinders in tandem close to a plane
boundary, undergoing 2DOF vibrations is investigated numerically. The present study
focuses on the wake interference regime with centre-to-centre spacing set to L/D = 5,
boundary layer thickness ratio δ/D = 2.89 and gap-to-diameter ratio e/D = 2. The
considered Reynolds number is Re = 13100 and corresponds to the sub-critical regime.
The governing equations and the numerical methodology are presented in Section 2. Grid
and time step convergence study is presented in Section 3. Validation tests are shown in
Section 4, and the results and discussion are presented in Section 5.

2 NUMERICAL MODEL

2.1 Governing equations

The governing equations for the fluid flow considered in this paper are the two di-
mensional incompressible Reynolds-averaged Navier-Stokes equations. The equations of
continuity and momentum conservation, are given by:

∂ui

∂xi

= 0, (1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

[
(ν + νt)

(
∂ui

∂xj

+
∂uj

∂xi

)]
, (2)

where i, j = 1, 2; x1, x2 are streamwise and wall-normal directions respectively; u1, u2 are
the mean flow velocity components corresponding to directions x1 and x2; ν denotes the
kinematic viscosity of the fluid; νt is the eddy viscosity, ρ is the density of the fluid; p is the
dynamic pressure. The shear stress transport (SST) k−ω turbulence model with updated
coefficients according to Menter et al. [12] is used in the present study to calculate eddy
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viscosity by solving the two variables namely, the turbulent kinetic energy (k) and the
specific turbulent dissipation (ω).

In the present study, two elastically supported cylinders experiencing VIV are consid-
ered as shown in Figure 1. Flow direction is parallel to the horizontal plane wall. The
dynamic behavior of the cylinders vibrating with 2DOF is modeled via a mass-spring-
damper system. The equations of motion of cylindrical structure are as follows:

m
∂2x

∂t2
+ c

∂x

∂t
+ kx = Fx(t) (3)

m
∂2y

∂t2
+ c

∂y

∂t
+ ky = Fy(t) (4)

where x and y denote the in-line and transverse displacements respectively, k is the
structural stiffness, c is the structural damping, m is the structural mass, Fx and Fy are
the fluid forces per unit length acting in the streamwise and transverse directions on the
cylinder. The mass ratio m∗ and damping coefficient ζ are expressed as:

m∗ =
m

md

, ζ =
c

2
√
km

, (5)

where m is the mass of the cylinder, md is the mass of displaced fluid. The reduced
velocity, Ur is defined as Ur = U∞/(fnD), where fn is the structural natural frequency,
U∞ is free stream flow velocity. CD and CL are the drag and lift coefficients, respectively,
computed by integrating the fluid forces Fx and Fy acting on the cylinder.

Simulations are conducted using the open source CFD library OpenFOAM. Pressure-
velocity coupling is solved using PIMPLE algorithm combining Semi-Implicit Method for
Pressure Linked Equations (SIMPLE) and Pressure Implicit with Split Operators (PISO)
methods. The implicit second-order Crank-Nicolson scheme is used for the time integra-
tion. The divergence and gradient terms are discretised using Gauss linear integration
scheme. The Laplacian and surface normal gradients are discretised using Gauss linear
integration with limited non-orthogonal correction. All of the schemes used have second-
order accuracy.

2.2 Computational domain and boundary conditions

Problem definition schematic is presented in Figure 1. In the present study, a rectan-
gular computational domain is established with dimensions of 35D by 12.5D, where D is
the diameter of the cylinder. The upstream cylinder centre is located at a distance of 10D
from the inlet. The centre-to-centre spacing between the cylinders is set to L = 5D. The
downstream cylinder centre is located at a distance of 20D from the outflow. The upper
boundary is located at a distance 10D from the centres of the cylinders, and the bottom
wall is located 2.5D from the centres of the cylinders. Therefore, the gap-to-diameter
ratio is e/D = 2.
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Figure 1: Problem definition and computational domain settings.

Boundary layer thickness δ of the inflow is expressed in terms of nondimensional bound-
ary layer to diameter ratio (δ/D) and is set to δ/D = 2.89. The boundary conditions
imposed at the inlet are adapted from Ong et al. [14]. The boundary conditions imposed
on the domain are as follows:

1. At the inlet a fully developed boundary layer flow is specified using the expressions
for u, k, and ω:

u1(y) = min
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u∗

κ
ln

(
y

zw

)
, U∞

]
(6)

u2(y) = 0 (7)

k(y) = max

[
C−1/2

µ

(
1− y

δ

)2
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2
∞

]
(8)
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β∗1/4l(y)
(9)

l(y) = min

[
κy

(
1 + 3.5

y

δ

)−1

, Cµδ

]
(10)

where y is the wall-normal direction starting from the bottom as illustrated in
Figure 1; l is the estimated turbulent length scale; Cµ = 0.09 is the model constant;
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viscosity by solving the two variables namely, the turbulent kinetic energy (k) and the
specific turbulent dissipation (ω).

In the present study, two elastically supported cylinders experiencing VIV are consid-
ered as shown in Figure 1. Flow direction is parallel to the horizontal plane wall. The
dynamic behavior of the cylinders vibrating with 2DOF is modeled via a mass-spring-
damper system. The equations of motion of cylindrical structure are as follows:
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where x and y denote the in-line and transverse displacements respectively, k is the
structural stiffness, c is the structural damping, m is the structural mass, Fx and Fy are
the fluid forces per unit length acting in the streamwise and transverse directions on the
cylinder. The mass ratio m∗ and damping coefficient ζ are expressed as:
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where m is the mass of the cylinder, md is the mass of displaced fluid. The reduced
velocity, Ur is defined as Ur = U∞/(fnD), where fn is the structural natural frequency,
U∞ is free stream flow velocity. CD and CL are the drag and lift coefficients, respectively,
computed by integrating the fluid forces Fx and Fy acting on the cylinder.

Simulations are conducted using the open source CFD library OpenFOAM. Pressure-
velocity coupling is solved using PIMPLE algorithm combining Semi-Implicit Method for
Pressure Linked Equations (SIMPLE) and Pressure Implicit with Split Operators (PISO)
methods. The implicit second-order Crank-Nicolson scheme is used for the time integra-
tion. The divergence and gradient terms are discretised using Gauss linear integration
scheme. The Laplacian and surface normal gradients are discretised using Gauss linear
integration with limited non-orthogonal correction. All of the schemes used have second-
order accuracy.

2.2 Computational domain and boundary conditions

Problem definition schematic is presented in Figure 1. In the present study, a rectan-
gular computational domain is established with dimensions of 35D by 12.5D, where D is
the diameter of the cylinder. The upstream cylinder centre is located at a distance of 10D
from the inlet. The centre-to-centre spacing between the cylinders is set to L = 5D. The
downstream cylinder centre is located at a distance of 20D from the outflow. The upper
boundary is located at a distance 10D from the centres of the cylinders, and the bottom
wall is located 2.5D from the centres of the cylinders. Therefore, the gap-to-diameter
ratio is e/D = 2.
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Figure 1: Problem definition and computational domain settings.

Boundary layer thickness δ of the inflow is expressed in terms of nondimensional bound-
ary layer to diameter ratio (δ/D) and is set to δ/D = 2.89. The boundary conditions
imposed at the inlet are adapted from Ong et al. [14]. The boundary conditions imposed
on the domain are as follows:

1. At the inlet a fully developed boundary layer flow is specified using the expressions
for u, k, and ω:

u1(y) = min
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, U∞
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u2(y) = 0 (7)
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l(y) = min
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where y is the wall-normal direction starting from the bottom as illustrated in
Figure 1; l is the estimated turbulent length scale; Cµ = 0.09 is the model constant;
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κ = 0.41 is the von Kármán constant; u∗ is the friction velocity expressed as:

u∗ =
κU∞

ln
(

δ
zw

) (11)

U∞ denotes the free stream velocity; zw = 1× 10−6 m is the imposed seabed rough-
ness.

2. At the outlet of the domain u, k and ω are prescribed with zero normal gradient
condition, the reference pressure is set p = 0.

3. At the top boundary u, k ,ω and p are set to zero normal gradient.

4. On the bottom and on the cylinders walls a ”no-slip” condition is imposed: u1 = 0,
u2 = 0, k = 0, and ω = 60ν

β1(hp)2
where β1 = 0.075 is the model constant, hp is the

radial distance from the wall to the first cell center.

Reynolds number based on the free stream velocity U∞, diameter of the larger cylinder D
and kinematic viscosity ν is kept constant at Re = 13100. The movement of the boundary
of the cylinders is realized using the dynamic grid method.

3 GRID AND TIME STEP CONVERGENCE STUDY

The spatial domain is discretized with a block-structured hexahedral grid. Figure 2
shows the typical mesh used in the present study. The grid is refined in the high gradient
areas of the domain and close to the walls. The near-wall grid expansion ratio is kept
smaller than re � 1.05 for the first 20 cell layers. The grid expansion ratio in the remainder
of the domain is smaller than re � 1.2. In the present study, numerical simulations are first
performed to confirm the grid and time step independence. For this purpose, a set of three
meshes with different cell densities using constant refinement factor rF = 1.4 is generated.
The dimensionless wall distance y+ is defined as y+ = hpu∗/ν. Maximum and average
values of y+ are calculated on respective walls based on u∗ extracted from the simulations.
The first cell layer height near the cylinders surface is set to 0.0005D corresponding
to y+max,1 = 0.615 and y+avg,1 = 0.323 on the upstream cylinder, y+max,2 = 0.416 and
y+avg,2 = 0.242 on the downstream cylinder. The first cell layer near the plane wall was
set to 0.002D corresponding to y+max,bot = 1.02 and y+avg,bot = 0.55. The near-wall mesh
resolution is therefore, sufficient to resolve the laminar sublayer. The hydrodynamic force
coefficient results for the cases with different grid and time resolutions are shown in Table
1. The relative difference in computed quantities with respect to the results obtained
on the mesh M1A are given in the brackets. It is observed that for the case of a dense
mesh (M3A) and medium mesh (M1A), the differences in the predicted hydrodynamic
quantities are within the acceptable range, namely under 2%. The time step sensitivity
study shows relatively small sensitivity of the computed quantities to the variation of ∆t in
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Figure 2: Example of a computational mesh for flow around a tandem cylinders vibrating with 2DOF
(134 394 elements, L/D = 5, e/D = 2).

the investigated range. Time step ∆t = 0.002 is therefore selected and is expected to give a
good balance between accuracy and computational efficiency. Overall, it appears that the
mesh with 134 394 elements (M1A) with the time step ∆t = 0.002 can provide satisfactory
spatial and time resolution for the simulations of tandem cylinders at Re = 13100.

Table 1: Results of the cases with different grid and time resolutions.

Mesh Time step Elements CD,1 C
rms

L,1 CD,2 C
rms

L,2

M1A ∆t = 0.002 134394 1.537 (-) 1.149 (-) 0.122 (-) 1.261 (-)
M2A ∆t = 0.002 68033 1.468 (4.51%) 1.289 (12.23%) 0.114 (6.7%) 1.475 (16.94%)
M3A ∆t = 0.002 265616 1.540 (0.23%) 1.161 (1.04%) 0.123 (1.13%) 1.285 (1.94%)
M1B ∆t = 0.004 134394 1.559 (1.43%) 1.168 (1.74%) 0.124 (1.23%) 1.289 (2.18%)
M1C ∆t = 0.001 134394 1.524 (0.83%) 1.142 (0.64%) 0.121 (0.45%) 1.244 (1.33%)

4 VALIDATION STUDY

The present model is used to simulate the flow around a single near-wall cylinder.
The calculated hydrodynamic forces are compared with the experiential data from Lei
et al. [10] and Kiya [9]. The domain size is the same as shown in Fig. 1, and the
boundary layer thickness is set to δ/D = 2.89. The investigated Reynolds number is
Re = 13100, matching the Re reported in Lei et al. [10]. Figure 3 shows the variation of
the mean drag coefficient (CD) with gap ratio. A good agreement is found between the
predicted CD values and experimental results by Lei et al. [10]. Overall, a good fit to the
experimental data is reported and the present simulations are capable of capturing the
drag force reduction on the downstream cylinder due to the interaction with the wake of
the upstream cylinder.

The model ability to predict the vortex-induced vibration amplitudes and frequencies
is validated by performing a set of simulations of an isolated cylinder vibrating with
2DOF at selected range of reduced velocities 3 � Ur � 13. The present numerical study
is set up according to the experiment settings reported by Jauvtis and Williamson [7]
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and kinematic viscosity ν is kept constant at Re = 13100. The movement of the boundary
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performed to confirm the grid and time step independence. For this purpose, a set of three
meshes with different cell densities using constant refinement factor rF = 1.4 is generated.
The dimensionless wall distance y+ is defined as y+ = hpu∗/ν. Maximum and average
values of y+ are calculated on respective walls based on u∗ extracted from the simulations.
The first cell layer height near the cylinders surface is set to 0.0005D corresponding
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set to 0.002D corresponding to y+max,bot = 1.02 and y+avg,bot = 0.55. The near-wall mesh
resolution is therefore, sufficient to resolve the laminar sublayer. The hydrodynamic force
coefficient results for the cases with different grid and time resolutions are shown in Table
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on the mesh M1A are given in the brackets. It is observed that for the case of a dense
mesh (M3A) and medium mesh (M1A), the differences in the predicted hydrodynamic
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Figure 2: Example of a computational mesh for flow around a tandem cylinders vibrating with 2DOF
(134 394 elements, L/D = 5, e/D = 2).

the investigated range. Time step ∆t = 0.002 is therefore selected and is expected to give a
good balance between accuracy and computational efficiency. Overall, it appears that the
mesh with 134 394 elements (M1A) with the time step ∆t = 0.002 can provide satisfactory
spatial and time resolution for the simulations of tandem cylinders at Re = 13100.

Table 1: Results of the cases with different grid and time resolutions.

Mesh Time step Elements CD,1 C
rms
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L,2
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4 VALIDATION STUDY

The present model is used to simulate the flow around a single near-wall cylinder.
The calculated hydrodynamic forces are compared with the experiential data from Lei
et al. [10] and Kiya [9]. The domain size is the same as shown in Fig. 1, and the
boundary layer thickness is set to δ/D = 2.89. The investigated Reynolds number is
Re = 13100, matching the Re reported in Lei et al. [10]. Figure 3 shows the variation of
the mean drag coefficient (CD) with gap ratio. A good agreement is found between the
predicted CD values and experimental results by Lei et al. [10]. Overall, a good fit to the
experimental data is reported and the present simulations are capable of capturing the
drag force reduction on the downstream cylinder due to the interaction with the wake of
the upstream cylinder.

The model ability to predict the vortex-induced vibration amplitudes and frequencies
is validated by performing a set of simulations of an isolated cylinder vibrating with
2DOF at selected range of reduced velocities 3 � Ur � 13. The present numerical study
is set up according to the experiment settings reported by Jauvtis and Williamson [7]
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Figure 3: Comparison of mean drag coefficient predicted by the present model with the experimental
data.

Table 2: Summary of the physical properties used in the simulations of an isolated cylinder vibrating
with 2DOF.

Parameter Value

Cylinder diameter D [m] 0.0381
Cylinder mass [kg] 1.13
Added mass [kg] 1.13
Water density [kg/m3] 1000
Mass ratio m∗ [-] 2.6
Damping ratio ζ [-] 0.0036
Natural frequency of the system [Hz] 0.4
Turbulent intensity I [%] 0.7
Turbulent length scale � [m] 0.0027

which are summarized in Table 2. Figure 4 shows the normalized maximum cross-flow
vibration amplitudes (AY,max/D) versus Ur predicted by the present numerical model
compared to the experimental data. As the natural frequency of the cylinder approaches
the vortex shedding frequency, the lock-in phenomenon is observed in which the response
amplitude of the cylinder is amplified significantly. In both analysed settings the present
model appears to predict the onset of the lock-in with reasonable accuracy. The branch-
ing behaviour described by Jauvtis and Williamson [7] is clearly visible in Fig. 4 with
three distinguishable branches, namely the initial branch, the super upper branch, and
the lower branch. The present numerical model results of the response amplitude agree
well with earlier experimental data across the range of Ur considered. There are some
discrepancies between the numerical results and experiment for displacement amplitudes
corresponding to the peak response in the super upper branch. The predicted maximum
of cross-flow non-dimensional amplitude is AY,max/D ≈ 1.4 which is slightly lower than
AY,max/D = 1.5 reported by Jauvtis and Williamson [7]. Generally, the present approach
seems to provide reasonable accuracy and performance in capturing essential physics of
flow-induced vibrations.
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Figure 4: Comparison of response amplitudes in cross flow direction with experimental data.

5 RESULTS

The case matrix established in the present study is summarized in Table 3. The
configuration of tandem cylinders with L/D = 5 and e/D = 2 is investigated over the
range of reduced velocities 3 � Ur � 14 with increments of 0.5. For each analysed case
the simulations are performed for tU/D = 250 units of non-dimensional time. The mass
ratio is kept constant at m∗ = 3, and the damping factor value is set to ζ = 0.005.
Figure 5 shows the AY,max/D (a) and normalized root-mean-square in-line displacement

Table 3: Range of parameters investigated in the present study.

Parameter Value

Cylinder diameters D1, D2 D1 = D2 = D
Mass ratio m∗ 3
Damping ratio ζ 0.005
Center-to-center spacing L/D 5
Gap ratio e/D 2
Reduced velocity range Ur 3 - 14

(AX,rms/D) versus Ur for the upstream and the downstream cylinder. The cross-flow
response of the upstream cylinder in the range of 3 � Ur � 8 clearly resembles the three
branches identified in the response of the single cylinder (see Fig. 5 (a)). The main
difference can be spotted in the lower branch for 8.5 � Ur � 9.5 where a sudden drop
in the AY,max/D is observed. This indicates that despite being formally in the wake
interference regime, the upstream cylinder is affected by the presence of the downstream
cylinder. For the upstream cylinder the peak in the AX,rms/D response coincides with the
peak in AY,max/D response. In comparison to the upstream cylinder, the lock-in onset
of the downstream cylinder is delayed and can be observed approximately at Ur = 5.5.
The reason for that is the shielding effect due to the upstream cylinder presence which is
amplified by its large vibration amplitude in the range of 4 � Ur � 5.5, corresponding to
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Figure 3: Comparison of mean drag coefficient predicted by the present model with the experimental
data.

Table 2: Summary of the physical properties used in the simulations of an isolated cylinder vibrating
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which are summarized in Table 2. Figure 4 shows the normalized maximum cross-flow
vibration amplitudes (AY,max/D) versus Ur predicted by the present numerical model
compared to the experimental data. As the natural frequency of the cylinder approaches
the vortex shedding frequency, the lock-in phenomenon is observed in which the response
amplitude of the cylinder is amplified significantly. In both analysed settings the present
model appears to predict the onset of the lock-in with reasonable accuracy. The branch-
ing behaviour described by Jauvtis and Williamson [7] is clearly visible in Fig. 4 with
three distinguishable branches, namely the initial branch, the super upper branch, and
the lower branch. The present numerical model results of the response amplitude agree
well with earlier experimental data across the range of Ur considered. There are some
discrepancies between the numerical results and experiment for displacement amplitudes
corresponding to the peak response in the super upper branch. The predicted maximum
of cross-flow non-dimensional amplitude is AY,max/D ≈ 1.4 which is slightly lower than
AY,max/D = 1.5 reported by Jauvtis and Williamson [7]. Generally, the present approach
seems to provide reasonable accuracy and performance in capturing essential physics of
flow-induced vibrations.
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Figure 4: Comparison of response amplitudes in cross flow direction with experimental data.

5 RESULTS

The case matrix established in the present study is summarized in Table 3. The
configuration of tandem cylinders with L/D = 5 and e/D = 2 is investigated over the
range of reduced velocities 3 � Ur � 14 with increments of 0.5. For each analysed case
the simulations are performed for tU/D = 250 units of non-dimensional time. The mass
ratio is kept constant at m∗ = 3, and the damping factor value is set to ζ = 0.005.
Figure 5 shows the AY,max/D (a) and normalized root-mean-square in-line displacement

Table 3: Range of parameters investigated in the present study.

Parameter Value

Cylinder diameters D1, D2 D1 = D2 = D
Mass ratio m∗ 3
Damping ratio ζ 0.005
Center-to-center spacing L/D 5
Gap ratio e/D 2
Reduced velocity range Ur 3 - 14

(AX,rms/D) versus Ur for the upstream and the downstream cylinder. The cross-flow
response of the upstream cylinder in the range of 3 � Ur � 8 clearly resembles the three
branches identified in the response of the single cylinder (see Fig. 5 (a)). The main
difference can be spotted in the lower branch for 8.5 � Ur � 9.5 where a sudden drop
in the AY,max/D is observed. This indicates that despite being formally in the wake
interference regime, the upstream cylinder is affected by the presence of the downstream
cylinder. For the upstream cylinder the peak in the AX,rms/D response coincides with the
peak in AY,max/D response. In comparison to the upstream cylinder, the lock-in onset
of the downstream cylinder is delayed and can be observed approximately at Ur = 5.5.
The reason for that is the shielding effect due to the upstream cylinder presence which is
amplified by its large vibration amplitude in the range of 4 � Ur � 5.5, corresponding to
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Figure 5: Normalized maximum cross-flow displacement AY,max/D (a) and normalized root-mean-square
in-line displacement AX,rms/D (b) for tandem cylinders vibrating with 2DOF versus reduced velocity
Ur.

the initial and the super upper branch of the upstream cylinder response. The vibrating
upstream cylinder disturbs the flow field in front of the downstream cylinder, causing
a reduction in the mean flow velocity. The ”true” reduced velocity experienced by the
downstream cylinder is, therefore, lower than the nominal reduced velocity based on the
free stream velocity U∞. In addition to the delay in the lock-in onset, the downstream
cylinder shows much wider lock-in width in terms of Ur range. The peak AY,max/D
amplitudes close to 1D are observed in the range of 6 � Ur � 12.

The AX,rms/D of the downstream cylinder is generally much larger than that of the
upstream cylinder. This is the consequence of the wake-induced vibrations caused by
the vortices shed from the upstream cylinder impinging on the downstream cylinder,
which will be shown in the subsequent flow field analysis. The AX,rms/D response of the
downstream cylinder shown in Fig. 5 (b) decreases monotonically with Ur, except for Ur =
10 where a large increase of the in-line displacement is observed. This sudden increase is
correlated with a smaller secondary peak in AX,rms/D of the upstream cylinder. In order
to explain the dynamics of the downstream cylinder the instantaneous non-dimensional
vorticity (ωD/U∞) contour plots shown in Figs. 6 - 8 are presented and discussed. The
solid line indicates counterclockwise vorticity and the dashed line indicates the negative
vorticity, ten equispaced isocontours −4 � ωD/U∞ � 4 are plotted. The dynamics of
the vibrating tandem cylinders can be classified based on the vibration responses and the
flow field characteristics. Regime A is identified in the range of Ur where the downstream
cylinder vibration amplitude is small Ur < 5. Regime B is found at Ur ≈ 4.5 − 5.5
corresponding to the super upper branch of the upstream cylinder lock-in. Regime C is the
regime where the vibration amplitude of the downstream cylinder is large, i.e. Ur � 6.5.
In Regime A, the downstream cylinder is submerged in the wake of the upstream cylinder
during the oscillation cycle (see Fig. 6). The phase lag of the downstream cylinder
oscillation with respect to the upstream cylinder oscillation is approximately τ = π.
Vorticity that forms on the upstream cylinder merges with the vorticity of the same sign
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Figure 6: Vorticity contours and cross-flow displacement time series at Ur = 3.
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Figure 7: Vorticity contours and cross-flow displacement time series at Ur = 5.5.
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Figure 8: Vorticity contours and cross-flow displacement time series at Ur = 8.5.

on the rear cylinder. One vortex of each sign is shed forming a regular vortex street.
Regime B exists for Ur ≈ 4.5 − 5.5. For the cases in this Ur range, the upstream

cylinder experiences large vibration amplitudes. The characteristic 2T vortex shedding
mode is found in the wake of the upstream cylinder as evidenced by the vorticity contours
shown in Fig. 7. The 2T shedding mode was first observed and described by Jauvtis
and Williamson [7] who associated it with the super upper branch of the VIV response.
In Regime B the cylinders oscillate in phase, τ ≈ 0. Large oscillation amplitude of the
upstream cylinder is the reason for the wide wake formed behind it. The downstream
cylinder is entrenched in the wake of the upstream cylinder, and its motion is governed
by the strong vorticity formed and convected from the surface of the upstream cylinder.

Regime C exists for Ur � 6.5 and is characterised by large oscillation amplitudes of
the downstream cylinder, with the oscillation of the downstream cylinder lagging the
front cylinder by τ ≈ π/2. Figure 8 shows the vorticity contours for the case of Ur = 8.
Compared to the Regime A the increased vortex formation length is observed. Upstream
cylinder oscillation amplitudes are much lower than that in Regime B. In consequence,
a narrow wake is formed behind the upstream cylinder, and the vortices shed directly
impinge the downstream cylinder. In a complex interaction, negative and positive vorticity
from the front cylinder is subsumed by the vortex formation on the rear cylinder each
half cycle. Within each cycle, this vortex interaction creates two pairs of unequal strength
vortices.

6 CONCLUSIONS

Wake-induced vibrations of two tandem cylinders near a horizontal plane wall with
centre-to-centre spacing L/D = 5 and gap ratio e/D = 2 have been investigated numer-
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ically. The simulations have been performed at Re = 13100 and normalized boundary
layer thickness δ/D = 2.89. The results for the flow around tandem cylinders vibrating
with two degrees-of-freedom have been presented. Three distinct regimes of oscillation
and vortex-shedding have been identified in the range of investigated Ur. The oscillation
regimes have been characterised based on the vibration amplitudes, a phase difference
between the two cylinders oscillations and flow field analysis using vorticity contours.
The extended resonant range of the downstream cylinder has been observed and has been
attributed to the interaction with the upstream cylinder’s wake. In comparison to the
single cylinder VIV response, the onset of the lock-in of the downstream cylinder is shifted
to higher Ur value. The lock-in width in terms of Ur range is significantly increased for
the downstream cylinder. The in-line vibration amplitudes of the downstream cylinder
are largely increased due to the flow disturbances introduced by the vibrating upstream
cylinder.

A series of numerical simulations have been performed in order to validate the model.
The simulation results reveal that the present model predicts the drag coefficient with
good accuracy. The present model provides reasonable accuracy with respect to the
prediction of the vibration amplitudes.
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Abstract. The validation of the Sherman-Morrison algorithm to solve the Poisson equa-
tion with periodic boundary conditions constitutes the essence of the study. The solver
code of channel flow case (no-slip boundary condition) is changed to include the periodic
boundary conditions to simulate the Taylor-Green vortex (TGV) flow using Sherman-
Morrison algorithm. The kinetic energy, dissipation rate and energy spectra are examined
along with the evolution of vortex break-up and decay. Results are in reasonable agree-
ment with the standard reference solution. The study is further extended by examining
the particle concentration with the Q criterion. But, the main focus of the paper is the
validation of the algorithm and particle statistics just serves as motivation for the future
study.

1 INTRODUCTION

Turbulence is a ubiquitous phenomenon which always offer its share of surprises in its
understanding. Understanding the dynamics of turbulent flow has its own challenges from
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the numerical and mathematical point of view. All fluid flows are described by the Navier-
Stokes equations and time dependent solutions of the Navier-Stokes equations represent
the turbulent motion of the flow. Such solutions are still an unsolved problem from the
mathematical point of view and hence numerical simulations have their advantage.

Direct numerical simulations (DNS) solve the unsteady Navier-Stokes equations to
compute all the scales of turbulent motion. This is an accurate method to predict the
turbulent motion since no modelling is required at any stage. Reynolds number of the flow
in nature is quite high and hence to simulate the same using DNS requires huge computing
capacities. To capture the smallest eddy, DNS needs high resolution computational mesh
and time step which indeed leads to a huge consumption of memory and CPU hours. In
general, DNS is a costly numerical experiment and only restricted to low or moderately
high Reynolds numbers.

The Taylor-Green vortex flow is one of the simplest and classic flow systems to study
the vortex dynamics, energy dissipation process, transition and decay [1, 2, 3]. It is also
one of the classic systems to study the generation of excitations at small scales and the
resulting turbulence [4]. Initially it consists of a smooth vortex distribution. As time
advances, since there is no external forcing, vortex rolls up, stretch and eventually break
down into turbulence [1]. Small scale turbulent motion eventually loses all its energy and
dies out. The periodic 3D TGV flow is computed from an initial condition in terms of
its velocity field at t = 0. Periodic boundary conditions are applied to all the boundary
surfaces. As time advances, vortices start to break down and energy is cascaded to smaller
scales and eventually dies out. The TGV problem is simple and a good benchmark to
test and validate numerical schemes [1, 5].

Suspensions of particles in a turbulent flow have been extensively studied in the view
to better understand the transport mechanisms, dispersion and other mechanisms [6].
It is interesting to study the particle motion in response to the breaking down of the
vortices in TGV flow. Spherical particles are considered in this study. The complexity
can be increased by looking into non-spherical particles and also by the addition of forces
like gravity, lift etc. The focus of this work is only to study the validation and use of
the Sherman-Morrison algorithm to solve the Poisson equation with periodic boundary
conditions and hence the study of particles in TGV flow just serves as a motivation for
the future study.

In the present study, a spectral scheme is applied in two directions while a finite-
difference scheme in the other to solve the Navier-Stokes equations. The Sherman-
Morrison algorithm is used to solve the Poisson equation originating from the standard
projection method. The motivation to validate the solver code (using Sherman-Morrison
algorithm) in TGV flow is to extend the present code to simulate homogeneous shear
turbulent flow (HST) in the near future. In simulating HST, using spectral schemes in all
three directions leads to remeshing the flow periodically to keep the numerical errors in
check [7, 8]. This indeed leads to loss of enstrophy and energy that degrade the accuracy
of the solution. This can be avoided by using ’shear-periodic’ boundary conditions in
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which periodicity is enforced between shifting points of the upper and bottom boundaries
of the computational box using finite-difference scheme [8]. Thus, the Sherman-Morrison
algorithm solving the Poisson equation with periodic boundary conditions in TGV flow,
will be further extended to solve the same with shear-periodic boundary conditions to
simulate HST provides the motivational background for the current work.

2 NUMERICAL METHODOLOGY

2.1 Governing equations

In the present work, 3D TGV flow is considered. The fluid flow is assumed to be
incompressible, Newtonian and isothermal which is governed by the mass and momentum
conservation equations,

∂ui

∂xi

= 0 (1)

∂ui

∂t
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∂uj
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∂xi
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Re
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, (2)

where ui is the i
th component of the velocity vector, ∂p

∂xi
is the pressure gradient and Re is

the Reynolds number defined in the next section is used to normalise the above equation.
Equations (1) and (2) are solved fully in DNS and hence without the involvement of any
modelling.

2.2 Flow conditions

A cubical domain with sides of length 2πL is considered. Initial conditions for the
simulation are specified by the following relations
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L
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L
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L
) (3)

v = 0 (4)

w = −V0cos(
x

L
)cos(
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L
), (5)

where, u,v,w are the three components of the velocity vector ui and V0 is the large scale
velocity of the vortex at the start of the simulation. These initial conditions satisfy the
continuity equation (1) and the momentum equations (2). Re used in equation (2) is
defined by V0, L and kinematic viscosity ν. Re is set to be 1600, which is the Reynolds
number used in the reference solution [4].
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like gravity, lift etc. The focus of this work is only to study the validation and use of
the Sherman-Morrison algorithm to solve the Poisson equation with periodic boundary
conditions and hence the study of particles in TGV flow just serves as a motivation for
the future study.

In the present study, a spectral scheme is applied in two directions while a finite-
difference scheme in the other to solve the Navier-Stokes equations. The Sherman-
Morrison algorithm is used to solve the Poisson equation originating from the standard
projection method. The motivation to validate the solver code (using Sherman-Morrison
algorithm) in TGV flow is to extend the present code to simulate homogeneous shear
turbulent flow (HST) in the near future. In simulating HST, using spectral schemes in all
three directions leads to remeshing the flow periodically to keep the numerical errors in
check [7, 8]. This indeed leads to loss of enstrophy and energy that degrade the accuracy
of the solution. This can be avoided by using ’shear-periodic’ boundary conditions in
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which periodicity is enforced between shifting points of the upper and bottom boundaries
of the computational box using finite-difference scheme [8]. Thus, the Sherman-Morrison
algorithm solving the Poisson equation with periodic boundary conditions in TGV flow,
will be further extended to solve the same with shear-periodic boundary conditions to
simulate HST provides the motivational background for the current work.

2 NUMERICAL METHODOLOGY

2.1 Governing equations

In the present work, 3D TGV flow is considered. The fluid flow is assumed to be
incompressible, Newtonian and isothermal which is governed by the mass and momentum
conservation equations,
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the Reynolds number defined in the next section is used to normalise the above equation.
Equations (1) and (2) are solved fully in DNS and hence without the involvement of any
modelling.

2.2 Flow conditions

A cubical domain with sides of length 2πL is considered. Initial conditions for the
simulation are specified by the following relations
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where, u,v,w are the three components of the velocity vector ui and V0 is the large scale
velocity of the vortex at the start of the simulation. These initial conditions satisfy the
continuity equation (1) and the momentum equations (2). Re used in equation (2) is
defined by V0, L and kinematic viscosity ν. Re is set to be 1600, which is the Reynolds
number used in the reference solution [4].
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2.3 Code description

Initially, the code was intended to simulate channel flow cases with no-slip boundary
conditions. So, the main focus of the work is to convert the code from channel flow prob-
lem to TGV flow problem. In the channel flow case, periodic boundary conditions are
imposed in homogeneous streamwise (x ) and spanwise (y) directions while no-slip bound-
ary condition is imposed in the wall-normal (z ) direction. A standard projection method
is employed for the time advancement of the Navier-Stokes equations and the resulting
Poisson equation is solved eventually using a tri-diagonal matrix algorithm (TDMA).

But in TGV flow, the periodic boundary condition alters the coefficient matrix of the
Poisson equation and hence direct usage of TDMA is not possible. This necessitates to
find a new algorithm to solve the linear system of equations of the new Poisson equation.
All sections of the channel flow code is retained the same for the TGV flow case as well,
except changing the solver. Staggered grid is used in the code with velocity components
u,v and pressure p defined at the cell center and velocity component w is defined at the
cell-face center.

2.3.1 Numerical method

A pseudo-spectral method is used to compute spatial derivatives in the homogeneous x
and y directions. Second order central finite- difference method is used to compute spatial
derivatives in z direction. In the pseudo-spectral method, spatial derivatives are computed
by transforming variables into spectral space using Fourier series representation. So, the
velocity vector is expressed as follows

ui(xi, t) =
∑
k

ûk(t)e
ikxi , (6)

where, xi is the position vector in physical space, while k is the wave number in spec-
tral space. First and second derivatives are computed by multiplying the transformed
terms with ikx and −k2

x and then transformed back to physical space. This forward and
backward transformation is done using FFT (Fast Fourier transform).

The Navier-Stokes equations are advanced in time using the second-order explicit
Adams-Bashforth scheme. The standard projection method is summarized in steps,

Step 1: Intermediate velocity u∗
i is computed at time between tn and tn+1 by neglecting

the pressure pn as

u∗
i − un

i

∆t
=

3

2
T (un

i )−
1

2
T (un−1

i ), (7)

where, T (un
i ) = −un

j
∂un

i

∂xj
+ 1

Re

∂2un
i

∂xj∂xj
, is the transport terms, i.e. convection and diffusion.
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Step 2: Solving the Poisson equation to compute pressure at the new time level

∇2pn+1 =
∇ · u∗

∆t
(8)

Step 3: Velocity at the new time level is updated from the computed pressure at the
new time level by,

un+1
i − u∗

i = −∆t
∂pn+1

∂xi

. (9)

The Poisson equation is solved at every time step to calculate the velocity at each
instant by maintaining the mass conservation. It is solved using FFT in x and y directions.
While in z direction, it leads to a system of linear equations of tri-diagonal matrix form
with two extra entries in the upper and the lower diagonal corner of the coefficient matrix
due to the periodic boundary condition of the TGV flow. This facilitates to use Sherman-
Morrison algorithm to solve the Poisson equation.

3 Sherman-Morrison algorithm

The Sherman-Morrison formula is one of the attractive methods to solve linear systems
of equations arising from elliptical partial differential equations. It is a direct method and
uses a finite iterative process [9]. Linear system of equations of the discrete Poisson
equation is denoted as,

Ãp = d, (10)

where, Ã is the coefficient matrix of size n × n, p denotes the pressure matrix and d
denotes the RHS of the equation (8). The expansion of equation (10) is,




b1 c1 0 ... β
a2 b2 c2 ...

...

... aN−1 bN−1 cN−1

α ... 0 aN bN







p1
p2
...

pN−1

pN



=




d1
d2
...

dN−1

dN



.

(11)

In the coefficient matrix Ã, (b1, b2......bn) are the diagonal elements, (c1, c2....cn−1) are
the upper-diagonal elements and (a2, a3....an) are the lower-diagonal elements. It would
have been a perfect tri-diagonal matrix without the two cornered elements α and β. The
extra two elements in the coefficient matrix are due to the periodic boundary conditions
of TGV flow. The Sherman-Morrison algorithm to solve equation (11) is summarized in
three steps,
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Step 2: Solving the Poisson equation to compute pressure at the new time level

∇2pn+1 =
∇ · u∗

∆t
(8)

Step 3: Velocity at the new time level is updated from the computed pressure at the
new time level by,

un+1
i − u∗

i = −∆t
∂pn+1

∂xi

. (9)

The Poisson equation is solved at every time step to calculate the velocity at each
instant by maintaining the mass conservation. It is solved using FFT in x and y directions.
While in z direction, it leads to a system of linear equations of tri-diagonal matrix form
with two extra entries in the upper and the lower diagonal corner of the coefficient matrix
due to the periodic boundary condition of the TGV flow. This facilitates to use Sherman-
Morrison algorithm to solve the Poisson equation.

3 Sherman-Morrison algorithm

The Sherman-Morrison formula is one of the attractive methods to solve linear systems
of equations arising from elliptical partial differential equations. It is a direct method and
uses a finite iterative process [9]. Linear system of equations of the discrete Poisson
equation is denoted as,

Ãp = d, (10)

where, Ã is the coefficient matrix of size n × n, p denotes the pressure matrix and d
denotes the RHS of the equation (8). The expansion of equation (10) is,
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In the coefficient matrix Ã, (b1, b2......bn) are the diagonal elements, (c1, c2....cn−1) are
the upper-diagonal elements and (a2, a3....an) are the lower-diagonal elements. It would
have been a perfect tri-diagonal matrix without the two cornered elements α and β. The
extra two elements in the coefficient matrix are due to the periodic boundary conditions
of TGV flow. The Sherman-Morrison algorithm to solve equation (11) is summarized in
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Step 1: Ã is re-written as Ã = Â + l ⊗m

where,

Â =




2b1 c1 0 ... 0
a2 b2 c2 ...

...

... aN−1 bN−1 cN−1

0 ... 0 aN bN + cna1
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
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(12)
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γ
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.
.
.
0
α


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m =


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1
0
.
.
.
0

β/γ



.

(13)

Step 2: Solving the two auxiliary equations using TDMA to find y and z column
vectors. TDMA is summarized in the Appendix A.

Ây = d Âz = l (14)

Step 3: In terms of the above, the pressure matrix is obtained as,

p = y −
[ mT · y
1 +mT · z

]
z (15)

The main idea of the algorithm is to re-write the coefficient matrix in such a way that it
remains tri-diagonal and hence TDMA could be applied. TDMA is applied twice to solve
the auxiliary equations which increases the number of operations. But, the simplicity of
implementation is rewarded in return.

4 RESULTS

4.1 TGV flow simulation

The primary method for evaluating the TGV solutions is to examine the rate at which
the fluid dissipates the kinetic energy in the domain [4]. Volume averaged kinetic energy
is computed in the cubic domain Ω by

Ek =

∫

Ω

u
′
iu

′
i

2
dΩ, (16)
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where, u
′
i denotes the velocity. The volume averaged energy dissipation rate is computed

in two ways. One way is to compute directly from the first principles,

< εiso >= ν <
∂u

′
i

∂xj

∂u
′
i

∂xj

>, (17)

where, <> represents the volume average of the physical quantity in the cubic domain Ω.
The other way to calculate ε is from the decay rate of the kinetic energy Ek as

ε(Ek) = −dEk

dt
. (18)

ε(Ek), kinetic energy dissipation rate (KEDR), is written as function of Ek to emphasise
that it is computed directly from the kinetic energy in the domain [1]. All the physical
quantities like kinetic energy, energy dissipation rate, vorticity and time are normalized
using the velocity scale V0 and length scale L.

In figure 1(a), the evolution of volume averaged kinetic energy is plotted in comparison
with the reference solution [4]. A small discrepancy is seen owing to the accuracy of
the second order central finite-difference in z direction in comparison with the spectral
accuracy in x and y directions. Accuracy can be further increased by increasing the
number of grid points in z direction to 256 and 512 from the current 128. In figure
1(b), evolution of volume averaged ε is plotted in comparison with the reference solution
[13]. The reference solution of ε is computed as ε(Ek), i.e. kinetic energy dissipation
rate (KEDR). The peak of the energy dissipation is seen at around t=9 in the reference
solution.

Evolution of iso-contours of the y-component vorticity (ωy) is presented in figure 3,
where ωy = (∂u

∂z
− ∂w

∂x
), where u and w are the x and z component of the velocity vector

ui. This illustrates the evolution breaking down of vortices as depicted in the reference
solution [1]. It starts with the smooth vortices and as time advances, vortex structure
starts to undergo structural changes. The flow is more or less inviscid till t = 5. At t = 7,
coherence starts to break down and eventually the flow becomes turbulent and finally the
smaller structures slowly decay until the flow comes to rest.

The progression of energy spectra is shown in figure 2. At t = 3, the energy is confined
to small wave numbers k. Energy begins to cascade down to smaller and smaller scales
as time progresses. It can be observed in figure 2 that the peak of the energy dissipation
is around t = 9. This is clearly seen in the figure 1b, where the energy in the smallest
scales peaks at t = 9, which is consistent with the maximum energy dissipation rate.
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Step 3: In terms of the above, the pressure matrix is obtained as,
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The other way to calculate ε is from the decay rate of the kinetic energy Ek as
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ε(Ek), kinetic energy dissipation rate (KEDR), is written as function of Ek to emphasise
that it is computed directly from the kinetic energy in the domain [1]. All the physical
quantities like kinetic energy, energy dissipation rate, vorticity and time are normalized
using the velocity scale V0 and length scale L.

In figure 1(a), the evolution of volume averaged kinetic energy is plotted in comparison
with the reference solution [4]. A small discrepancy is seen owing to the accuracy of
the second order central finite-difference in z direction in comparison with the spectral
accuracy in x and y directions. Accuracy can be further increased by increasing the
number of grid points in z direction to 256 and 512 from the current 128. In figure
1(b), evolution of volume averaged ε is plotted in comparison with the reference solution
[13]. The reference solution of ε is computed as ε(Ek), i.e. kinetic energy dissipation
rate (KEDR). The peak of the energy dissipation is seen at around t=9 in the reference
solution.

Evolution of iso-contours of the y-component vorticity (ωy) is presented in figure 3,
where ωy = (∂u
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), where u and w are the x and z component of the velocity vector

ui. This illustrates the evolution breaking down of vortices as depicted in the reference
solution [1]. It starts with the smooth vortices and as time advances, vortex structure
starts to undergo structural changes. The flow is more or less inviscid till t = 5. At t = 7,
coherence starts to break down and eventually the flow becomes turbulent and finally the
smaller structures slowly decay until the flow comes to rest.

The progression of energy spectra is shown in figure 2. At t = 3, the energy is confined
to small wave numbers k. Energy begins to cascade down to smaller and smaller scales
as time progresses. It can be observed in figure 2 that the peak of the energy dissipation
is around t = 9. This is clearly seen in the figure 1b, where the energy in the smallest
scales peaks at t = 9, which is consistent with the maximum energy dissipation rate.

7



204

ROHITH JAYARAM, JURRIAAN J.J. GILLISSEN, LIHAO ZHAO and HELGE I. ANDERSSON

(a) Kinetic energy evolution (b) Energy dissipation rate evolution

Figure 1: Kinetic energy and dissipation rate evolution on the 1283 grid compared with
the reference solutions [4, 13].

Figure 2: Evolution of energy spectra in x direction on the 1283 grid.
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(a) t=3, inviscid (b) t=5, vortex roll-up (c) t=7, change of structure

(d) t=9, coherence breakdown (e) t=11, fully turbulent (f) t=15, turbulent decay

Figure 3: Iso-surfaces of y-vorticity (ωy) on the 1283 grid in comparison with the reference
[1]. The colours distinguish between (ωy > 0) and (ωy < 0)
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Figure 1: Kinetic energy and dissipation rate evolution on the 1283 grid compared with
the reference solutions [4, 13].

Figure 2: Evolution of energy spectra in x direction on the 1283 grid.
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[1]. The colours distinguish between (ωy > 0) and (ωy < 0)
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4.2 Particles in TGV flow

TGV flow is one of the simplest turbulent flows to realise computationally and it is
quite interesting to look at particle motion in the flow. The scope of the result presented
in this article related to particles is just to show a glimpse of the particle motion in
TGV flow without going further deep, since the main focus of this article is about the
Sherman-Morrison algorithm for the Poisson equation. Particle concentration contours
are presented at time t = 5 in comparison with the contour of z-component of vorticity
and the second invariant of the velocity gradient tensor Q at the midplane sliced at z = π.

Q represents the balance between the strain rate and rotation rate magnitude [10],

Q =
1

2
[‖ Ωij ‖2 − ‖ Sij ‖2], (19)

where, Ωij = 1
2
( ∂ui

∂xj
− ∂uj

∂xi
) and Sij = 1

2
( ∂ui

∂xj
+

∂uj

∂xi
) represent the rotation rate tensor and

strain rate tensor, respectively. Strain rate is dominating if Q < 0 and vice-versa if Q > 0.
Q characterises the velocity field in terms of its strain rate and high vortex regions.

Inertial spherical particles are represented by means of a Lagrangian point-particle
approach where each individual particle is tracked at every time-step [6, 11]. One-way
coupling is considered to see the effect of the flow on the particle motion. The Stokes
number is defined as the ratio of particle response time to a characteristic time of the
flow. Here, the flow time is based on the velocity scale V0 and length scale L. St = 1 is
considered in the current case.

A Voronöı diagram is one of the powerful tools to quantify the preferential concentra-
tion/clustering of particles [12]. A Voronöı diagram is the unique decomposition of nD
space into independent cells associated to each particle. One Voronöı cell is defined as the
ensemble of points that are closer to the particle than any other [12]. Sample 2D-Voronöı
diagram for the instantaneous distribution of particles in the slice z = π is shown in figure
5. From the definition of Voronöı diagram, the inverse of the volume V of a Voronöı cell
is the local concentration of the particles.

It is observed from figure 4 that particles are concentrating atQ < 0, which is strain rate
dominant region. Also, no concentration of particles is observed inside the strong vortex
regions. This is consistent with previous research about the particle inertia producing a
bias in its trajectory towards regions of high strain rate or low vorticity [14]. This indeed
is due to the fact that a centrifugal force of the vortex flow will throw the particles outside
its region. The above result just serves as a teaser to the potential study left on particles
in TGV flow.
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(a) Velocity vectors (b) z-component of vorticity (ωz)

(c) Q-field: High strain rate in blue and high
rotation rate in red

(d) Particle concentration: Color bar represents
the local concentration

Figure 4: Comparison of particle concentration with Q-field at (x,y) midplane, sliced at
z = π for all the four plots
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Figure 5: 2D Voronöı volumes at (x,y) midplane, sliced at z = π

5 CONCLUSION

The validation of the Sherman-Morrison algorithm in solving the Poisson equation with
periodic boundary conditions in TGV flow is undertaken in this study. As an extension
of the study, concentration of particles in the context of TGV flow is presented to observe
the regions of the flow where the particles are getting concentrated.

The Sherman-Morrison algorithm serves as a good tool to solve the Poisson equation
with the periodic boundary conditions in all the three directions. It essentially uses
TDMA twice to solve the auxiliary equations by modifying the coefficient matrix. This
is simple in execution.

The algorithm is validated by solving the Poisson equation in TGV flow incorporating
the periodic boundary conditions. A 1283 grid is considered in the simulation. The time
evolution of kinetic energy and energy dissipation rate is in reasonable agreement with the
reference solution. The error can be reduced by increasing the number of grid points in z
direction to 256, 512 and so on. The study of energy spectrum showed that the energy in
the smallest scales peaks at t = 9. This is consistent with the fact that maximum energy
dissipation occurs at the time t = 9. A more qualitative picture of vortex breaking down is
studied by the evolution of iso-surfaces of y-vorticity.The coherence breaks down at t = 7
and the vortical structures further breaks down to become turbulent which eventually
dies out.

As an extension of this study, particle concentration is examined using Voronöı volumes.
To facilitate the study, Q criterion is used to characterize the velocity field into high vortex
and high strain rate dominant regions. In the back-drop of the Q field, it is observed that
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the particles are more concentrated in the strong strain rate regions (Q < 0) and almost
zero at the high vortex regions (Q > 0). With the validation of the solver code in TGV
flow, the study on particles in TGV flow can be further extended.

6 ACKNOWLEDGMENTS

We thank Yucheng Jie for useful discussions on particle concentration using Voronöı vol-
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Appendix A Tri-diagonal matrix algorithm

The tri-diagonal matrix algorithm (TDMA) is a simple method to solve a linear system
of equations. It is one of the special cases of Gaussian elimination. Consider the system
of linear equations in the form,

Ap = d. (20)

Expanding equation (20),




b1 c1 0 ... 0
a2 b2 c2 ...

...

... aN−1 bN−1 cN−1

0 ... 0 aN bN







p1
p2
...

pN−1

pN
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

d1
d2
...

dN−1

dN



.

(21)

TDMA to solve (21) in two steps:

Step 1: Forward elimination

∀i = 2, 3.....N

k1 = b1, Q1 =
d1
k1

, ki = bi −
aici−1

ki−1

, Qi =
di − aiQi−1

ki
; (22)

Step 2: Backward substitution

pN = QN , pi = Qi −
ciui+1

ki
. (23)
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Abstract. A finite volume solver that utilizes adaptive mesh refinement (AMR) on
unstructured Cartesian grids has been developed for the two-dimensional Euler equations
of gas dynamics. The solver uses the explicit Euler method and the Rusanov method
for time and flux discretization, respectively. The rectangular cells can be refined by
quadrisection through their centers. This preserves their aspect ratios and doubles the
spatial resolution locally. Four cells that were created from the same cell refinement can
be merged by reversing the refinement process. The criteria for refinement and merging is
based on the absolute differences of the density and velocity components in neighboring
cells. For triggering adaptation, i.e., for deciding when to perform AMR, a new criterion
is proposed. It is based on accumulating the absolute rate of change of mass relative to
its initial value.

The development of a regular oblique shock reflection from a plane wall is simulated,
starting from an initial condition corresponding to a Riemann problem. For comparison,
the Euler equations of gas dynamics are also solved by a standard finite volume solver on
a structured Cartesian grid. Using AMR, the number of cells can be reduced by up to
95%, i.e. a factor 20, to achieve the same error as the standard finite volume solver. Even
though mesh adaptation impairs convergence to steady state and there is some overhead
related to the data structure, the AMR solver takes only 36% of the computing time
needed by the standard solver, in the most beneficial cases. The potential of the AMR
solver for unsteady flow is demonstrated for the simulation of a 2D Riemann problem.
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1 INTRODUCTION

In computational fluid dynamics (CFD), the demand for high mesh resolution is not
equal throughout the computational domain. High gradients or discontinuities in flow
variables are not adequately resolved in a coarse mesh with large cells. On the other
hand, areas with smaller gradients can be resolved by coarser meshes without increasing
the error much. To reduce the computational cost, it is therefore common to vary the
cell sizes throughout the mesh. It is possible to do this adaptation before simulating
if a priori knowledge or justified assumptions are available for the flow. In many flows
the regions that require high resolution are moving. Examples are vortex shedding, and
moving shocks. It would be possible to resolve the vortices or shock by refining the mesh
in the entire region the features traverse before they dissipate. Another approach, that
can lower the computational cost further, is to detect resolution demanding features while
simulating, and refine or coarsen accordingly [1] [2] [3] [4]. This approach is known as
Adaptive Mesh Refinement, or AMR for short.

An adaptation strategy describes how the AMR is executed on an algorithmic level. It
should answer the questions: When, where and how to adapt?[5] The choice of adaptation
strategy is closely linked with the choice of mesh, and affects how the mesh should be
generated. The AMR solver developed for this project, uses an unstructured Cartesian
mesh. The reason for limiting the mesh to be Cartesian, was to reduce the computation
overhead related to the data structure, as explained in [6]. Marsha J. Berger has con-
tributed to the field of AMR using unstructured Cartesian meshes in cooperation with
Michael J. Aftosmis and John E. Melton [6]. This work has laid the basis for locally
refining AMR softwares such as NASA’s Cart3D project [7].

One method for refining a Cartesian mesh locally, is to quadrisect the cells through
their centers [3]. This allows the refinement state of the cells to be classified by levels [8]
[9]. These refinement levels L correspond to cell sizes, as shown in Figure 1. The largest
permitted cell size corresponds to level L = 0, and gives the lowest possible resolution.
The smallest allowed cell size corresponds to L = Lmax, which gives the highest possible
resolution. Each time L increases by one, the spatial resolution is locally doubled in all
dimensions. This means that when a 2D cell is refined, it is split into four geometrically
similar cells [3], as can be seen in Figure 1. In other words, all the cells have equal aspect
ratio, regardless of the refinement level. For three-dimensional meshes, refined cells are
split into eight cells. Only 2D cases are considered in this project.

An advantage of using this refinement approach is that one can refine very locally. Any
cell can be split into four, as can be seen in Figure 1. Conversely, four cells that were
created by the same cell refinement can be merged. However, it is advantageous to limit
this freedom with a constraint called grading [8]. This constraint sets the lower limit,
denoted by q, for how many cells must come between two level changes. With a grading
degree of q = 0, there is no limit to how close two level changes can be. Essentially, this
means that the refinement level can change multiple times from one cell to another, i.e.
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Refine Refine

L=0 L=1 L=2

Merge Merge

Figure 1: Principle sketch of local grid refinement and merging using quadrisection. L is
the cell refinement level. The grading degree is q = 1, which means that between a cell at
L = 0 and a cell at L = 2, there must be at least one cell at L = 1. This figure is taken
from [10] and adapted slightly.

a very small cell can be adjacent to a big cell. This can negatively affect accuracy, and
it can make the local refining and coarsening algorithms more intricate. With a grading
degree of q = 1, like in Figure 1, there needs to be at least one cell between level changes.
This means that the resolution level can change for every traversed cell, but only one level
at a time.

Another approach of mesh refinement is known as structured AMR, or S-AMR for
short [1] [6] [3]. This method involves organizing the computational domain into patches.
All the cells that belong to the same patch have the same resolution. This makes the
detection and refinement procedures much simpler [1], which is a an advantage. It also
makes it much easier to implement methods with a higher order of accuracy in space,
due to the fact that each patch is a structured sub-mesh. However, many cells will get
a higher resolution than they require, unless the patches are very small. If the patches
are too small, then the maximum cell size is limited, and the inter-patch communication
becomes costly. The work of Marsha J. Berger must be mentioned here as well. She
has contributed to the field of S-AMR, collaborating with Randall J. LeVeque. Their
work in this field is utilized in the AMRCLAW software package [1], which is part the
CLAWPACK package [11].

A third alternative is to refine locally using a tree structure, instead of an unstructured
mesh. For a 2D solver it would be a quadtree structure. This approach allows for a
relatively simple data structure if combined with the quadrisection method discussed
above. However, tree data structures are more costly to traverse. Neither S-AMR or
quadtrees are used in this project, but they are mentioned as alternatives.

There are multiple ways to detect where the mesh needs refinement, and where it can
be coarsened. One way is to compare the entire solution from the latest time step, with a
solution calculated on a coarsened mesh [1]. If the error of a cell, or patch of cells, is above

3



212 213

Frederik Kristoffersen and Bernhard Müller

1 INTRODUCTION

In computational fluid dynamics (CFD), the demand for high mesh resolution is not
equal throughout the computational domain. High gradients or discontinuities in flow
variables are not adequately resolved in a coarse mesh with large cells. On the other
hand, areas with smaller gradients can be resolved by coarser meshes without increasing
the error much. To reduce the computational cost, it is therefore common to vary the
cell sizes throughout the mesh. It is possible to do this adaptation before simulating
if a priori knowledge or justified assumptions are available for the flow. In many flows
the regions that require high resolution are moving. Examples are vortex shedding, and
moving shocks. It would be possible to resolve the vortices or shock by refining the mesh
in the entire region the features traverse before they dissipate. Another approach, that
can lower the computational cost further, is to detect resolution demanding features while
simulating, and refine or coarsen accordingly [1] [2] [3] [4]. This approach is known as
Adaptive Mesh Refinement, or AMR for short.

An adaptation strategy describes how the AMR is executed on an algorithmic level. It
should answer the questions: When, where and how to adapt?[5] The choice of adaptation
strategy is closely linked with the choice of mesh, and affects how the mesh should be
generated. The AMR solver developed for this project, uses an unstructured Cartesian
mesh. The reason for limiting the mesh to be Cartesian, was to reduce the computation
overhead related to the data structure, as explained in [6]. Marsha J. Berger has con-
tributed to the field of AMR using unstructured Cartesian meshes in cooperation with
Michael J. Aftosmis and John E. Melton [6]. This work has laid the basis for locally
refining AMR softwares such as NASA’s Cart3D project [7].

One method for refining a Cartesian mesh locally, is to quadrisect the cells through
their centers [3]. This allows the refinement state of the cells to be classified by levels [8]
[9]. These refinement levels L correspond to cell sizes, as shown in Figure 1. The largest
permitted cell size corresponds to level L = 0, and gives the lowest possible resolution.
The smallest allowed cell size corresponds to L = Lmax, which gives the highest possible
resolution. Each time L increases by one, the spatial resolution is locally doubled in all
dimensions. This means that when a 2D cell is refined, it is split into four geometrically
similar cells [3], as can be seen in Figure 1. In other words, all the cells have equal aspect
ratio, regardless of the refinement level. For three-dimensional meshes, refined cells are
split into eight cells. Only 2D cases are considered in this project.

An advantage of using this refinement approach is that one can refine very locally. Any
cell can be split into four, as can be seen in Figure 1. Conversely, four cells that were
created by the same cell refinement can be merged. However, it is advantageous to limit
this freedom with a constraint called grading [8]. This constraint sets the lower limit,
denoted by q, for how many cells must come between two level changes. With a grading
degree of q = 0, there is no limit to how close two level changes can be. Essentially, this
means that the refinement level can change multiple times from one cell to another, i.e.
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L=0 L=1 L=2

Merge Merge

Figure 1: Principle sketch of local grid refinement and merging using quadrisection. L is
the cell refinement level. The grading degree is q = 1, which means that between a cell at
L = 0 and a cell at L = 2, there must be at least one cell at L = 1. This figure is taken
from [10] and adapted slightly.

a very small cell can be adjacent to a big cell. This can negatively affect accuracy, and
it can make the local refining and coarsening algorithms more intricate. With a grading
degree of q = 1, like in Figure 1, there needs to be at least one cell between level changes.
This means that the resolution level can change for every traversed cell, but only one level
at a time.

Another approach of mesh refinement is known as structured AMR, or S-AMR for
short [1] [6] [3]. This method involves organizing the computational domain into patches.
All the cells that belong to the same patch have the same resolution. This makes the
detection and refinement procedures much simpler [1], which is a an advantage. It also
makes it much easier to implement methods with a higher order of accuracy in space,
due to the fact that each patch is a structured sub-mesh. However, many cells will get
a higher resolution than they require, unless the patches are very small. If the patches
are too small, then the maximum cell size is limited, and the inter-patch communication
becomes costly. The work of Marsha J. Berger must be mentioned here as well. She
has contributed to the field of S-AMR, collaborating with Randall J. LeVeque. Their
work in this field is utilized in the AMRCLAW software package [1], which is part the
CLAWPACK package [11].

A third alternative is to refine locally using a tree structure, instead of an unstructured
mesh. For a 2D solver it would be a quadtree structure. This approach allows for a
relatively simple data structure if combined with the quadrisection method discussed
above. However, tree data structures are more costly to traverse. Neither S-AMR or
quadtrees are used in this project, but they are mentioned as alternatives.

There are multiple ways to detect where the mesh needs refinement, and where it can
be coarsened. One way is to compare the entire solution from the latest time step, with a
solution calculated on a coarsened mesh [1]. If the error of a cell, or patch of cells, is above
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a given threshold then the cell or patch is marked for refining. Another way is to evaluate
the gradients in the solution, in pairs of neighbor cells. Then the cell or patch could be
flagged for refinement or merging based on gradient thresholds. An even simpler approach
is used in this project. We check the differences between flow variables in neighboring
cells. Regardless of how the detection is done, it will consume CPU time. Therefore it is
common not to detect at every time step, but to have a criterion for when to adapt. A
simple criterion is to specify a number of time steps between each detection routine [1], or
a time interval. The AMR-solver in this project decides when to adapt, by accumulating
an approximated mass redistribution rate. We will elaborate this in subsection 4.1.

This paper is based on the first author’s master’s thesis [12], and continues with the
following sections: In section 2, the 2D Euler equations and their initial and boundary
conditions for two test cases involving shocks are stated. The explicit finite volume method
(FVM) for the discretization of the 2D Euler equations is given in section 3. The present
AMR approach based on unstructured Cartesian grids is outlined in section 4. Results
for a regular oblique shock reflection from a plane wall and for a 2D Riemann problem are
discussed in section 5. The accuracies and efficiencies of the AMR solver and a standard
solver are compared. In section 6, conclusions are drawn.

2 GOVERNING EQUATIONS

2.1 2D Euler Equations

The 2D Euler equations of gas dynamics read:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= 0 , (1)

where

U =




ρ

ρu

ρv

ρE


 (2)

is the vector of conservative variables,

F(U) =




ρu

ρu2 + p

ρuv

u(p+ ρE)


 and G(U) =




ρv

ρvu

ρv2 + p

v(p+ ρE)


 (3)

are the flux vectors in the x- and y-directions, respectively. The density is denoted by ρ,
the x- and y-components of the velocity by u and v, respectively, the specific total energy
by E, and the pressure by p. For perfect gas considered here the pressure is related to

4

Frederik Kristoffersen and Bernhard Müller

x

y

1 3

2

s
β

s
α

x
R

α β

y
α

(a) Steady-state solution for the shock reflec-
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(b) Initial conditions for the 2D Riemann prob-
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are instantaneously removed at t = 0.

Figure 2: Principle sketches of the two test cases.

the conserved variables by

p = (γ − 1)

[
ρE − 1

2
ρ(u2 + v2)

]
, (4)

using u = ρu
ρ

and v = ρv
ρ
. γ is the constant ratio of specific heats. We shall consider air

with γ = 1.4. The vector of the primitive variables is defined by:

V =




ρ

u

v

p


 . (5)

2.2 Initial and Boundary Conditions

We will examine two test cases: regular shock reflection, cf. Figure 2a, and a 2D
Riemann problem, cf. Figure 2b.

2.2.1 Regular Oblique Shock Reflection

The shock reflection case seen in Figure 2a, is a steady-state problem. The figure shows
how the steady solution can be divided into regions 1, 2 and 3. Inside each region, the
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a given threshold then the cell or patch is marked for refining. Another way is to evaluate
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common not to detect at every time step, but to have a criterion for when to adapt. A
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This paper is based on the first author’s master’s thesis [12], and continues with the
following sections: In section 2, the 2D Euler equations and their initial and boundary
conditions for two test cases involving shocks are stated. The explicit finite volume method
(FVM) for the discretization of the 2D Euler equations is given in section 3. The present
AMR approach based on unstructured Cartesian grids is outlined in section 4. Results
for a regular oblique shock reflection from a plane wall and for a 2D Riemann problem are
discussed in section 5. The accuracies and efficiencies of the AMR solver and a standard
solver are compared. In section 6, conclusions are drawn.
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are the flux vectors in the x- and y-directions, respectively. The density is denoted by ρ,
the x- and y-components of the velocity by u and v, respectively, the specific total energy
by E, and the pressure by p. For perfect gas considered here the pressure is related to
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the conserved variables by

p = (γ − 1)

[
ρE − 1

2
ρ(u2 + v2)

]
, (4)

using u = ρu
ρ

and v = ρv
ρ
. γ is the constant ratio of specific heats. We shall consider air

with γ = 1.4. The vector of the primitive variables is defined by:

V =




ρ

u

v

p


 . (5)

2.2 Initial and Boundary Conditions

We will examine two test cases: regular shock reflection, cf. Figure 2a, and a 2D
Riemann problem, cf. Figure 2b.

2.2.1 Regular Oblique Shock Reflection

The shock reflection case seen in Figure 2a, is a steady-state problem. The figure shows
how the steady solution can be divided into regions 1, 2 and 3. Inside each region, the
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flow variables are constant:

V(x, y) =





V1 for x < xR and y < sα(x)

V2 for y > sα(x) or y > sβ(x)

V3 for x > xR and y < sβ(x)

, (6)

where subscripts 1, 2 and 3 denote regions illustrated in Figure 2a. sα(x) and sβ(x) are
the shock graphs in the same figure. V1 describes the uniform incoming flow at M1 > 1.
V2 describes the flow behind the oblique shock sα with shock angle α. V3 describes the
flow behind the reflected shock sβ. The analytical solution for the variables in (6) is given
in [12].

We use the following initial conditions (IC) for the shock reflection case:

V(x, y, t = 0) =

{
V1 for y < yα
V2 for y > yα

, (7)

where V1, V1 and yα are shown in Figure 2a. We use the following boundary conditions
(BC) for this case:

V(x = 0, y, t) =

{
V1 for y < yα
V2 for y > yα

, (8)

V(x, y = ymax, t) = V2 , (9)

v(x, y = 0, t) = 0 . (10)

2.2.2 2D Riemann Problem

The second test case is a 2D Riemann problem. This case is defined by its initial
condition:

V(x, y, t = 0) =




V1 for x > xM , y > yM
V2 for x < xM , y > yM
V3 for x < xM , y < yM
V4 for x > xM , y < yM

, (11)

which is illustrated in Figure 2b. Subscripts 1-4 in (11) denote the regions in the latter
figure. Physically, we envision this IC being achieved by diaphragms. At time t = 0 the
diaphragms are removed, causing different types of waves to interact with each other. We
will see this in the results.

The boundaries enclosing the domain, [0 , xmax]× [0 , ymax], are considered artificial
boundaries.

3 NUMERICAL APPROACH

In this section the numerical method is outlined.
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(a) The cell i is in focus. It has 6 enclosing faces,
whose normal vectors point away from the cell
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can be one or two enclosing faces on each side,
giving a minimum of 4 and a maximum of 8 faces
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(b) Two examples where a face k is in focus.
Its adjacent cells are denoted by subscripts L
and R. For vertical faces the subscripts denote
cells on the left and right side of the face, re-
spectively. For horizontal faces the subscripts
L and R denote cells below and above the face,
respectively.

Figure 3: Notation for cells and faces, depending on focus.

3.1 Spatial Discretization

We use Cartesian grids with rectangular cells. This means that all cell faces are either
vertical or horizontal. We also set the cell sizes ∆x = ∆y for all cells, meaning that
all cells are squares. The finite volume method (FVM) is used to approximate the cell
averages of the conserved variables.

The fluxes (3) are approximated at the cell faces by the Rusanov method, also known
as the local Lax-Friedrichs method. The flux approximations at a face k are:

Fk =
1

2
[(F(UR) + F(UL))− ak(UR −UL)] , (12)

Gk =
1

2
[(G(UR) +G(UL))− bk(UR −UL)] , (13)

where Fk and Gk are the flux approximations at the vertical and horizontal faces, respec-
tively. Subscripts L, R and k are explained in Figure 3b. ak and bk are determined by
the spectral radii of the Jacobian matrices ∂F(U)

∂U
and ∂G(U)

∂U
, respectively, in the cells iL

and iR.

ak = max{|uL|+ cL , |uR|+ cR} , bk = max{|vL|+ cL , |vR|+ cR} , (14)

where c =
√
γp/ρ is the speed of sound.

At the inflow boundaries at x = 0 and y = ymax in the shock reflection test case, the
fluxes are computed analytically using F(U) and G(U) (3), respectively. U is then set
using V1 and V2, respectively, cf. Figure 2a and equation (6). At x = xmax in the same
test case, the fluxes are computed using the variables from the upwind cell: Fk = F(UL).
At the symmetry boundary y = 0 in the shock reflection case, the numerical flux is
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We use Cartesian grids with rectangular cells. This means that all cell faces are either
vertical or horizontal. We also set the cell sizes ∆x = ∆y for all cells, meaning that
all cells are squares. The finite volume method (FVM) is used to approximate the cell
averages of the conserved variables.

The fluxes (3) are approximated at the cell faces by the Rusanov method, also known
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γp/ρ is the speed of sound.

At the inflow boundaries at x = 0 and y = ymax in the shock reflection test case, the
fluxes are computed analytically using F(U) and G(U) (3), respectively. U is then set
using V1 and V2, respectively, cf. Figure 2a and equation (6). At x = xmax in the same
test case, the fluxes are computed using the variables from the upwind cell: Fk = F(UL).
At the symmetry boundary y = 0 in the shock reflection case, the numerical flux is
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approximated by the Rusanov flux (13) with the ghost cell values ρL = ρR, uL = uR,
vL = −vR and pL = pR.

The numerical fluxes at the artificial boundaries for the 2D Riemann problem are
approximated by the upwind fluxes, i.e., by setting UL = UR at x = 0 and y = 0 and
UR = UL at x = xmax and y = ymax in the Rusanov fluxes (12) and (13). Outgoing waves
are thereby properly treated. For incoming waves, the boundary treatment corresponds
to approximately nonreflecting artificial boundary conditions.

3.2 Time Discretization

The discretization in time is done by the explicit Euler method,

Un+1
i = Un

i −
∆tn

Vi


 ∑

k∈kF,i

[F n
k Akx̂k] +

∑
k∈kG,i

[Gn
kAkŷk]


 , (15)

where i is a cell index, superscript n denotes time level, Vi is the volume of the cell
i, kF,i contains the vertical faces enclosing cell i, and kG,i contains the horizontal faces
enclosing cell i, as shown in Figure 3a. Ak is the area of face k, x̂k and ŷk are the x- and
y-components, respectively, of the normal vector of face k, which always points away from
cell i, as shown in Figure 3a. The time step size ∆tn is set at every time level to give the
Courant number,

Cmax =
maxi{|ui|+ ci}∆t

mini{∆xi}
+

maxi{|vi|+ ci}∆t

mini{∆yi}
≤ 1 . (16)

3.3 Stopping Criterion for the Steady-State Solution

Steady state is assumed if

∥∥∥∥
∆ρn

∆tn

∥∥∥∥
1

≤ 10−4

∥∥∥∥
∆ρ0

∆t0

∥∥∥∥
1

, (17)

where
‖∆ρn‖1 =

∑
i

[
Vi

∣∣ρn+1
i − ρni

∣∣] (18)

is the 1-norm of the density change, corresponding to the sum of the modulus of the mass
change in all cells i, from time level n to time level n+ 1.

∥∥∥∥
∆ρn

∆tn

∥∥∥∥
1

=
‖∆ρn‖1
∆tn

(19)

approximates the rate of mass redistribution between time levels n and n+1. It is required
to be lower equal to its initial value by the factor 10−4.

8

Frederik Kristoffersen and Bernhard Müller

4 AMR APPROACH

In this section we will see how the mesh is adapted in 4 sub-procedures: Flagging,
grading, refining and merging. The data structure of the AMR-solver will not be discussed
here, but can be found in [12]. We note that the cell- and face objects are stored in doubly
linked lists.

4.1 Adaptation Trigger

An adaptation strategy should specify when, where and how to adapt [5]. The answer
to the when is what will be referred to as the adaptation trigger. When the trigger
activates, the flagging, grading, refining and merging procedures are run, in that order.
The trigger is related to the mass redistribution rate ‖∆ρn‖1 /∆tn, as defined in (19) and
(18).

The first mesh adaptations are triggered at time level n0 = 0, i.e., based on the initial
condition (IC). The number of initial adaptations is equal to the upper limit Lmax for
the refinement level. Thus, if there are large gradients or discontinuities in the IC, the
nearby cells will be refined to the highest level before the first time step starts. After an
adaptation, say at n = na, the subsequent values of ‖∆ρn‖1 /∆tn are accumulated until

na+1−1∑
n=na

‖∆ρn‖1
∆tn

≥ 5
‖∆ρ0‖1
∆t0

. (20)

Then, mesh adaptation is triggered at time level n = na+1. The factor 5 above was
found by trial and error and can be expected to be case specific. However, it has given
good results for both test cases in all the simulations this far. ‖∆ρn‖1 /∆tn approximates
the sum of the absolute rates of mass change in all the cells. Therefore, it reacts to
mass entering or leaving the domain through the boundaries, and more important: mass
being redistributed within the domain. The idea is that if flow structures or gradients are
moving then mass is being redistributed. When enough mass has been redistributed, the
large gradients might have moved towards the end of the refined areas. If little or no mass
has been redistributed we are sure that the gradients haven’t moved much. Therefore we
sum up ‖∆ρn‖1 /∆tn at each time level until the sum exceeds the threshold given in (20).

4.2 Flagging

The flagging procedure is the first step of each mesh adaptation. It decides where the
mesh will be refined, and where it can be coarsened. To decide this, refinement criteria,
based on absolute differences in the flow variables ρ, u and v is used. These 3 variables
will be referred to as the indicators.

The flagging procedure is a loop over all the interior faces. For each face k we check
the absolute difference in all the indicators, between the 2 adjacent cells.

∆ρk = |ρR − ρL| , ∆uk = |uR − uL| , ∆vk = |vR − vL| , (21)
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approximated by the Rusanov flux (13) with the ghost cell values ρL = ρR, uL = uR,
vL = −vR and pL = pR.

The numerical fluxes at the artificial boundaries for the 2D Riemann problem are
approximated by the upwind fluxes, i.e., by setting UL = UR at x = 0 and y = 0 and
UR = UL at x = xmax and y = ymax in the Rusanov fluxes (12) and (13). Outgoing waves
are thereby properly treated. For incoming waves, the boundary treatment corresponds
to approximately nonreflecting artificial boundary conditions.

3.2 Time Discretization

The discretization in time is done by the explicit Euler method,

Un+1
i = Un

i −
∆tn

Vi


 ∑

k∈kF,i

[F n
k Akx̂k] +

∑
k∈kG,i

[Gn
kAkŷk]


 , (15)

where i is a cell index, superscript n denotes time level, Vi is the volume of the cell
i, kF,i contains the vertical faces enclosing cell i, and kG,i contains the horizontal faces
enclosing cell i, as shown in Figure 3a. Ak is the area of face k, x̂k and ŷk are the x- and
y-components, respectively, of the normal vector of face k, which always points away from
cell i, as shown in Figure 3a. The time step size ∆tn is set at every time level to give the
Courant number,

Cmax =
maxi{|ui|+ ci}∆t

mini{∆xi}
+

maxi{|vi|+ ci}∆t

mini{∆yi}
≤ 1 . (16)

3.3 Stopping Criterion for the Steady-State Solution

Steady state is assumed if

∥∥∥∥
∆ρn

∆tn

∥∥∥∥
1

≤ 10−4

∥∥∥∥
∆ρ0

∆t0

∥∥∥∥
1

, (17)

where
‖∆ρn‖1 =

∑
i

[
Vi

∣∣ρn+1
i − ρni

∣∣] (18)

is the 1-norm of the density change, corresponding to the sum of the modulus of the mass
change in all cells i, from time level n to time level n+ 1.

∥∥∥∥
∆ρn

∆tn

∥∥∥∥
1

=
‖∆ρn‖1
∆tn

(19)

approximates the rate of mass redistribution between time levels n and n+1. It is required
to be lower equal to its initial value by the factor 10−4.

8

Frederik Kristoffersen and Bernhard Müller

4 AMR APPROACH

In this section we will see how the mesh is adapted in 4 sub-procedures: Flagging,
grading, refining and merging. The data structure of the AMR-solver will not be discussed
here, but can be found in [12]. We note that the cell- and face objects are stored in doubly
linked lists.

4.1 Adaptation Trigger

An adaptation strategy should specify when, where and how to adapt [5]. The answer
to the when is what will be referred to as the adaptation trigger. When the trigger
activates, the flagging, grading, refining and merging procedures are run, in that order.
The trigger is related to the mass redistribution rate ‖∆ρn‖1 /∆tn, as defined in (19) and
(18).

The first mesh adaptations are triggered at time level n0 = 0, i.e., based on the initial
condition (IC). The number of initial adaptations is equal to the upper limit Lmax for
the refinement level. Thus, if there are large gradients or discontinuities in the IC, the
nearby cells will be refined to the highest level before the first time step starts. After an
adaptation, say at n = na, the subsequent values of ‖∆ρn‖1 /∆tn are accumulated until

na+1−1∑
n=na

‖∆ρn‖1
∆tn

≥ 5
‖∆ρ0‖1
∆t0

. (20)

Then, mesh adaptation is triggered at time level n = na+1. The factor 5 above was
found by trial and error and can be expected to be case specific. However, it has given
good results for both test cases in all the simulations this far. ‖∆ρn‖1 /∆tn approximates
the sum of the absolute rates of mass change in all the cells. Therefore, it reacts to
mass entering or leaving the domain through the boundaries, and more important: mass
being redistributed within the domain. The idea is that if flow structures or gradients are
moving then mass is being redistributed. When enough mass has been redistributed, the
large gradients might have moved towards the end of the refined areas. If little or no mass
has been redistributed we are sure that the gradients haven’t moved much. Therefore we
sum up ‖∆ρn‖1 /∆tn at each time level until the sum exceeds the threshold given in (20).

4.2 Flagging

The flagging procedure is the first step of each mesh adaptation. It decides where the
mesh will be refined, and where it can be coarsened. To decide this, refinement criteria,
based on absolute differences in the flow variables ρ, u and v is used. These 3 variables
will be referred to as the indicators.

The flagging procedure is a loop over all the interior faces. For each face k we check
the absolute difference in all the indicators, between the 2 adjacent cells.

∆ρk = |ρR − ρL| , ∆uk = |uR − uL| , ∆vk = |vR − vL| , (21)
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where subscripts R and L denote values in the right and left adjacent cells if the face
is vertical. For horizontal faces, the subscripts R and L denote the cells above and
below the face, respectively, like in Figure 3b. By looping over interior faces we check all
combinations of adjacent cell pairs exactly once. The differences (21) are compared to
the refinement thresholds,

δr,ρ = ηr ∆ρmax , δr,u = ηr ∆umax , δr,v = ηr ∆vmax , (22)

and the merging thresholds,

δm,ρ = ηm ∆ρmax , δm,u = ηm ∆umax , δm,v = ηm ∆vmax , (23)

where
∆ρmax = max

i,0≤m≤n
{ρmi } − min

i,0≤m≤n
{ρmi }

∆umax = max
i,0≤m≤n

{um
i } − min

i,0≤m≤n
{um

i }

∆vmax = max
i,0≤m≤n

{vmi } − min
i,0≤m≤n

{vmi }

(24)

are the largest spreads for all the indicators, evaluated over all cells i and all time levels
m until n. That is, maxi,0≤m≤n{ρmi } is the largest density that has existed in any cell i at
any time level m until time level n. Conversely, mini,0≤m≤n{ρmi } is the lowest cell density
until time level n. The same applies for the other indicators. Thus, the largest spreads
(24) define the scales of the problem.

ηr is a multiplier that affects all the refinement thresholds (22). It sets the thresholds
δr as fractions of the largest spreads (24). We will refer to ηr as the refinement tolerance.
In a similar way, ηm sets the merging thresholds δm in (23), also as fractions of the largest
spreads (24). ηm will be referred to as the merging tolerance. Both these tolerances are
given as constant parameters for the AMR solver to adjust the strictness of the refinement
criteria. That is, adjusting the tolerances affects the balance between CPU-time and
solution accuracy.

The comparisons between absolute differences and thresholds are used to flag the cells
in the following way:

• Cells are flagged for refinement if any of the indicators has large absolute differences,
over any of the enclosing faces, and the cell is not at the maximum refinement level
Lmax. That is, cell i with refinement level Li < Lmax is flagged for refinement, if at
least one of its enclosing faces k has ∆ρk > δr,ρ or ∆uk > δr,u or ∆vk > δr,v.

• Cells are flagged for merging if all of the indicators have small absolute differences,
over all of the enclosing faces, and the cell is not at the minimum refinement level
0. That is, cell i with refinement level Li > 0 is flagged for merging, if all of its
enclosing faces k have ∆ρk < δm,ρ and ∆uk < δm,u and ∆vk < δm,v.

• No cell has both the refine flag and the merge flag. They have either one of them,
or none of them.
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m r r

(a) Merge flag is removed.

r
r

r

(b) Refine flag is added.

Figure 4: Examples of illegal flag and level combinations, and following countermeasures
to avoid size ratio 4. m and r denote the merge and refine flags. The figures are taken
from [10], with small changes.

4.3 Grading

As discussed in the introduction, we will use mesh grading to prevent adjacent cells to
be more than 1 refinement level apart. Thus, we require

∆xL ∈
{

1

2
∆xR , ∆xR , 2∆xR

}
(25)

at all interior faces, where ∆xL and ∆xR are the cell sizes of the adjacent cells. To achieve
it we adjust the flags in a another loop over interior faces, which we call the grading loop.
Examples of this are shown in Figure 4. We limit the number of combinations to handle,
by assuming that (25) holds when the grading loop starts.

If the adjacent cells are at equal levels LL = LR there is only one illegal flag combi-
nation, which is shown in Figure 4a. The figure also shows how it is solved. If the cells
are at different levels, there are multiple illegal flag combinations that call for different
countermeasures. These are given in [12] and so are the implementation details.

4.4 Refining and Merging

The refining and merging of cells are done separately in two loops. The refine loop
is a loop over all the cells in the mesh, where we check the refine flag ri for each cell i.
If ri = 1 we split cell i into four new cells, where the flow variables are copied from the
refined cell. Similarly, the merge loop checks the merge flag mi for all cells i. However,
cells are only allowed to merge if all the four cells that came from one cell refinement have
merge flags. When four cells merge, the flow variables in the resulting cell is set to the
average from the merging cells, i, i+ 1, i+ 2 and i+ 3,

Ui +Ui+1 +Ui+2 +Ui+3

4
. (26)

This changes the solution, but still conserves U. The implementation of the refine and
merge loops are detailed in [12].

5 RESULTS AND DISCUSSION

In this section, the obtained results will be presented and discussed.
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it we adjust the flags in a another loop over interior faces, which we call the grading loop.
Examples of this are shown in Figure 4. We limit the number of combinations to handle,
by assuming that (25) holds when the grading loop starts.

If the adjacent cells are at equal levels LL = LR there is only one illegal flag combi-
nation, which is shown in Figure 4a. The figure also shows how it is solved. If the cells
are at different levels, there are multiple illegal flag combinations that call for different
countermeasures. These are given in [12] and so are the implementation details.
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The refining and merging of cells are done separately in two loops. The refine loop
is a loop over all the cells in the mesh, where we check the refine flag ri for each cell i.
If ri = 1 we split cell i into four new cells, where the flow variables are copied from the
refined cell. Similarly, the merge loop checks the merge flag mi for all cells i. However,
cells are only allowed to merge if all the four cells that came from one cell refinement have
merge flags. When four cells merge, the flow variables in the resulting cell is set to the
average from the merging cells, i, i+ 1, i+ 2 and i+ 3,
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This changes the solution, but still conserves U. The implementation of the refine and
merge loops are detailed in [12].
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In this section, the obtained results will be presented and discussed.
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A simple structured solver was implemented to act as a basis for comparison. This
solver uses the same numerical approach as the AMR-solver, but its data structure is
based on arrays. The mesh in this solver will always be structured and equidistant and
cannot be adapted. However, the grid spacing can be varied from one simulation to
another. This was done to provide a justified comparison that will show the potential
overhead of the AMR data structure.

5.1 Development of Shock Reflection

The shock reflection test case was introduced in subsection 2.2. We set the incoming
Mach numberM1 = 2.5 and the shock angle α = π

5
. In this subsection we will examine how

the shock reflection flow develops from the initial condition to the steady-state solution.
The main reasons for studying this are:

1. To check that the mesh adapts as intended by checking whether the fine resolution
areas follow the shocks.

2. To provide intuitive understanding of the flow.

3. To control that the solution actually converges and achieves a steady state.

We will primarily study the results from a simulation by the AMR-solver, with parame-
ters as shown in Table 1. The allowed refinement levels and cell sizes are listed in Table 1b.
These are driven parameters, dictated by ∆xmax and Lmax. For later simulations, only
∆xmax, Lmax and ∆xmin will be listed. All the results displayed in this subsection will
be from the AMR simulation with the parameters in Table 1, unless something else is
specified.

Figures 5 and 6 are cell plots of the density ρ and the velocity component u. They
show the development of these variables, from their initial conditions in figures 5a and
5b, until steady state in figures 6c and 6d. For both ρ and u we see that the incoming
shock moves towards the lower boundary wall, but with a higher speed for ρ than for u.
Since the refinement criteria discussed in subsection 4.2 is based on differences (21) of ρ,
u and v, we see two distinct branches of highly refined cells. The reflected shocks start
to form in figures 5e and 5f. These figures, and figures 6a and 6b show that the reflected
shocks form differently for ρ than for u. The converged solutions are shown in figures 6c
and 6d, where the shock locations for ρ and u coincide. The developments of the second
velocity component v and the pressure p are not plotted in this paper, but are examined
in [12]. For v and p, the shock locations are almost identical to the shock location for the
density ρ, during the entire development.

To check that the solutions discussed above achieve steady states, the convergence
history of the AMR simulation cf. Table 1 is plotted in Figure 7. Another simulation
was executed, by the standard finite volume solver solver, using a grid spacing ∆xstr =
∆xmin, i.e., equal to the smallest cell size allowed in the AMR-simulation. This standard
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Table 1: Parameters and derived parameters used by the AMR-solver to simulate the
development of the shock reflection. M1 is the Mach number in the uniform incoming
flow, and α is the incoming shock angle, cf. Figure 2a. ∆xmax is the largest allowed cell
size corresponding to the lowest refinement level L = 0. Lmax is the highest permitted
refinement level. ηr and ηm are the refinement and merging tolerances, respectively,
defined in subsection 4.2.

(a) Given parameters.

M1 : 2.5

α : π
5

∆xmax : 1
10

Lmax : 4

ηr : 0.04

ηm : 0.0182

(b) Available refinement levels and corresponding cell sizes. These can always be derived from
∆xmax and Lmax.

Lmax

L : 0 1 2 3 4

∆xamr :
1
10

1
20

1
40

1
80

1
160

∆xmax ∆xmin
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(a) IC for density. (b) IC for velocity component u.

(c) Density. The shock moves downwards, and
the area around it has high resolution.

(d) Velocity component u. The discontinuity
moves downwards, but slower than for ρ. Thus
there are two branches of highly refined cells.

(e) Density. The shock has reached the wall, and
starts to reflect.

(f) Velocity component u. The left part of
the wave has reached the wall. The right part
has become diffuse and exits through the right
boundary.

Figure 5: Cell plots of the developments of density ρ and velocity component u, from
initial conditions until the shock reaches the wall at y = 0. The black lines are the faces
in the mesh. The most highly refined cells, at level L = Lmax, follow the discontinuities
of both ρ and u.
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(a) Density. The reflected shock is bending
upwards, while the reflection point moves left-
wards.

(b) Velocity component u. The reflected shock
forms extensionally, like a telescope, while bend-
ing upwards.

(c) Converged solution for the density. (d) Converged solution for the velocity compo-
nent u.

Figure 6: Cell plots of the developments of density ρ and velocity component u, from time
t = 1.2 until steady state, at t = 6.74. The black lines are the faces in the mesh. The
most highly refined cells, at level L = Lmax, follow the discontinuities of both ρ and u.
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Figure 7: Convergence history plot with logarithmic ordinate axis. The red and blue
graphs show the development of the convergence indicator ‖∆ρn‖1 /∆tn, normalized by
its initial value. The dashed gray vertical lines show the time levels when the last 15 of
the total 42 adaptations occurred. Both solvers used ∆xmin = ∆ymin = 1

160
.

simulation is also included in the convergence history plot in Figure 7. In said figure, the
red graph shows that the convergence indicator ‖∆ρn‖1 /∆tn, scaled by its initial value,
decreases monotonically for the structured solver, until reaching the threshold, 10−4. For
the AMR simulation the convergence indicator is indicated by the blue graph in Figure 7.
It jumps up at the time levels indicated by the dashed vertical lines, because the mesh is
adapted at those times, causing disturbances of the numerical solution. In this particular
case, the convergence threshold is reached at n = 2248 for the AMR solver, and at
n = 1671 for the standard solver. This means that the AMR-solver takes 1.35 times as
many time steps as the structured solver, which is a recurring trend. Although the factor
varies between 1.3 and 1.6, the AMR-solver required more time steps to converge in all
simulations.

Figure 7 makes yet another important point, if we observe the spacing between the
dashed gray lines. It is evident that the mesh adaptations happen much more seldom
later in the simulation. This relates to the adaptation trigger that was introduced in
subsection 4.1. As ‖∆ρn‖1 /∆tn decreases, more time steps are required before mesh
adaptation is triggered.

5.2 Comparing Error versus Runtime

To measure the gains from the AMR approach, we will compare the runtime, error and
number of cells in multiple simulations. These simulations are grouped into 6 series, where
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Table 2: Parameters that vary within an AMR simulation series. ∆xmax is the size of all
the cells when the mesh is created and Lmax is the highest permitted refinement level.
∆xmin is the smallest permitted cell size, and follows directly from ∆xmax and Lmax.

Sim. number: 1 2 3 4 5 6 7 8 9 10 11

∆xmax : 1
10

1
15

1
10

1
15

1
10

1
15

1
10

1
15

1
10

1
15

1
20

Lmax : 2 2 3 3 4 4 5 5 6 6 6

∆xmin : 1
40

1
60

1
80

1
120

1
160

1
240

1
320

1
480

1
640

1
960

1
1280

Table 3: Refinement and merging tolerances for the 5 AMR series. ηr and ηm are defined
in subsection 4.2.

Series no.: ηr ηm

1 0.08 0.0364

2 0.06 0.0273

3 0.04 0.0182

4 0.02 0.0091

5 0.01 0.0045

1 series was executed by the structured solver and the remaining 5 series were simulated
by the AMR-solver. In each of the 5 AMR series, there are 11 simulations, giving a total
of 55 AMR simulations. Inside the series, the parameters that control the available cell
sizes are varied according to Table 2.

The 5 AMR series use different tolerances for the refinement and merging criteria that
were introduced in subsection 4.2. The tolerances are given in Table 3, were the merging
tolerances have been set as ηm = ηr

2.2
. The first series has high tolerances. This gives

relaxed refinement and merging criteria, meaning that fewer cells will be refined and
more cells will merge. The last series has low tolerances. This gives stricter criteria,
forcing more cells to be refined and permitting fewer cells to merge.

The structured series consist of 13 simulations executed by the structured solver using
equidistant grids. The 13 simulations use different mesh resolutions listed as grid spacings
in Table 4. These chosen cell sizes are similar to ∆xmin in Table 2, which was intended to
give errors in the same range. The error considered here is the volume averaged density
error

ερ =
1

VD

‖ρ− ρ̄exact‖1 , (27)
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case, the convergence threshold is reached at n = 2248 for the AMR solver, and at
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5.2 Comparing Error versus Runtime

To measure the gains from the AMR approach, we will compare the runtime, error and
number of cells in multiple simulations. These simulations are grouped into 6 series, where
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Table 2: Parameters that vary within an AMR simulation series. ∆xmax is the size of all
the cells when the mesh is created and Lmax is the highest permitted refinement level.
∆xmin is the smallest permitted cell size, and follows directly from ∆xmax and Lmax.

Sim. number: 1 2 3 4 5 6 7 8 9 10 11

∆xmax : 1
10

1
15

1
10

1
15

1
10

1
15

1
10

1
15

1
10

1
15

1
20

Lmax : 2 2 3 3 4 4 5 5 6 6 6

∆xmin : 1
40

1
60

1
80

1
120

1
160

1
240

1
320

1
480

1
640

1
960

1
1280

Table 3: Refinement and merging tolerances for the 5 AMR series. ηr and ηm are defined
in subsection 4.2.

Series no.: ηr ηm

1 0.08 0.0364

2 0.06 0.0273

3 0.04 0.0182

4 0.02 0.0091

5 0.01 0.0045

1 series was executed by the structured solver and the remaining 5 series were simulated
by the AMR-solver. In each of the 5 AMR series, there are 11 simulations, giving a total
of 55 AMR simulations. Inside the series, the parameters that control the available cell
sizes are varied according to Table 2.

The 5 AMR series use different tolerances for the refinement and merging criteria that
were introduced in subsection 4.2. The tolerances are given in Table 3, were the merging
tolerances have been set as ηm = ηr

2.2
. The first series has high tolerances. This gives

relaxed refinement and merging criteria, meaning that fewer cells will be refined and
more cells will merge. The last series has low tolerances. This gives stricter criteria,
forcing more cells to be refined and permitting fewer cells to merge.

The structured series consist of 13 simulations executed by the structured solver using
equidistant grids. The 13 simulations use different mesh resolutions listed as grid spacings
in Table 4. These chosen cell sizes are similar to ∆xmin in Table 2, which was intended to
give errors in the same range. The error considered here is the volume averaged density
error

ερ =
1

VD

‖ρ− ρ̄exact‖1 , (27)
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Table 4: Cell sizes, i.e. grid spacings for the structured solver.

Sim. number: 1 2 3 4 5 6 7 8 9 10 11 12 13

∆x : 1
35

1
40

1
60

1
80

1
120

1
160

1
240

1
320

1
480

1
640

1
960

1
1100

1
1200

where VD =
∑

i Vi is the domain volume and

ρ̄exact,i =
1

Vi

∫

Ωi

ρexact(x, y)dxdy (28)

is the exact average density in cell i.
From these 55 AMR simulations and 13 standard simulations, the computation times

TR, density errors ερ, and cell counts Ncell were logged and presented in plots. In Figure 8
we see that the AMR solver uses much fewer cells than the standard solver to achieve
the same error. The AMR simulation with the lowest error (leftmost blue circle) used
only about 5% of the cells the standard solver used. This simulation also showed a large
saving in runtime, using only about 36% of the time used by the standard solver. The
comparisons of runtime versus error is shown in Figure 9. In this plot the runtimes were
normalized as

T ∗
R =

TR

TR,str

, (29)

where TR is the runtime the simulation in focus, and TR,str is the runtime of a simulation
from the structured solver, that gives the same error as the simulation in focus. Since
no two simulations have equal errors, TR,str is found by interpolation between structured
simulations:

TR,str = T right
R + (ερ − εrightρ )

T left
R − T right

R

εleftρ − εrightρ

, (30)

where the superscripts left and right denote the closest structured solution on each side, in
terms of error. The most obvious trend in Figure 9 is that the AMR solver mostly uses
less runtime to achieve the same error as the standard solver. However, the red graph
shows that if the tolerances are too relaxed, we will not achieve this gain in the left part
of the plot. Even though the high tolerance ηr = 0.08 gives low runtimes and cell counts,
it increases the error so much, that the standard solver could achieve the same error using
less runtime. Comparing the AMR series we see that the series with the highest tolerance
gets the largest runtime gain in the right part of the plot. The simulations in the right part
of the plot have larger cells overall and thus higher errors. Conversely, small tolerances
giving strict criteria, seem to give lower gain with fewer larger cells, and the highest gains
with smaller cells, i.e. in the left part of the figure, where the errors are lower. If this
relationship holds, the refinement and merging tolerances should be set depending on the
smallest allowed cell size.
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Table 5: Comparison between an AMR simulation and a standard simulation, where we
see a large benefit from AMR. For the standard solver the refinement tolerance ηr is not
applicable, and ∆xmin was the size of all the cells. Ncell is the final number of cells in the
mesh. ερ is the density error. The ratios are the values from the standard solver divided
by the AMR values.

ηr ∆xmin Ncell TR [s] ερ

AMR: 0.01 1
1280

35 433 327 0.00742

Standard: 1
1100

726 000 903 0.00735

Ratio: 20.5 2.76 0.991

Figure 8: Number of mesh cells Ncell plotted versus the density error ερ. Ordinate axis is
logarithmic.
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Figure 9: Normalized runtime T ∗
R plotted versus density error ερ. The scaling factor for

the runtimes are the runtimes from the structured simulations. Therefore T ∗
R = 1 for all

structured simulations.

5.3 Simulation of a 2D Riemann Problem

The second test case that was studied is a 2D Riemann problem. It was introduced
in subsection 2.2. For this flow case we do not have an analytical solution to verify the
solution. However, there are other gains from simulating this test case:

1. We will check that the AMR-solver finds the same solution as the structured solver.

2. We will check that the mesh adaptation algorithm detects high gradients in a more
complicated flow.

3. We will still compare runtimes between the AMR-solver and the structured solver.

For the initial conditions given in equation (11) and Figure 2b we set the following
numerical values:

ρ1 = p1 = 4 , ρ2 = p2 = 3 , ρ3 = p3 = 1 , ρ4 = p4 = 2 , (31)

u(x, y, t = 0) = v(x, y, t = 0) = 0 . (32)

The parameter settings that were used to simulate this test case with the AMR-solver
are given in Table 6. The refinement and merging tolerances ηr and ηm, and the smallest
cell size ∆xmin = ∆ymin are set relatively small, if compared to the parameters used in
subsection 5.2. This was done to ensure that all the different wave types were resolved.
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Table 6: Parameters used by the AMR-solver to simulate the 2D Riemann problem.

∆xmax : 1
20

Lmax : 6

∆xmin : 1
1280

ηr : 0.015

ηm : 0.0068

For the structured solver, the uniform grid spacing ∆xstr was set equal to the smallest
allowed cell size ∆xmin for the AMR-solver. We limit the test case to the time 0 ≤ t ≤ 0.2,
before any of the waves reach the domain boundaries.

Figures 10 and 11 show cell plots of the simulation results from the 2D Riemann
problem test case. The time instant is shown at the top, and the size and symbol of
the plotted variable is shown by the colorbar. Figure 10a shows the initial condition
(31) for the density. Figure 10b shows the final density solution at t = 0.2, computed
by the AMR-solver. In this density field we can identify several different waves. We
see the vertical shock at x ≈ 0.23 and the horizontal shock at y ≈ 0.2. The contact
discontinuities at x ≈ 0.48 and y ≈ 0.43 are not as distinct, especially near the center
of the domain. At x ≈ 0.7 and y ≈ 0.7 we find the rarefaction waves, which are wider
than the other waves. We can also see that the flow variables are constant in the corners,
and that we have 1D Riemann problems along the boundaries. In the central part of the
domain we see complex interactions between the different waves in the form of non-linear
wave fronts. Figure 10c shows that these different waves are all detected, because their
surrounding areas have been refined. The contact discontinuities are not as highly refined
as the shocks and rarefaction waves. Figure 10d shows the solution from the standard
solver, which looks very similar to the AMR solution in Figure 10b.

Figure 11 shows the AMR solutions of the velocity components and pressure. We can
see that none of these plots show all the waves. Conversely, there is no wave front that we
find in Figure 11, that we do not find in Figure 10. This demonstrates that the density
is a very good indicator to use in the criteria for where to refine.

Finally for this test case, we will examine some technical output from the AMR-solver,
and compare some of it with data from the structured solver. Table 7 shows selected
values from the reports that the two solver produced when simulating the 2D Riemann
problem.

The runtime is the measured time that the CPU used to execute the simulation. We
see that the structured solver used about twice as much time as the AMR-solver. This
ratio is lower than than the values we found for the shock reflection case, indicating that
the efficiency gain is a little lower for this case.

19% of the total 92.6 seconds were consumed by mesh adaptation in the AMR sim-
ulation. The remaining 81% is used for computing and transferring fluxes, computing
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Figure 9: Normalized runtime T ∗
R plotted versus density error ερ. The scaling factor for

the runtimes are the runtimes from the structured simulations. Therefore T ∗
R = 1 for all

structured simulations.
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in subsection 2.2. For this flow case we do not have an analytical solution to verify the
solution. However, there are other gains from simulating this test case:

1. We will check that the AMR-solver finds the same solution as the structured solver.

2. We will check that the mesh adaptation algorithm detects high gradients in a more
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3. We will still compare runtimes between the AMR-solver and the structured solver.

For the initial conditions given in equation (11) and Figure 2b we set the following
numerical values:

ρ1 = p1 = 4 , ρ2 = p2 = 3 , ρ3 = p3 = 1 , ρ4 = p4 = 2 , (31)

u(x, y, t = 0) = v(x, y, t = 0) = 0 . (32)

The parameter settings that were used to simulate this test case with the AMR-solver
are given in Table 6. The refinement and merging tolerances ηr and ηm, and the smallest
cell size ∆xmin = ∆ymin are set relatively small, if compared to the parameters used in
subsection 5.2. This was done to ensure that all the different wave types were resolved.
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(31) for the density. Figure 10b shows the final density solution at t = 0.2, computed
by the AMR-solver. In this density field we can identify several different waves. We
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domain we see complex interactions between the different waves in the form of non-linear
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surrounding areas have been refined. The contact discontinuities are not as highly refined
as the shocks and rarefaction waves. Figure 10d shows the solution from the standard
solver, which looks very similar to the AMR solution in Figure 10b.

Figure 11 shows the AMR solutions of the velocity components and pressure. We can
see that none of these plots show all the waves. Conversely, there is no wave front that we
find in Figure 11, that we do not find in Figure 10. This demonstrates that the density
is a very good indicator to use in the criteria for where to refine.
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(a) Initial condition. (b) Final solution by the AMR solver.

(c) AMR solution, with the mesh faces plotted
as black lines.

(d) Final solution by the standard solver. The
uniform grid spacing ∆xstr is equal to the small-
est allowed cell size ∆xmin for the AMR solver,
cf. Table 6.

Figure 10: Cell plots of the density in the 2D Riemann problem.
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(a) Velocity component u. (b) Velocity component v.

(c) Pressure.

Figure 11: Cell plots of the velocity components and pressure in the 2D Riemann problem.
These are solutions by the AMR solver.

Table 7: Miscellaneous technical output from the AMR solver. Values from the structured
solver are given where applicable, for comparison. The right column is the ratio between
the left and middle columns. The meaning of each row is explained when commented in
the text.

AMR Structured Structured
AMR

Total Runtime [s]: 92.6 187 2.02

Numerical method time [s]: 75.0 (81% of 92.6 s)

Mesh adaptation time [s]: 17.6 (19% of 92.6 s)

Average no. of cells: 200 321 1 638 400 8.18

Final no. of cells: 206 677 1 638 400 7.93

No. of time steps: 891 891 1

No. of mesh adaptations: 133
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These are solutions by the AMR solver.
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solver are given where applicable, for comparison. The right column is the ratio between
the left and middle columns. The meaning of each row is explained when commented in
the text.

AMR Structured Structured
AMR
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Numerical method time [s]: 75.0 (81% of 92.6 s)

Mesh adaptation time [s]: 17.6 (19% of 92.6 s)
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primitive variables, etc, which is definitely the main time consumer.
The time-level-averaged number of cells and the final number of cells are approximately

8 times higher for the structured solver. This ratio was typically much higher for the shock
reflection case, as we saw in Figure 8. The many waves that appear in the 2D Riemann
problem require a larger portion of the domain to be well resolved. This decreases the gain
from the AMR approach, as expected. Similar to the shock reflection case, we see much
higher ratios in cell count than in runtime. This indicates that there is much overhead
related to the data structure, since the actual mesh adaptation only used 19% of the CPU
time. In turn this means that there is potential to increase the efficiency gain considerably,
e.g. by optimizing the data structure. The number of time steps is how many times the
explicit Euler method was applied to march the solution forward. The number of mesh
adaptations is how many times the complete procedure of flagging, grading, refining and
merging was executed. We can see that the mesh was adapted much more often for this
test case:

Nadapt,Riemann

nmax,Riemann

=
133

891
= 0.149 , (33)

than for the first shock reflection case (cf. Table 1 in subsection 5.1):

Nadapt,reflect

nmax,reflect

=
42

2248
= 0.0187 . (34)

Nadapt is the number of adaptations and nmax is the number of time steps computed.
We also see that the solvers used the same number of time steps, as opposed to the
steady-state case in sections 5.1 and 5.2, which we saw in Figure 7.

6 CONCLUSIONS

An AMR finite volume solver using unstructured Cartesian grids has been developed
for the 2D Euler equations of gas dynamics. The adaptation trigger, i.e., the criterion for
when to adapt, is based on accumulating an approximated mass redistribution rate, cf.
subsection 4.1. To the best of our knowledge, this is a new approach. The results indicate
that this approach works well for both steady-state problems and transient simulations,
though many more flow cases must be tested before we can assert this. For the transient
test case of a 2D Riemann problem, and the development of a regular shock reflection, the
new adaptation trigger keeps the mesh updated, avoiding that large gradients leave the
highly resolved areas. If the resolution demanding features slow down or stop moving, the
trigger activates more seldom. During convergence of the steady-state simulations, this is
especially evident. This adaptation trigger is also very easy to implement and inexpensive
in terms of CPU time.

The benefit from the AMR approach was measured by comparing the number of cells
and the CPU time of simulations that give similar errors. The cases that benefit the most
from AMR are the simulations where we allow the smallest cells, i.e., the simulations
with the smallest errors and highest CPU times. In these cases, the number of cells for
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the AMR solver was only about 5% of the number of cells for the standard solver. The
efficiency gain for CPU time is much lower, but still significant. The AMR solver used
36-40% of the runtime of the standard solver to give similar errors in the most beneficial
cases. The difference between these percentages is most likely related to the mesh data
structure. The mesh adaptation procedures only comprise 3-20% of the AMR solver’s
total runtime, whereas the numerical method consumes the rest of the runtime.

The criteria for where to refine and coarsen the mesh was varied. This proved to have a
big effect when examining runtime, number of cells and error. Relaxed criteria give lower
cell counts and runtimes and higher errors than strict criteria, as expected. The results
indicate that to maximize the benefits from this AMR approach, the refinement and
merging tolerances should be set depending on the smallest allowed cell size. Specifically,
with smaller cells the tolerances should be smaller, and with larger cells the tolerances
should be larger, to give a good balance between CPU time and error.
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36-40% of the runtime of the standard solver to give similar errors in the most beneficial
cases. The difference between these percentages is most likely related to the mesh data
structure. The mesh adaptation procedures only comprise 3-20% of the AMR solver’s
total runtime, whereas the numerical method consumes the rest of the runtime.

The criteria for where to refine and coarsen the mesh was varied. This proved to have a
big effect when examining runtime, number of cells and error. Relaxed criteria give lower
cell counts and runtimes and higher errors than strict criteria, as expected. The results
indicate that to maximize the benefits from this AMR approach, the refinement and
merging tolerances should be set depending on the smallest allowed cell size. Specifically,
with smaller cells the tolerances should be smaller, and with larger cells the tolerances
should be larger, to give a good balance between CPU time and error.
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Abstract. Recovery-based error estimation for thin plate problems (the bi-harmonic
equation) is revisited in the context of Isogeometric analysis. A posteriori energy-norm
error estimates based on global L2 recovery of the bending moments is shown to enable
optimal convergence rates for both smooth and non-smooth problems.

1 INTRODUCTION

Through the isogeometric finite element analysis concept [1] using splines as basis
functions instead of traditional Lagrange/Hermitian polynomials, the Kirchhoff-Love thin
plate equations can efficiently be solved numerically without the introduction of rotational
degrees of freedom, since the inter-element continuity is of order p−1 for elements of order
p. Using the recently proposed Locally Refined B-splines [2], we may also perform adaptive
analyses of such problems based on a posteriori error estimates.

In the current study, the recovery techniques studied by the authors earlier [3, 4, 5] are
revisited and developed for handling Kirchhoff-Love thin plate theory.
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2 THE THIN PLATE PROBLEM

The partial differential equation based on Kirchhoff-Love plate theory for a thin plate
with a constant bending stiffness D = Et3

12(1−ν2)
, where E is the Young’s modulus, ν the

Poisson’s ratio, and t the plate thickness, can be written

w,ααββ =
p

D
∀ xα ∈ Ω (1)

mαβnβ = M̄α ∀ xα ∈ ∂Ωm (2)

Dw,ααβnβ = −Q̄ ∀ xα ∈ ∂Ωq (3)

w = w̄ ∀ xα ∈ ∂Ωw (4)

w,αnα = θ̄ ∀ xα ∈ ∂Ωθ (5)

where Einsteins summation convention over repetitive indices is assumed and α and β
are running indices over coordinate directions, i.e., w,ααββ := w,xxxx + 2w,xxyy + w,yyyy.
The bending moments, mαβ, are related to the unknown transverse displacement field w,
through mxx = −D(w,xx + νw,yy), myy = −D(w,yy + νw,xx) and mxy = −D(1− ν)w,xy.
Furthermore, nα is the outward-directed normal vector on the boundary ∂Ω, M̄α denote
some applied edge torque and moment in the local axes directions of ∂Ωm = ∂Ω \ ∂ωθ,
and Q̄ denotes the applied transverse shear force on ∂Ωq = ∂Ω \ ∂ωw. Finally, p = p(xα)
is the distributed transverse load, whereas w̄ and θ̄ denote the prescribed transverse
displacement and normal rotation at the boundaries ∂Ωw and ∂Ωθ, respectively.

The weak form is obtained by multiplying Equation (1) by a test function v(xα) ∈ V(xα)
and then integrating over the domain Ω. Then, after applying Green’s identity twice and
some manipulations, we arrive at the following. Find w ∈ W(x,α) such that

a(w, v) = l(v) ∀ v ∈ V(xα) (6)

where we introduce the bilinear form a(w, v) and the linear functional l(v) as follows

a(w, v) := D

∫

Ω

w,αβ v,αβ dA (7)

l(v) :=

∫

Ω

p v dA+

∫

∂Ωq

Q̄ v dS +

∫

∂Ωm

M̄α v,α dS (8)

Proper function spaces for the trial- and test displacements w and v are, respectively

W =
{
w ∈ H2(Ω) | w = w̄ on ∂Ωw and v,αnα = θ̄ on ∂Ωθ

}
(9)

V =
{
v ∈ H2(Ω) | v = 0 on ∂Ωw and v,αnα = 0 on ∂Ωθ

}
(10)

and we then introduce finite dimensional sub-spaces of Wh ⊂ W and Vh ⊂ V to obtain
our finite element (FE) formulation. In the current study, tensor-product splines with
polynomial order p ≥ 2 are used in the discretization, as well as LR B-splines, see [2] for
more details.
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3 ERROR ESTIMATES

An estimate of the discretization error in the FE solution is obtained by projecting the
secondary solution, wh

,αβ onto the basis used for the the primary solution wh, resulting
in the recovered solution, w∗

,αβ. Herein, we use continuous global L2-projection to obtain
this recovered solution. An error indicator based on the energy norm is then

η∗ = ‖w∗ − wh‖E (11)

where ‖w‖E :=
√
a(w,w) =

√
l(w).

Continuous global L2-projection (CGL2) of the bending moment field goes like this:
Find m∗

αβ ∈ Sr
p such that

(
m∗

αβ −mh
αβ, vh

)
Ω
= 0 ∀ vh ∈ Sr

p (12)

That is, we project the FE bending moments mh
αβ ∈ Sr−2

p−2 onto the same basis as used
for the displacement, Sr

p , for convenience. It is possible to also chose a separate basis Sr−1
p

or Sr−2
p with reduced regularity in the L2-projection, motivated by the fact that in the

real solution the bending moments do have lower regularity than the displacement field.
However, we have not done this in the present study.

The error estimate given by Equation (11) will underestimate the true error, defined
as ‖w − wh‖E, which is bounded by

‖w − wh‖E ≤ ‖w∗ − wh‖E + ‖w − w∗‖E (13)

If the recovered solution w∗ is superconvergent , i.e., has higher order convergence rates
than w, the error estimator defined by Equation (11) will be asymptotic exact.

4 NUMERICAL EXAMPLES

4.1 Beam with parabolic load

Consider a simply supported beam subjected to a parabolic distributed transverse
load q(x) = q0

L24x(x − L), as depicted in Figure 1. This 1D problem is governed by the
differential equation

wxxxx(x) = −q(x)

EI
(14)

where EI = Ebh3

12
assuming a rectangular cross section with height h and width b, and

w(x) is the unknown transverse displacement. The bending moment M(x) is given by

M(x)

EI
= wxx(x) (15)

Integrating Equation (14) twice, while imposing boundary conditions wxx(0) = wxx(L) =
0 yields the analytical bending moment

M(x) =
q0
3L2

(L3 − 2Lx2 + x3)x (16)

3
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EI
(14)

where EI = Ebh3

12
assuming a rectangular cross section with height h and width b, and

w(x) is the unknown transverse displacement. The bending moment M(x) is given by

M(x)

EI
= wxx(x) (15)

Integrating Equation (14) twice, while imposing boundary conditions wxx(0) = wxx(L) =
0 yields the analytical bending moment

M(x) =
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3L2
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E = 4.0× 105, b = 1.0, h = 0.01, L = 2.0

Figure 1: Simply supported beam with parabolic load: Geometry and properties.

Integrating Equation (16) twice, while imposing boundary conditions w(0) = w(L) = 0,
yields the analytical displacement

w(x) =
q0

90EIL2
(3L5 − 5x2L3 + 3x4L− x5)x (17)

We can then find the analytical energy norm value ‖w‖E as

‖w‖2E = a(w,w) = (q, w) =

L∫

0

q(x)w(x)dx =
31q20L

5

5670EI
(18)

which for our choice of parameters from Figure 1 and q0 = 2.0 yields the analytical energy
norm value ‖w‖E = 4.58199836258253.

Since this problem has a smooth solution, doing adaptive refinement is not likely to
produce better convergence compared to a pure uniform refinement. However, we may
use it to compare the convergence rates for different polynomial order of the splines basis,
and to verify that we can reproduce the analytical solution with a 6’th order spline basis
since the analytical displacement field of Equation (17) is of polynomial order 6. For such

a smooth problem we expect to observe the convergence rates N
−(p−1)/2
dof for all polynomial

orders p ≥ 2.
In Figure 2 we present the estimated and exact error for polynomial orders 2, 3, 4,

5 and 6 and the associated effectivity indices. We observe that we get the expected
convergence rates according to the polynomial order, except for the p = 6 simulation.
For the latter, the calculated discretization error instead increases as we refine the model.
However, the values are very small and we assume that this is due to accumulation of
truncation errors in the finite precision calculations, and not discretization errors as such.

4.2 Square plate with point load

Figure 3 depicts a simply supported square plate subjected to a transverse point load
Pz at its center. The material properties are taken from Gustafsson et. al [6], who studied
adaptive simulation of this problem using a fifth-order plate bending finite element.
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The exact error in strain energy for this problem can easily be computed from the
exact displacement under the point load, w(1

2
, 1
2
), through

‖e‖E = ‖w − wh‖E =
√

a(w − wh, w − wh) =
√
l(w − wh)

=

√
Pz

(
w

(
1

2
,
1

2

)
− wh

(
1

2
,
1

2

)) (19)

with [6]

w

(
1

2
,
1

2

)
=

Pz

2Dπ3

∞∑
m=1

sin2 mπ
2
(sinhmπ −mπ)

m3 (1 + coshmπ)
(20)

resulting from the classical Navier thin plate solution. With our choice of parameters as
in Figure 3, this yields w(1

2
, 1
2
) = 0.12668117031255.

With this at hand, we can now perform convergence studies for this problem using
adaptive mesh refinement based on the estimated error distribution, and compare with
uniform mesh refinement simulations. All simulations are started from an uniform mesh
with 8 by 8 elements. In Figure 4 we display, as an example, the initial mesh and the
final adapted mesh for one of the quintic simulations.

According to [6] the analytical solution for the problem with a point load is in H3−ε(Ω),

i.e., for uniform mesh refinement we can expect to observe convergence rates N
−1/2
dof for

all p ≥ 2. However, using a posteriori driven adaptive mesh refinement our goal is to
achieve optimal convergence rates determined by the polynomial order, i.e., N

−(p−1)/2
dof for

all polynomial orders p ≥ 2.
The results are shown in Figures 5–8 for quadratic, cubic, quartic and quintic splines
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under the point load (r < p−1), to demonstrate that increased accuracy in terms of lower
error can be obtained with this choice as the analytic solution is C2 at the center point.
The reduced regularity is achieved by introducing multiple knots in the splines basis along
the two orthogonal red lines passing through the centre point, as illustrated in Figure 3.

For the lowest polynomial order (p = 2), we observe from Figure 5 that we get slightly
less than expected convergence rate for UMR, whereas for AMR we achieve the optimal
rate. The effectivity index for UMR approaches slowly 1.0, whereas for AMR it is much
closer to 1.0.

For cubic polynomials (p = 3) the results in Figure 6 clearly demonstrate that for
UMR the convergence rate is suboptimal, i.e., it is governed by the regularity of the
analytical solution. The adaptively refined meshes (AMR) give optimal convergence rate
with slightly better results for full regularity (r = 2) than for reduced regularity in the
center point (r = 1). The effectivity index for UMR converges very slowly from below
towards 1.0, whereas AMR gives indices much closer to 1.0 and again slightly better
results for regularity r = 2 than r = 1.

In Figure 7 the results obtained with p = 4 are displayed. The difference in the
convergence rates between UMR and AMR are pronounced and the results obtained with
full regularity r = 3 everywhere gives significantly larger error than for locally reduced
regularity r = 2 and r = 1 normal to the two orthogonal centre lines. Here, we get the
lowest error and best effectivity indices for AMR using locally reduced regularity r = 2.
For the adaptive refined meshes we obtain good effectivity indices for the case with locally
reduced regularity r = 1 but for full regularity the effectivity indices are below 0.5. For
UMR we get both suboptimal convergence rates and the effectivity indices seem to diverge
away from 1.0.
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2
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2
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Finally, we run this case with p = 5 to be able to compare our results with those
obtained by Gustafsson et. al [6]. Firstly, we observe in Figure 8 that our results obtained
with UMR and full regularity (r = 4) are very close (slightly less accurate) to their results
obtained with C1 (i.e., r = 1 everywhere) compatible classical finite elements. For the
adaptive refined meshes our results are better than theirs when we use (local) regularity
normal to the center lines less or equal to r = 2, whereas for r = 3 and r = 4 the opposite
is true. For clarity, we have only showed our results for full regularity everywhere (i.e.,
r = 4), and local regularity r = 1. The effectivity indices for AMR and local regularity
r = 1 is quite close to 1.0, whereas for full regularity the indices are below 0.5 for both
AMR and UMR.

5 CONCLUSIONS

We have developed adaptive methods for isogeometric Kirchhoff-Love thin plates. The
main finding is that using a posteriori error estimate based on global L2 projection for
recovery of a superconvergent moment field to drive adaptive mesh refinement, achieves
optimal convergence rates for challenging non-smooth problems.
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Abstract. In-stent restenosis (ISR) is one of the most common reasons for failure of stent im-
plementation. It is hypothesized that during angioplasty arterial tissues suffer from weakening
(softening) due to supraphysiological loading. In a clinical context these inelastic effects are
described as ‘controlled vessel injury’. From the materials science point of view tissue dam-
age occurs, and because the tissues are living, healing is triggered which in some cases lead
to a re-blocking of the diseased artery, to ISR. Arterial walls consist of three layers which be-
have mechanically anisotropic, because at least two families of collagen fibers are embedded in
an isotropic matrix. In the present study we propose an anisotropic growth model for fibrous
(collagenous) soft tissues and consider distributed collagen fiber orientations. In particular we
analyze a comparison between isotropic and anisotropic growth models, which shows that the
fiber reinforcement helps with the adaptation to the new mechanical environment. Finally, we
provide a numerical simulation of a simplified ISR using a quarter of an artery modeled as a
regular cylinder using three layers.

1 INTRODUCTION

Cardiovascular diseases (CVDs) are by far the leading cause of death in the world, although
great developments in medical, surgical and pharmacological interventions have been made,
see, e.g., the recent reviews [1, 2]. One of the major types of CVDs is atherosclerosis in which
fibrous and fatty materials build up at the artery walls and cause a blocking situation in the
vessel. Such materials are called plaques. There are several ways to unblock the arterial vessels,
and angioplasty with stenting is one of the most frequently used treatments. However, due
to the difference of the stiffness between the arterial wall and the inserted stent, and due to
a supraphysiological loading condition that occurs during angioplasty, there is always some
damage involved in the biological tissues, even in the healthy tissues. In order to cure the
injury, tissues start to grow and heal. Unfortunately, in several cases, this healing and growth
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processes may block the lumen again, and may also obstruct the blood flow, which is known as
in-stent restenosis (ISR) [3].

Techniques of cardiovascular surgeries and post-surgical treatments have been developed
rapidly, however, ISR remains a significant clinical problem. Though, different stents have
been put into use such as better-structured bare metal stents and newer-generation drug-eluting
stents (DES). The treatment of ISR remains a challenge and the long-term clinical outcome of
the treated patients may be complicated by recurrences [4]. Various efforts have been pursued
to reduce ISR, and a significant focus has been put on DESs. Interestingly, according to the
recent study [5], in patients undergoing percutaneous coronary intervention, ‘there were no sig-
nificant differences between those receiving DESs and those receiving bare-metal stents in the
composite outcome of death from any cause and nonfatal spontaneous myocardial infarction’.
Given that situation, scientists started to look into the mechanisms behind ISR so that an effec-
tive therapy can be found which completely, or at least, as much as possible, prevents ISR from
taking place after intervention. However, as it turns out, the underlying mechanism of restenosis
is complicated. The lumen can enlarge in some cases, which is known as positive tissue remod-
eling [6]. On the contrary, the lumen can also have a narrowing, i.e. restenosis. The mechanism
of restenosis after angioplasty is a combination of elastic recoil, arterial vessel remodeling, and
neointimal hyperplasia [7, 8]. The stimuli for the restenosis process are disruption of the en-
dothelial barrier layer and the mechanical stretch and disruption of the intima/media, and partly
also of the adventitia. This mechanical injury of the vessel wall stimulates migration of smooth
muscle cells (from the media) and myofibroblasts (from the adventitia) to the intima where they
proliferate [9]. In other words, the tissue may grow and re-block the lumen when an injury
occurs to the vessel wall.

Growth is an individually distinguished feature of existing living systems. Throughout the
past century, growth of living systems has fascinated plenty of physiologists, biologists, clin-
ical scientists, mathematicians, physicists, computer scientists, and engineers alike [10]. An
intriguing feature of growth is the interplay of form and function, or, more specifically, the abil-
ity of the growing system to manipulate its micro-environment and, vice versa, the ability of the
micro-environment to manipulate the micro-structural architecture of growth [11]. The latter is
what we are interested in. It is associated with an exploration of the mechanisms which cause
a system to grow, stretch, strain, or to stress. In particular we want to better understand how
mechanics can trigger biology [12]. For biological growth, a number of mechanical models
have been proposed [12]. Some of them are based on the isotropic theory, by assuming that
growth of arterial tissue is isotropic, see, e.g., [13]. Anisotropic growth has also been proposed
and studied, see, e.g., [14]. Arterial tissues are characterized by an anisotropic material, with
(at least) two families of fibers embedded in an isotropic matrix [15] (for each layer of human
aortas). Given this fact, it is more meaningful to use anisotropic growth models.

In this study, we present an anisotropic growth model. In Section 2 we provide the constitu-
tive framework and the specifics of the model. In Section 3, we present the stress and elasticity
tensors, illustrate biaxial extension tests and compare between isotropic and anisotropic models.
Finally, in Section 4, a regular cylinder with stent inflation is used to simulate ISR.
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2 METHOD

Let B0 be a solid body (piece of tissue) in the reference configuration, and Bt be the body in
the current configuration, see Fig. 1. An imaginary configuration B∗ is introduced so that the
deformation gradient F can be multiplicatively decomposed into a growth deformation gradient,
say Fg, and an elastic deformation gradient, say Fe, [16], i.e.

F = FeFg. (1)

The micro-structure of the anisotropic material is rendered by two families of symmetric fibers
in the reference and the intermediate configurations, with directions a0i, while ai, i = 4, 6, are
the related directions in the current configuration. The determinants of the deformation gradient
F and its growth and elastic parts are denoted by J , Jg and Je, respectively. Thus,

J = JeJg, J = detF, Je = detFe, Jg = detFg. (2)

In addition, we introduce the right and left Cauchy-Green tensors of the elastic part according
to

Ce = FT
e Fe, Be = FeFT

e . (3)
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intriguing feature of growth is the interplay of form and function, or, more specifically, the abil-
ity of the growing system to manipulate its micro-environment and, vice versa, the ability of the
micro-environment to manipulate the micro-structural architecture of growth [11]. The latter is
what we are interested in. It is associated with an exploration of the mechanisms which cause
a system to grow, stretch, strain, or to stress. In particular we want to better understand how
mechanics can trigger biology [12]. For biological growth, a number of mechanical models
have been proposed [12]. Some of them are based on the isotropic theory, by assuming that
growth of arterial tissue is isotropic, see, e.g., [13]. Anisotropic growth has also been proposed
and studied, see, e.g., [14]. Arterial tissues are characterized by an anisotropic material, with
(at least) two families of fibers embedded in an isotropic matrix [15] (for each layer of human
aortas). Given this fact, it is more meaningful to use anisotropic growth models.

In this study, we present an anisotropic growth model. In Section 2 we provide the constitu-
tive framework and the specifics of the model. In Section 3, we present the stress and elasticity
tensors, illustrate biaxial extension tests and compare between isotropic and anisotropic models.
Finally, in Section 4, a regular cylinder with stent inflation is used to simulate ISR.
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the current configuration, see Fig. 1. An imaginary configuration B∗ is introduced so that the
deformation gradient F can be multiplicatively decomposed into a growth deformation gradient,
say Fg, and an elastic deformation gradient, say Fe, [16], i.e.
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The micro-structure of the anisotropic material is rendered by two families of symmetric fibers
in the reference and the intermediate configurations, with directions a0i, while ai, i = 4, 6, are
the related directions in the current configuration. The determinants of the deformation gradient
F and its growth and elastic parts are denoted by J , Jg and Je, respectively. Thus,
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The first invariant I1e, which we will later use in the free-energy function, is given by

I1e = trCe = trBe. (4)

Next, the unimodular elastic deformation gradient is defined by Fe = J
−1/3
e Fe, with detFe ≡ 1.

Similarly, the unimodular counterparts of the Cauchy-Green tensors are Ce = J
−2/3
e Ce and

Be = J
−2/3
e Be, [17].

Arterial walls are anisotropic and incompressible materials; for a review of constitutive
models see, e.g., [18]. They consist of three layers, and each of them is equipped by two
(or more) families of collagen fibers with both in-plane and out-of-plane dispersion embedded
in an isotropic matrix material (in particular for human aortas); for a more recent constitutive
framework see [19], although we are here not pursuing this approach. In the present study we
rather use the proposed model [13], however for the anisotropic part of the free energy we are
not using just the isochoric part of the deformation gradient; for a recent study of this point in
regard to its numerical efficiency and physical interpretation of the fiber stretches see [20]. The
free-energy function Ψ is then proposed as

Ψ(Ce, a04, a06) = U(Je) + Ψiso(Ce) + Ψani(Ce, a04, a06), (5)

where

U(Je) =
1

D1

(
J2
e − 1

2
− lnJe

)
(6)

serves as a penalty term to constrain the incompressibility condition, and D1 is a penalty coef-
ficient chosen to be 2× 10−7/μ. The energy stored in the isotropic matrix material is assumed
to be neo-Hookean, i.e.

Ψiso(Ce) = μ(Ī1e − 3), (7)

where Ī1e = trCe = J
−2/3
e I1e, and μ is a material parameter. We then provide the free en-

ergy Ψani for the anisotropic contribution according to [21] (here we do not use the volumet-
ric/isochoric split for Ψani), i.e.

Ψani(Ce, a04, a06) =
k1
2k2

∑
i=4,6

[
exp(k2E

2
i )− 1

]
, (8)

Ei = κI1e + (1− 3κ)Iie − 1, Iie = Ce : a0i ⊗ a0i, i = 4, 6, (9)

where k2 > 0 is a dimensionless parameter and k1 > 0 is a stress-like parameter to be deter-
mined from mechanical tests of the tissue, while a0i, i = 4, 6, and κ ∈ [0, 1/3] are structure
parameters to be determined from histological data of the tissue.

As mentioned in the introduction, after stent placement, healthy and scar tissues build around
the stent over time, which may lead to a new narrowing of the artery called ISR. The healing
process works against tissue damage. We assume now that if a damage identifier defined as

D =
1

r1
erf

[
1

m1

(Ψiso +Ψani)max

]
(10)
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exceeds a threshold, say Dth, which is again a material parameter, then tissue growth is triggered
[13]. In (10) erf(•) is the error function of (•), and r1, m1 are damage parameters. For a dif-
ferent constitutive approach to capture the inelastic phenomena associated with tissue stretches
beyond the physiological domain see [22].

We propose anisotropic growth by defining the growth deformation gradient Fg as

Fg = Fg,isoFg,ani, (11)

where

Fg,iso = λgI, λg = exp

{
k

3α2
[1− (1 + αt)exp(−αt)]�D −Dth�

}
. (12)

The material parameters k, α and Dth need to be identified from experiments or clinical data,
while I denotes the second-order identity tensor. From clinical observations, the growth behav-
ior of most biological tissues should have the property that growth finally approaches to a stable
state, which means no further growth should happen. Equation (12)2, the isotropic growth fac-
tor λg, is an ascending function in time. However, the first derivative of λg with respect to time,
i.e. λ̇g, is a descending function. When the time goes to infinity, λ̇g is infinitely close to zero
and λg is close to a constant. Similar properties should be possessed by the anisotropic growth
factor as well.

The anisotropic growth deformation gradient Fg,ani is proposed to taken on the form

Fg,ani = I + (ν4 − 1)a04 ⊗ a04 + (ν6 − 1)a06 ⊗ a06, (13)

where ν4 and ν6 are two anisotropic growth factors for the two fiber families. Instead of using a
different function, the anisotropic growth factors are formulated in the same way as the isotropic
growth factor λg, i.e.

νi = exp {c1,i[1− (1 + c2,it)exp(−c2,it)]�D −Dth�} , i = 4, 6, (14)

where c1,i and c2,i are material parameters. In this way, anisotropic growth can be included.

3 FINITE ELEMENT IMPLEMENTATION, TEST EXAMPLES

3.1 Stress and elasticity tensors

First we derive the stress tensor on the basis of the proposed model of Section 2, which we
implemented into the UMAT-routine of Abaqus [23]. In the frame of continuum mechanics, the
second Piola-Kirchhoff stress tensor S is the derivative of free-energy function Ψ with respect
to the right Cauchy-Green tensor C according to S = 2∂Ψ/∂C. Given Eq. (5), the stress tensor
S has then the form

S = 2
∂U(Je)

∂C
+ 2

∂Ψiso(Ce)

∂C
+ 2

∂Ψani(Ce, a04, a06)

∂C
. (15)
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exceeds a threshold, say Dth, which is again a material parameter, then tissue growth is triggered
[13]. In (10) erf(•) is the error function of (•), and r1, m1 are damage parameters. For a dif-
ferent constitutive approach to capture the inelastic phenomena associated with tissue stretches
beyond the physiological domain see [22].

We propose anisotropic growth by defining the growth deformation gradient Fg as

Fg = Fg,isoFg,ani, (11)

where
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The material parameters k, α and Dth need to be identified from experiments or clinical data,
while I denotes the second-order identity tensor. From clinical observations, the growth behav-
ior of most biological tissues should have the property that growth finally approaches to a stable
state, which means no further growth should happen. Equation (12)2, the isotropic growth fac-
tor λg, is an ascending function in time. However, the first derivative of λg with respect to time,
i.e. λ̇g, is a descending function. When the time goes to infinity, λ̇g is infinitely close to zero
and λg is close to a constant. Similar properties should be possessed by the anisotropic growth
factor as well.

The anisotropic growth deformation gradient Fg,ani is proposed to taken on the form

Fg,ani = I + (ν4 − 1)a04 ⊗ a04 + (ν6 − 1)a06 ⊗ a06, (13)

where ν4 and ν6 are two anisotropic growth factors for the two fiber families. Instead of using a
different function, the anisotropic growth factors are formulated in the same way as the isotropic
growth factor λg, i.e.
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where c1,i and c2,i are material parameters. In this way, anisotropic growth can be included.
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First we derive the stress tensor on the basis of the proposed model of Section 2, which we
implemented into the UMAT-routine of Abaqus [23]. In the frame of continuum mechanics, the
second Piola-Kirchhoff stress tensor S is the derivative of free-energy function Ψ with respect
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By applying the chain rule to (15) we obtain

S = 2
∂U(Je)

∂Je

∂Je
∂C

+ 2
∂Ψiso(Ce)

∂Ce

:
∂Ce

∂C
+ 2

∑
i=4,6

∂Ψani(Ce, a04, a06)

∂Ei

∂Ei

∂C

= F−1
g SeF−T

g , (16)

where we have used the definition

Se = 2
∂Ψ

∂Ce

= 2
∂U(Je)

∂Je

∂Je
∂Ce

+ 2
∂Ψiso(Ce)

∂Ce

:
∂Ce

∂Ce

+ 2
∑
i=4,6

∂Ψani(Ce, a04, a06)

∂Ei

∂Ei

∂Ce

. (17)

A more detailed derivation of the stress relation can be found in the Appendix A.
The numerical computation of the elasticity tensor C in the material description is also

needed, which, with (16)2, is given by

C = 2
∂S
∂C

= 2
∂(F−1

g SeF−T
g )

∂C
= (F−1

g ⊗F−1
g ) : Ce : (F−T

g ⊗F−T
g ), (18)

with

Ce = 2
∂Se

∂Ce

, (19)

where the symbol ⊗ denotes a non–standard tensor product between two second-order tensors
according to (A⊗B)ijkl = AikBjl, see, e.g., [24]. Note that (18)3 may be written in the index
notation as

(C)ijkl = F−1
g imF

−1
g jn(Ce)mnrqF

−1
g krF

−1
g lq. (20)

For a detailed derivation see [13]. What remains is a detailed expression for ∂Se/∂Ce, where
explicit terms for Se are provided in the Appendix A.

3.2 Biaxial extension test

In order to show the difference between the isotropic model (Fg,ani = I) and the proposed
anisotropic growth model we perform a biaxial extension test on a cube with size 1×1×1mm.
The fibers are symmetrically embedded in the (x, y)-plane. A stretch λ of 1.5 is applied both in
x- and y-directions; for the related sketch including the boundary conditions see Fig. 2. For this
example we have just used one finite element, in particular the C3D8H element within Abaqus
(8-node linear brick, hybrid with constant pressure). The material of the cube is set to an intima,
and the related properties are summarized in Table 1. In the table, γ denotes the angle between
the mean fiber direction and the x-direction.

During t ∈ [0, 0.5] the material is loaded until the desired stretch is achieved, and a damage
of the material occurs. Then the material is unloaded during t ∈ (0.5, 1] until its original shape
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Figure 2: Undeformed cube with boundary conditions and a zoom-up of the symmetrically disposed fibers in the
(x, y)-plane shown on the left. A stretch λx = λy = 1.5 is applied in the x- and y-directions within the first half
of the time step, and then the cube is unloaded to its original shape. The function of the stretching within the time
step is shown on the right.

Table 1: Material and structural parameters of the intima, the media and the adventitia used in the simulations of
the present study. With the exception of Dth (intima) and k (media and adventitia) the values are taken from [13].

Intima Media Adventitia
μ [MPa] 0.049 0.020 0.016
k1 [MPa] 15.467 0.180 0.845
k2 [-] 2.085 100.0 22.30
γ [◦] 43.9 5.76 56.3
κ [-] 0.23 0.314 0.32
r1 [-] 1.37 3.36 3.29

m1 [MPa] 0.0198 0.0191 0.045
Dth [-] 0.2 0.01 0.01

α [day−1] 0.05 0.05 0.05
k [day−2] 0.005 0.005 0.005
c1,i [day−1] 0.5 0.5 0.5
c2,i [day−2] 0.05 0.05 0.05
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In order to show the difference between the isotropic model (Fg,ani = I) and the proposed
anisotropic growth model we perform a biaxial extension test on a cube with size 1×1×1mm.
The fibers are symmetrically embedded in the (x, y)-plane. A stretch λ of 1.5 is applied both in
x- and y-directions; for the related sketch including the boundary conditions see Fig. 2. For this
example we have just used one finite element, in particular the C3D8H element within Abaqus
(8-node linear brick, hybrid with constant pressure). The material of the cube is set to an intima,
and the related properties are summarized in Table 1. In the table, γ denotes the angle between
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is restored. Instead of using the same formulations for ν4 and ν6, as provided in (14), we select
here specific anisotropic growth factors according to

ν4 = ν6 = 1 +
−1 +

√
1 + sin22γ(λg

3 − 1)

sin22γ
, (21)

where we assume that the growth factors for the two families of fibers are the same (symme-
try) and λg is adopted from Eq. (12)2. In this way we obtain an isotropic growth and a pure
anisotropic growth of the material under the condition of equal volume change, however, dif-
ferent geometrical patterns, as shown in Fig. 3.

In order to see the difference between an isotropic model and an anisotropic model, we
carefully selected two different total growth deformation gradients, see Table 1. In this way
we can obtain a pure isotropic growth and a pure anisotropic growth of the material under the
condition of equal volume change, however, different geometry patterns, as shown in Fig. 3

Isotropic growth model Anisotropic growth model

Figure 3: Red dashed lines show the geometry of the material before the growth. The growth pattern occurring
due to isotropic growth is shown on the left side, while on the right side the shape of the material is shown after
anisotropic growth.

Figures 4 and 5 provide the numerical data obtained from these simulations of the biaxial
extension tests. The determinants of the elastic deformation gradient for the two cases, i.e.
Je,iso and Je,ani, remain 1, which implies that the volume change of the material is purely due
to growth, as shown in the left plot of Fig. 4. As assumed the volume change of the anisotropic
and isotropic models are the same. At the beginning of the growth the volume v of the element
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Figure 4: Left figure illustrates the determinant of the elastic deformation gradient Je over time. During intimal
growth Je remains 1 in both cases (isotropic, anisotropic), which agrees with the assumption we have made; the
middle and the right figures provide changes in the element volume v, the anisotropic growth factor ν4 and the
isotropic growth factor λg over time.

Figure 5: Evolution of principal stretches of the intima over time for the isotropic growth model (left) and the
anisotropic growth model (right).

is 1mm3 and at the end it has reached more than 4.0mm3; for the volume change over time see
the middle plot of Fig. 4. The right plots of Fig. 4 show the anisotropic and isotropic growth
factors (ν4 and λg), as discussed in Section 2, as a function of time. The growth factors are
ascending functions of time and become asymptotic when time goes to infinity.

With the same volume growth, the isotropic and anisotropic growth models result into sig-
nificantly different geometries; for the evolution of the principal stretches λ1, λ2, λ3 over time
see Fig. 5. The stretches in the isotropic model are equal in all principal directions, while in the
anisotropic model the stretches in the first and second principal directions grow significantly
larger, while λ3,ani = 1.

Arterial tissues with their specific structure adopt and remodel to new conditions when the
mechanical environment within the tissue changes. It is reasonable to assume that the collage-
nous reinforcement, hence the particular structure, drives the growth mechanism. Consequently,
the used anisotropic growth model, in which the fiber directions are considered, may actually
lead to a more realistic prediction of tissue growth – a comparison with experimental growth
data is still of urgent need.
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Figure 6: Quarter of a regular cylinder considering three layers, intima, media and adventitia, and constrained
by equally distributed strings at the outer boundary surface. The fibers are embedded in the (θ, z)-plane and their
directions are characterized by a04 and a06. The locations A, B and C are related to Figs. 8 and 9.

4 NUMERICAL SIMULATION OF RESTENOSIS

This section provides a numerical simulation of a simplified restenosis process using a quar-
ter of an artery modeled as a regular cylinder considering three layers, intima, media and ad-
ventitia, see Fig. 6. The inner radius of the cylinder is 4.0mm, while the thickness of the wall
is 0.75mm. The thicknesses of the intima, media and adventitia are 0.25mm, 0.375mm and
0.125mm, respectively. We assumed 13 identical groups of linear springs that are equally dis-
tributed around the outer surface of the cylinder, which we take as an elastic foundation towards
the tissues around the arterial wall. It is assumed that the springs only give a radial constraint to
the cylinder. The stiffness of the spring is set to 0.33 kPa. For each individual layer, in the cir-
cumferential direction 120 elements are used and 8 elements in the axial directions, while three
elements discretize the thickness of the intima and media, and two elements are used along the
thickness direction of the adventitia, i.e. a total of 7 680 hexahedral elements of C3D8H type.
The tissue properties of the individual layers are summarized in Table 1. Six equally spaced
stent struts are modeled along the quarter of the cylinder, as illustrated in Fig. 7, while a dis-
placement boundary condition is applied onto the respective nodes for inflating the stent. The
ends of the cylinder are fixed in the axial direction.

The simulation includes two steps: (i) expansion of the cylinder during which the damage
occurs and (ii) tissue growth, triggered by the damage accumulated in the first step. For the
numerical analysis the general anisotropic growth model, with the expressions (11)–(14), is
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t = 0 day t = 1 day t = 41 day

t = 81 day t = 121 day t = 161 day

b

Figure 7: Deformed configurations at different time points t (days). The brown bars illustrate the locations of
the stent struts. The red line in the configuration at t = 161 days indicate the thickness of the wall at a stent
strut (compare also the plot on the right side of Fig. 9 showing the evolution of b over time). The different colors
visualize the determinant of the growth deformation gradient Jg computed for each element.

used. The time used for the first step is 1 day and for the second step 160 days. The arterial wall
is expanded linearly during the first day by a radial displacement of 1.3mm at the locations
of the stent struts, activating the resistance of the springs. For some specific time points the
element volumes are illustrated in Fig. 7 in terms of the determinant of the growth deformation
gradient Jg. Tissue growth starts from t = 1 day. Initially, the tissue grows slightly towards the
surrounding tissues (positive remodeling), which is also observed in clinics. This may happen
due to the geometry of the model, as growing outwards gives a more stable state. Since the
springs, which are used to simulate the surrounding tissues, become stiffer as the outwards
growth proceeds, the tissue starts to grow inwards (towards the lumen), where less resistance
exists. As time goes by, the growth slows down and finally achieves an almost constant value.
From t = 1 to 121 days a relatively strong change in Jg occurs. However, from t = 121 to
161 days quite little changes are observed.

From the locations as indicated in Fig. 6 by the labels A, B and C (at the cross-section on one
end of the cylinder) we then pick out elements from the adventitia, the media and the intima, and
plot the growth factors λg and ν4 during step (ii), see Fig. 8. All investigated growth factors are
ascending functions of time. The velocities and accelerations of both isotropic and anisotropic
growth factors for all three layers are the same due to the identical values for α and k. Hence,
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is expanded linearly during the first day by a radial displacement of 1.3mm at the locations
of the stent struts, activating the resistance of the springs. For some specific time points the
element volumes are illustrated in Fig. 7 in terms of the determinant of the growth deformation
gradient Jg. Tissue growth starts from t = 1 day. Initially, the tissue grows slightly towards the
surrounding tissues (positive remodeling), which is also observed in clinics. This may happen
due to the geometry of the model, as growing outwards gives a more stable state. Since the
springs, which are used to simulate the surrounding tissues, become stiffer as the outwards
growth proceeds, the tissue starts to grow inwards (towards the lumen), where less resistance
exists. As time goes by, the growth slows down and finally achieves an almost constant value.
From t = 1 to 121 days a relatively strong change in Jg occurs. However, from t = 121 to
161 days quite little changes are observed.

From the locations as indicated in Fig. 6 by the labels A, B and C (at the cross-section on one
end of the cylinder) we then pick out elements from the adventitia, the media and the intima, and
plot the growth factors λg and ν4 during step (ii), see Fig. 8. All investigated growth factors are
ascending functions of time. The velocities and accelerations of both isotropic and anisotropic
growth factors for all three layers are the same due to the identical values for α and k. Hence,
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Figure 8: Isotropic growth factor λg (left) and anisotropic growth factor ν4 as a function of time for the locations
A, B and C in the three layers, as indicated in Fig. 6. The subscripts int, med, and adv refer to intima, media, and
adventitia, respectively.

Figure 9: Volume vg as a function of time for the locations A (adventitia), B (media) and C (intima) in the three
layers (left), as indicated in Fig. 6, and evolution of the wall thickness b over time (right); for the respective location
of the wall thickness see the right side of Fig. 7.

by changing the values of α and k, one can easily modify the growth velocity and acceleration.
By analyzing the volumes vg of the elements located at A, B and C, see Fig. 6, and by plotting
them over time, as can be seen in Fig. 9 (left side), we find that the volumes have grown by
33% for the adventitia, by 110% for media and by 220% for intima. The wall thickness b has
significantly increased with respect to the growth initiation, as can be seen in Fig. 9 (right side)
– compare also with the final configuration shown in Fig. 7, which also illustrates that the tissue
has a tendency to enclose the struts.

5 CONCLUSION

We have presented a constitutive model and a specific form of the growth deformation gra-
dient to capture isotropic/anisotropic growth of fibrous (collagenous) soft tissues triggered by
damage. The first example, a comparison of growth between simulations using an isotropic
and an anisotropic growth model shows that the fiber structure plays an important role in the
re-adaptation to the new environment after damage. Given the same elastic volume change the
anisotropic growth model results in a completely different growth pattern, which we suggest to
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fit better than an isotropic growth model when comparing with real tissue growth observed in
clinics.

In the second example, i.e. Section 4, we numerically simulate restenosis in an arterial seg-
ment considering three layers by using the Abaqus software. We use equally distributed springs
to model the surrounding tissues around the blood vessel, and observe a tendency of re-blocking
the lumen. However, a regular cylinder is too ideal compared to a real blocked blood vessel,
and the material properties for the growth also needs a refinement. As mentioned above, the
narrowing includes multiple factors such as elastic recoil, arterial vessel remodeling, and neoin-
timal hyperplasia. The blood pressure is also excluded in the simulations presented here. In
future, more realistic conditions should be taken into account to obtain more accurate results,
in particular a realistic plaque morphology needs to be considered. A growth model should also
consider in-plane and out-of-plane dispersions of the collagen fibers (and not axisymmetric dis-
persion, as used here). The influence of the fiber directions/dispersions should also be carefully
analyzed.

At the moment, we have no access to clinical data that could be used to calibrate the growth
parameters. There is hope to obtain patient-specific data so that more accurate material proper-
ties can be used, which is the basis for predicting in-stent restenosis more realistically.

APPENDIX A

Here we want to provide more details of the second Piola-Kirchhoff stress tensor Se, which
is according to (17)2

Se = 2
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To derive term 1 we use (6) and the property for ∂Je/∂Ce, see [17], i.e.
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We continue to derive term 2 by recalling (7) and the property for ∂Ce/∂Ce, see [17], so that
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where I is fourth-order identity tensor. Consequently, with (4) we get
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Finally, to derive term 3 we recall (8) and (9). Thus,

∂Ψani(Ce, a04, a06)

∂Ei

= k1
∑
i=4,6

Eiexp(k2E
2
i ),

∂Ei

∂Ce

= κI + (1− 3κ)a0i ⊗ a0i (A.6)

so that

Term 3 = k1
∑
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Eiexp(k2E
2
i )[κI + (1− 3κ)a0i ⊗ a0i]. (A.7)

A push-forward of the second Piola-Kirchhoff stress tensor S results in the Kirchhoff stress
tensor τ = FSFT. Thus, with (16)2 and the multiplicative decomposition (1) we obtain

τ = FeSeFT
e . (A.8)

Hence, by inserting (A.1) into (A.8) and by using the results (A.3), (A.5)2 and (A.7) we finally
get

τ =
1

2D1

(J2
e − 1)I + μJ−2/3

e

(
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1

3
I1eI

)

+
∑
i=4,6

k1Eiexp(k2E
2
i )[κBe + (1− 3κ)ai ⊗ ai] (A.9)

for the Eulerian stress relation, where Be is defined in (3)2 and ai, i = 4, 6, denote the two fiber
directions in the current configuration.
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where I is fourth-order identity tensor. Consequently, with (4) we get
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I− 1

3
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e

)
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e

(
I − 1

3
I1eC−1

e

)
. (A.5)

Finally, to derive term 3 we recall (8) and (9). Thus,

∂Ψani(Ce, a04, a06)

∂Ei

= k1
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Eiexp(k2E
2
i ),

∂Ei

∂Ce
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so that
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∑
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2
i )[κI + (1− 3κ)a0i ⊗ a0i]. (A.7)

A push-forward of the second Piola-Kirchhoff stress tensor S results in the Kirchhoff stress
tensor τ = FSFT. Thus, with (16)2 and the multiplicative decomposition (1) we obtain

τ = FeSeFT
e . (A.8)

Hence, by inserting (A.1) into (A.8) and by using the results (A.3), (A.5)2 and (A.7) we finally
get
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for the Eulerian stress relation, where Be is defined in (3)2 and ai, i = 4, 6, denote the two fiber
directions in the current configuration.
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Abstract. Visualizing results is more important than ever in scientific dissemination. Natural 
hazards are complex phenomena; their examination and illustration call for a holistic approach 
when studying them and improving their communication in order to save lives and cost. In this 
paper, we present an overview of different methodologies ruling the visualization of flash 
floods and a proposal for integrated workflow for a more immersive experience and better risk 
perception. Our proposal will contribute to the current state-of-the-art on visualization of flash 
floods with an integrated visualization platform where precise and realistic flood simulations 
will be implemented. The contributions will affect small, ungauged steep rivers by the 
development of a model with a more precise and robust predictive capability at a local scale. 
The target of the hydraulic modelling executed in this research project is to achieve optimized 
simulations that could be carried out in the prototype of a serious gaming engine. The incentive 
for such optimized simulations is that complex hydrodynamic and morphodynamic flood 
simulations are data and computationally greedy. This contradicts the necessity for low 
complexity solutions needed in the real-time based scenarios that an immersive experience and 
on-site decision-making requires. Concluding remarks are that advanced fluid solvers 
integrated within computer graphics suites would provide the best results in terms of realistic 
visualization of reliable hydrodynamic simulations. Virtual reality engines can provide an 
experience arena or visualization, where different disciplines can meet and combine resources 
and knowledge for a common goal, such as the study and communication of natural hazards.  

1. INTRODUCTION 
Natural disasters are responsible for fatalities and economic losses worldwide and, among 

them, floods are the most widespread and have caused the highest damages in recent years [1]. 
Human actions have become a dominant influence on fluvial systems and, together with 
potential effects of climate change on flood regime (e.g. spatially restricted extreme rainfalls 
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Abstract. Visualizing results is more important than ever in scientific dissemination. Natural 
hazards are complex phenomena; their examination and illustration call for a holistic approach 
when studying them and improving their communication in order to save lives and cost. In this 
paper, we present an overview of different methodologies ruling the visualization of flash 
floods and a proposal for integrated workflow for a more immersive experience and better risk 
perception. Our proposal will contribute to the current state-of-the-art on visualization of flash 
floods with an integrated visualization platform where precise and realistic flood simulations 
will be implemented. The contributions will affect small, ungauged steep rivers by the 
development of a model with a more precise and robust predictive capability at a local scale. 
The target of the hydraulic modelling executed in this research project is to achieve optimized 
simulations that could be carried out in the prototype of a serious gaming engine. The incentive 
for such optimized simulations is that complex hydrodynamic and morphodynamic flood 
simulations are data and computationally greedy. This contradicts the necessity for low 
complexity solutions needed in the real-time based scenarios that an immersive experience and 
on-site decision-making requires. Concluding remarks are that advanced fluid solvers 
integrated within computer graphics suites would provide the best results in terms of realistic 
visualization of reliable hydrodynamic simulations. Virtual reality engines can provide an 
experience arena or visualization, where different disciplines can meet and combine resources 
and knowledge for a common goal, such as the study and communication of natural hazards.  

1. INTRODUCTION 
Natural disasters are responsible for fatalities and economic losses worldwide and, among 

them, floods are the most widespread and have caused the highest damages in recent years [1]. 
Human actions have become a dominant influence on fluvial systems and, together with 
potential effects of climate change on flood regime (e.g. spatially restricted extreme rainfalls 
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affecting especially steep and ungauged rivers), predicting where major geomorphic changes 
may occur is very challenging. Associated geomorphic processes cause a significant amount 
of the damages related to floods and river response to floods can vary significantly [2]. 
Research efforts have fruitfully focused on major rivers, while thorough flood risk assessment 
(i.e. including full hydro- and morphodynamic approaches) in small and steep ungauged rivers 
has been constrained by the inadequacy of fluid solvers to tackle the complexity of the 
dynamics affecting such rivers in more affordable applications [3]. New environmental 
changes introduce new and more complex scenarios that translate into expertise demands (such 
as detecting these changes promptly and increase social awareness of the problem at hand) that 
researchers need to address.  

Risk perception not only has an important role in shaping natural hazards policies. In order 
to increase public knowledge and influence its opinion, it is crucial to understand why people 
have diverging attitudes and perceptions related to natural hazards and their possible 
consequences. The perception to an extreme event is explained to a certain degree by the direct 
personal experience of the damage caused by climate-related events, such as flooding or 
landslides, as shown by Lujala et al. [4]. This has the largest impact on the subjects’ belief that 
there will occur more natural hazards locally than nationally or globally. It is noteworthy that 
merely living in a more exposed area, but not having a personal experience of the phenomenon, 
does not affect the population’s concern towards natural hazards.  

Available models for flood hazard assessment in steep and ungauged rivers converge in 
outcomes that do not convey the estimated risk based on a user-friendly and relatable three-
dimensional real world nor is the analysis often based on the most recent and highly accurate 
data at hand [5]. Therefore, the risk perception achieved is hardly ever in accordance with the 
hydraulic model presented. In order to fill this gap, the World of Wild Waters (WoWW) project 
aims at being the future tool for analyzing and communicating the potential causes and effects 
of natural hazards, where the end user is not a scientist, but a land manager or any other user 
with no background in hydrology and hydraulics. Its orientation towards the gamification of 
natural disasters and its aim at bringing together knowledge on the physical properties of these 
with knowledge on digital storytelling and human behaviour emerges into an immersive 
experience based on real data, realistic scenarios and simulations. WoWW project acts as a 
framework for the setting of the research strategy here presented. As part of WoWW’s work 
packages, the investigation scheme described in this document targets the Visualization of 
Flash Floods as a strategy to improve the scientific dissemination of one of the most recurring 
and of highest impact natural disasters affecting small, ungauged steep rivers in Norway and 
worldwide. Particularly, it is aiming to dynamically visualize water flow in small, ungauged 
steep catchments and the effect of water forces on their riverbanks and structures in and along 
these watercourses based on knowledge about hydraulics and hydraulic modelling and enable 
more efficient hydrodynamic fluid simulations for better flood risk assessment and 
communication. The latest trends in realistic data presentation and scientific visualization go 
hand in hand with the implementation of a flooding scenario in Extended Reality (XR, i.e. the 
combination of Augmented/Mixed/Virtual Reality; AR/MR/VR, respectively). Immersive 
technologies require very advanced visualization modalities. The outcome of this project will 
be implemented into the prototype for a serious gaming (e.g. VR/MR) flood engine. 

The aim of the present document is to highlight the need of a holistic approach when 
studying natural hazards and improving the communication of these in order to save life and 
cost. Hereinto is presented an overview of different methodologies and a proposal of integrated 
workflow that will contribute to the current state-of-the-art on visualization of flash floods 
affecting small, ungauged steep rivers by developing a model with an improved predictive 
capability at a local scale. An efficient and robust flood simulation model should conceive 
high-quality and most updated data retrieval from the Internet of Things (IoT), precise flood 

Adina Moraru, Oddbjørn Bruland, Andrew Perkis and Nils Rüther 

3 
 

area estimation and representation, reduced computational time scale (i.e. currently of one to 
several hours in the case of 2D hydraulic simulations), on-site application and analysis 
accuracy [6]. The model will be calibrated with monitoring data collected through the 
environmental IoT and further tested within WoWW. Regarding the visualization of the results, 
this research will include the development of a system with a geo-referenced 3D environment 
on which the model can be implemented and coupled into a virtual reality gaming engine.  

In the following sections, we will address key concepts regarding the visualization of natural 
hazards. We will also describe the characteristics of numerical models and visualization trends 
affecting flash floods and propose an integrated workflow scheme for the visualization of 
natural hazards. The implementation of this workflow scheme will be addressed in a step-wise 
fashion and we will discuss the suitability of the methodology for WoWW’s purpose.  

2. KEY CONCEPTS ON THE VISUALIZATION OF NATURAL HAZARDS 
The multidisciplinary aspect of WoWW give rise for a need to unify common terminology. 

The most controversial concepts identified were, for instance, simulation, modelling, real-time, 
visualization and gamification. Other useful concepts regarding the currently presented topic, 
yet not often used in the field of hydraulic engineering (e.g. immersive experience, quality of 
experience), are also defined in this section.  

A simulation is carried out when a particular set of conditions are created artificially in order 
to study or experience something that could exist in reality. In this study, this concept will be 
handled in the context of fluid (i.e. water, specifically) simulation and the analysis of its flow 
patterns, directions, forces and physical characteristics and properties. We will address, 
therefore, hydrodynamic simulations throughout the following sections. For instance, 
hydrodynamic modelling has been defined as the mathematical application of momentum, 
continuity and transport conservation equations to represent evolving fluid flow in terms of 
velocity, density and scalar fields [7] [8]. 

Real-time refers to an immediate computational response to input data. In the context of 
hydrodynamic fluid simulations, real-time refers to the simulation speed being equal to the 
speed of the simulated event when occurring in real life. Real-time visualization refers, on the 
other hand, to the display of the simulated scenario at real life speed. In this sense, it is 
noteworthy that the temporal perception is human-relative, and not computer-relative. As 
suggested by Henonin et al. [6], real-time flood assessment may be classified into three 
categories depending on the role of hydrodynamic fluid modelling in the hazard evaluation: i) 
empirical scenarios-based (i.e. no hydraulic model is used), ii) pre-simulated scenarios-based 
(i.e. hydraulic models are used as pre-study tools) and iii) real-time simulations-based (i.e. real-
time forecast with online and real-time simulation models). Although previous hydrodynamic 
simulations are often used to assess flood hazard, we will aim at developing an integrated real-
time simulation-based model that can be scaled and reproducible in future prototypes. 

Scientific visualization is often mentioned regarding the representation of three-dimensional 
phenomena, where the efforts are committed to realistic renderings (i.e. the processing of an 
image using colour and shading to translate it into a solid and three-dimensional look) of 
volumes, surfaces, illumination sources, and so forth, often with a dynamic (temporal) 
component and oriented to subsequent analysis [9]. This interdisciplinary branch is frequently 
also considered a subset of computer graphics and its goal is to depict scientific data graphically 
so that scientists understand, illustrate and gain insight from their data.  

The visualization of flash floods facilitates disclosing information regarding their analysis 
and management in a universal fashion. In our case, the display is predominantly of 
geographical data, which may overlay a map, terrain model, or even an orthophoto. 
Traditionally, experts working on risk assessment have based its representation on colour-
coded maps. Some numerical models use maps or orthophotos to texture the Digital Elevation 
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(i.e. including full hydro- and morphodynamic approaches) in small and steep ungauged rivers 
has been constrained by the inadequacy of fluid solvers to tackle the complexity of the 
dynamics affecting such rivers in more affordable applications [3]. New environmental 
changes introduce new and more complex scenarios that translate into expertise demands (such 
as detecting these changes promptly and increase social awareness of the problem at hand) that 
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have diverging attitudes and perceptions related to natural hazards and their possible 
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more efficient hydrodynamic fluid simulations for better flood risk assessment and 
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workflow that will contribute to the current state-of-the-art on visualization of flash floods 
affecting small, ungauged steep rivers by developing a model with an improved predictive 
capability at a local scale. An efficient and robust flood simulation model should conceive 
high-quality and most updated data retrieval from the Internet of Things (IoT), precise flood 
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area estimation and representation, reduced computational time scale (i.e. currently of one to 
several hours in the case of 2D hydraulic simulations), on-site application and analysis 
accuracy [6]. The model will be calibrated with monitoring data collected through the 
environmental IoT and further tested within WoWW. Regarding the visualization of the results, 
this research will include the development of a system with a geo-referenced 3D environment 
on which the model can be implemented and coupled into a virtual reality gaming engine.  

In the following sections, we will address key concepts regarding the visualization of natural 
hazards. We will also describe the characteristics of numerical models and visualization trends 
affecting flash floods and propose an integrated workflow scheme for the visualization of 
natural hazards. The implementation of this workflow scheme will be addressed in a step-wise 
fashion and we will discuss the suitability of the methodology for WoWW’s purpose.  

2. KEY CONCEPTS ON THE VISUALIZATION OF NATURAL HAZARDS 
The multidisciplinary aspect of WoWW give rise for a need to unify common terminology. 

The most controversial concepts identified were, for instance, simulation, modelling, real-time, 
visualization and gamification. Other useful concepts regarding the currently presented topic, 
yet not often used in the field of hydraulic engineering (e.g. immersive experience, quality of 
experience), are also defined in this section.  

A simulation is carried out when a particular set of conditions are created artificially in order 
to study or experience something that could exist in reality. In this study, this concept will be 
handled in the context of fluid (i.e. water, specifically) simulation and the analysis of its flow 
patterns, directions, forces and physical characteristics and properties. We will address, 
therefore, hydrodynamic simulations throughout the following sections. For instance, 
hydrodynamic modelling has been defined as the mathematical application of momentum, 
continuity and transport conservation equations to represent evolving fluid flow in terms of 
velocity, density and scalar fields [7] [8]. 

Real-time refers to an immediate computational response to input data. In the context of 
hydrodynamic fluid simulations, real-time refers to the simulation speed being equal to the 
speed of the simulated event when occurring in real life. Real-time visualization refers, on the 
other hand, to the display of the simulated scenario at real life speed. In this sense, it is 
noteworthy that the temporal perception is human-relative, and not computer-relative. As 
suggested by Henonin et al. [6], real-time flood assessment may be classified into three 
categories depending on the role of hydrodynamic fluid modelling in the hazard evaluation: i) 
empirical scenarios-based (i.e. no hydraulic model is used), ii) pre-simulated scenarios-based 
(i.e. hydraulic models are used as pre-study tools) and iii) real-time simulations-based (i.e. real-
time forecast with online and real-time simulation models). Although previous hydrodynamic 
simulations are often used to assess flood hazard, we will aim at developing an integrated real-
time simulation-based model that can be scaled and reproducible in future prototypes. 

Scientific visualization is often mentioned regarding the representation of three-dimensional 
phenomena, where the efforts are committed to realistic renderings (i.e. the processing of an 
image using colour and shading to translate it into a solid and three-dimensional look) of 
volumes, surfaces, illumination sources, and so forth, often with a dynamic (temporal) 
component and oriented to subsequent analysis [9]. This interdisciplinary branch is frequently 
also considered a subset of computer graphics and its goal is to depict scientific data graphically 
so that scientists understand, illustrate and gain insight from their data.  

The visualization of flash floods facilitates disclosing information regarding their analysis 
and management in a universal fashion. In our case, the display is predominantly of 
geographical data, which may overlay a map, terrain model, or even an orthophoto. 
Traditionally, experts working on risk assessment have based its representation on colour-
coded maps. Some numerical models use maps or orthophotos to texture the Digital Elevation 
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Model (DEM; i.e. represent the land use on the DEM). However, even though the DEM is 
three-dimensional, the calculated parameters are visualized as two-dimensional colour-codes 
if the model used solved equations only in two dimensions. The suitability of the models used 
in hydrodynamic fluid simulations will be discussed further sections. 

Gamification is the process of arranging non-game content by means of game mechanics 
with the main objective of positively influencing behavior and enhancing the user’s motivation 
[10]. This is usually done by incorporating elements that the user must interact with in order to 
achieve certain goals provided by the game instructions. In serious gaming, the purpose is to 
create a better understanding of a certain concept or topic; hence, it is often aligned to 
educational or business goals. Although the gamification of natural hazards will not be 
discussed in the present document, the gamification of floods is contemplated as one-step 
beyond the visualization of floods. Therefore, the visualization scheme here presented must 
ensure the potential of gamifying its results in order to facilitate an improved immersive 
experience.  

Immersive Experience is a representation of the (virtually created) reality that allows the 
audience to be engaged with the visualized content to the extent of perceiving themselves as 
being present in the displayed surrounding environment. An immersive experience ought to be, 
among others, accurate, realistic if relevant, emotional, context adaptive, engaging, useful, 
interactive, intuitive, etc. [11] [12] [13]. This definition goes very much on the lines of the 
updated concept of Quality of Experience (QoE), defined by the Qualinet group of experts as 
“the degree of delight or annoyance of the end user of an application or service. It results from 
the fulfillment his or her expectations with respect to the utility and/or enjoyment of the 
application or service in the light of the user’s personality and current state”. In fact, the concept 
of immersive experiences has evolved into the QoE concept, and the trends have shifted in 
favor of the latter. QoE better differentiates related terminology such as performance, Quality 
of Service and application acceptance, and it focuses its efforts on evaluating the user 
experience based on a rigorously designed methodology that contemplates both objective and 
subjective metrics. As the Quality of Experience is inherently dependent on system-, human- 
and context-influencing factors [14], the content design and its display shall be carefully 
conducted taking into account all these factors and their interrelations.  

Immersive Media Technology Experiences (IMTE) are game changers when it comes to 
transferring knowledge and influencing lifestyles as they tackle these tasks with a human-
centred designed approach [15]. IMTE have been used so far in fields such as entertainment, 
medical and biosciences, art, oil and gas, aerospace and naval, automotive, power and traffic, 
gaming industries, etc. Nevertheless, this science has not been overly applied in natural 
hazards, risk perception and risk assessment-related studies. A recent experiment [16] has 
proven that, if the user related emotionally to the experience evaluated, the level of immersion 
was higher than that of when being spatially immersed. A thorough content design process, 
where risk perception and system factors are interlaced, and with a visualization of natural 
hazards that presents the characteristics needed to achieve an immersive experience (e.g. 
accurate and context-adaptive in terms of physics; relevant and realistic in terms of scenario 
selection; engaging, interactive and able of creating an affinity between the user and the 
displayed content) will result in a more effective communication of flood risk.  

 

3. CHARACTERISTICS OF NUMERICAL MODELS AND VISUALIZATION 
TRENDS APPLIED TO FLASH FLOODS 

The vast advances technology has experienced in the last decades provide a limitless array 
of tools when it comes to studying flash floods and river’s response to them. Flash floods are 
studied through the definition and characterization of spatial and temporal parameters. In this 
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sense, Geographic Information Systems (GIS) and related technology help representing and 
visualizing data in real-time and in an understandable way (see for example [17] [18] [19] 
[20]). A quick display of information allows a more effective and competent implementation 
of alleviation measures and flood management practices. Experts are looking for ways to 
integrate the existing tools and use them in interdisciplinary projects in order to make the best 
of the immense possibilities these tools provide.  

3.1. Characteristics of numerical models for flash flood simulation 
Numerical simulations have become a common tool to approach engineering problems for 

which there is no available similar analytical solution. One possible criterion when selecting a 
suitable model is to see if our approach considers an analysis dependent on field observations 
and the statistical analysis of the relationship between these and other characteristics of the 
phenomenon (i.e. empirical), regards the total phenomenon at a given point in space (i.e. is 
purely analytical) or if it is based on Computational Fluid Dynamics (CFD) and solves 
numerically once the parametres are discretized in time and space (i.e. numerical models). In 
this research, numerical models will be used and contrasted afterwards with either empirical or 
different numerical models. Moreover, we will rather refer to the different models, their 
characteristics and suitability based on the continuum mechanics approach and spatial 
dimensions the model is contemplating (Table 1). This approach allows taking into 
consideration the target and level of simplification required by the analysis in question.  

If discretized numerical models into 1-, 2- and 3-dimensional, the most extended form of 
CFD equations concerning flood simulations are the Reynolds-Averaged Navier-Stokes 
equations (also referred to as RANS) and the Shallow-Water Equations (SWE), which are 
derived from the Navier-Stokes equations considering simplifications on the third dimension 
[21] [22]. They allow the prediction of the fluid dynamics, e.g. water velocity, water elevation, 
water forces, shear stress, stream power, travelled distance by the fluid, hence, if there is 
overflow of the riverbanks and where would the overflowing areas be. A recent comparative 
study of 1D, 2D and combined 1D/2D models applied to the same study case in HEC-RAS 
[23] showed that all three models could successfully reproduce a historic flooding event. 
Moreover, the 2D and 1D/2D model could also provide relatively detailed information 
regarding flood propagation and velocities on the floodplain.  

A detailed comparison of 2D hydraulic modelling packages is provided in [21]. On the other 
hand, two-dimensional modelling is not very comprehensive in incorporating secondary 
circulation at bends and three-dimensional modelling is favoured to study that behavior (Table 
1). For instance, HEC-RAS is unable to work with falls and steps and changing flow regimes, 
which is reflected in 2D hydrodynamic simulations of steep slopes [22]. Furthermore, the slope 
limitation in one-dimensional numerical simulations carried out in this software is, basically, 
because the 1D St. Venant equation is derived with the assumption that the bed slope is very 
small and higher slopes come in contradiction with this assumption.  

Regarding 3D modelling, often applied to short river stretches in order to solve complex 
specific issues, such as vertical turbulence, vortices, secondary circulation, bed mobilization 
and bank erosion, the reference frame utilized also differentiates models. For instance, an 
Eulerian reference frame is grid-based and fixed in space while the Lagrangian reference frame 
is particle-based and takes into account the movement with the local velocity. The advantage 
of Lagrangian models is that they do not require spatial discretization and are able to represent 
smaller features than the grid size. Moreover, particle-based models provide a higher accuracy 
and non-diffusive prediction of convection. Different models use different fluid assumptions, 
nevertheless.  
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different numerical models. Moreover, we will rather refer to the different models, their 
characteristics and suitability based on the continuum mechanics approach and spatial 
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Depending on the degree of complexity of the pondered scenario, new and more 
sophisticated demands have called for new and more integrated models. These models differ 
depending on the required scope of the analysis, the scale, available input data and the extent 
of the output aimed for. In Figure 1, different numerical models, such as Direct Numerical 
Simulation (DNS), Large Eddy Simulation (LES), RANS, Double-Averaged Navier-Stokes 
equations (DANS), SWE and Diffusive Wave Equation (DWE), are plotted based on their 
applicability to new and more complex fluid modelling demands (i.e. their role in real-time 
flood risk assessment and the level of simplification that they include). Often enough, these 
involve combining hydrodynamic fluid simulations with algorithms that increase their 
efficiency or improve their precision (see for example [27] [28]). The computational cost of 
3D models is still a noteworthy disadvantage.  

 
Figure 1. Numerical models according to the analysed spatial scale and their usability in flood risk analysis 

(modified after [6] and [29]). The level of complexity of the model is linearly correlated with that of the 
simulated scenario and the scale at which this is studied. See text for abbreviations. 

3.2. Trends in the visualization of flash floods 
Several studies tackle the visualization of flood events (see for example [30] [31] [32] [33] 

[34] [35] [36] [37] [38]). However, the tools presented until now lack common principles and 
approach to visualization, as well as the unification of data formats due to the wide-ranging 
amount of software offered in the market. Suhr [39] defined sound decision-making as a reality-
based, congruent and effective decision-making, as it is founded on “the correct use of correct 
data”. Widely used nowadays, sound decision-making consists not only on the accurate 
selection of data, but also on the comparison of these in order to detect the best alternative (i.e. 
the most advantageous alternative). In flood risk management, sound decision-making requires 
the use of reliable decision-support tools; nonetheless, worldwide there is currently no 
integrated model [19] [30] [35] for both excellent risk assessment and effective communication 
of the potential impact of flood risk in small steep rivers to the stakeholders.  

Visualizing large and realistic flood scenarios is, in fact, complex and requires the use of 
excellent state-of-the-art graphic tools that allow rendering these as quasi real-time scenarios. 
The display of grid computation results obtained in flood modelling arises the need of a unified 
visualization scheme with unified standards, e.g. integration of input data formats [31]. If grid 
computation is required, it is fundamental to have a pre-designed input workflow, as this 
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controls the efficient execution of the visualization tool. The visualization scheme should 
integrate visualization requests of any type of application oriented on the computation of 
natural hazards.  

Recent developments in the visualization of floods include numerical computations and 
simulations in 3D. For instance, Ghazali and Kamsin [17] used the combination of SPH 
(through the GLU3D plug-in) and 3D computer graphics (in this case, Maya) to simulate and 
model flash floods on a three-dimensional geo-referenced environment (i.e. LiDAR DEM). 
Moreover, they used most of the software’s potential by testing the realistic visualization of 
natural hazards in real-time through an Application Programming Interface (API) in Maya. 
Later on, Li et al. [32] used OpenGL for flood simulations in 3D by first creating the 3D terrain 
and sky background, and later simulating the water flow and its depth overlaid on the terrain. 
Parallel, Ye et al. [40] used SPH to model the water flow during a dam break and their 
computational output was embedded in a 3D spatio-temporal GIS application where this and 
other flood scenarios where dynamically visualized. Additionally, specific layers could be 
added to show public infrastructures within the system. Demir and Krajewski [34] juxtaposed 
in their research flood analysis, adaptive real-time communication of flooding conditions and 
the interactive visualization of results. Nevertheless, the data provided was very complex, 
including river conditions, flood maps, forecasting and related information. Cartoon-style 
displays of results in an online platform made the data easily accessible and understandable to 
the end user.  

Most recently, Macchione et al. [37] represented 2D hydraulic simulations within a so-
called 3D virtual reality environment while aiming at presenting a product potentially useful 
for hydraulic engineers for risk communication purposes. Their workflow contemplated a 
sensible compromise between the inherent complexity of virtual reality and the need to 
represent flooding events in 3D environments to improve the interaction with decision-makers 
and to engage people with natural hazards. Zhang et al. [36] [41] went a step further and aimed 
to improve data visualization, increase simulation speed and allow real-time interaction during 
the simulation process. This lead in the development of a 3D flood simulation platform with 
VR technology. They analyzed flood processes, simulated the flow field as well as the breach 
flood process and contemplated the emergency plan making. Moreover, their digital platform 
not only represented the real-time changing process through the “instruction-response” method 
and data interpolation, but also combined the virtual visualization of the data with numerical 
modelling in a 3D visual form based on modular software design. Although their methods 
involved the use of coding techniques, numerical modelling and virtual reality tools (e.g. C++, 
FORTRAN, OSG, VPB, osgGIS, intranet, middleware, etc.) altogether, the simulation speed 
and the interaction between numerical models had room for improvement regarding the 
achieved level of immersion and complexity of interactive functions.  

Wang et al. [5] tackled the need for an improvement of flood risk communication and the 
real-time flood risk assessment through a combined simulation-visualization approach 
somewhat similar to that of Macchione et al. [37] in terms of presenting 2D hydraulic 
simulations in an improved 3D environment. They enhanced decision support by including the 
analysis of the uncertainties of such model as well as by increasing the computational 
efficiency in data assimilation and calculation with the help of algorithms. Their study did not 
limit to the presentation of aesthetically attractive scenarios, where the 3D model was rendered 
by means of computer graphic-assisted improvement. A gamification process adds value to 
their study and is noteworthy. They added interactive elements, such as user-interactive 
features e.g. 3D “drag-and drop” icons, design analysis, 3D stereo panorama, storyboards or 
online shared view. These elements allow the user of their application to position elements 
wherever they want, measure the inundated area, share the experience as a web link or QR code 
that displays a 360º rendered panoramic view, follow a tour of static and dynamic specified 
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views or even capture their comments of design plans. All these tools permit a greater 
immersive experience and a much more effective communication of the presented hazardous 
scenarios. The interaction of user-model through virtual reality increases the stakeholders’ 
implication in planning and decision-making and provides instant feedback on how to increase 
the model’s potential and effectiveness.  

The most suitable model should be selected based not only on the most advanced 
technologies and the attempts to tackle very complex problems. The model choice should be 
ruled by what works best in the given context, considering the level of investment needed (i.e. 
data and financially speaking), the hydraulic context and the precision needed for decision-
making. Characteristics of numerical models and model-selection criteria are described in 
section 3.1. WoWW is aiming at potential real-time simulation-based solutions, where the 
output is both physically and visually realistic and enables an accurate flood risk assessment 
and its communication to the stakeholders, whom are oftentimes not part of the scientific 
community. For such purpose, the most suitable approach is a combination of that adopted by 
Wang et al. [5], implemented in suites that integrate advanced hydrodynamic fluid solvers and 
computer graphic rendering that will upgrade the fluid simulations into visually relatable 
scenarios (e.g. see [42]). 
 

4. INTEGRATED WORKFLOW SCHEME FOR VISUALIZING NATURAL 
HAZARDS 

In the present section, we propose a working scheme (Figure 2) that will allow an integrated 
study and visualization of Flash Floods in small and ungauged steep rivers and a more 
immersive experience for a better risk perception. This will result in a simplified, reproducible 
and scalable prototype that can be embedded in a serious gaming engine and help a non-expert 
user make decisions based on intuitive and more precise data than that provided by current 
gaming engines, often based on computer graphics rather than real hydraulics. In summary, the 
objectives of this working scheme are to:  

 Optimize existing fluid simulation models. 
 Progress towards real-time simulations of flash floods in steep rivers. 
 Incorporate optimized simulations in a serious gaming engine. 
 Design realistic and dynamically evolving flood scenarios in steep rivers. 
 Implement realistic, hydraulics-based scenarios in a prototype that will be 

furtherly executed in a gamifying engine. 
 

The first step is to review the imminent trends on serious gaming (VR/MR) applied to the 
study of natural hazards. Also, to exhaustively overview the state-of-the-art on hydrodynamic 
and morphological simulation models (i.e. CFD) solving the Reynolds Averaged Navier-
Stokes (RANS) equations, the numerical flood models available today, and the visualization 
models (2D and 3D) of flash floods that are currently in use within the scientific community. 
In doing so we will be able to i) understand what possibilities and limitations the current 
simulation models have, ii) chose and/or combine available models in order to achieve speedier 
results, iii) gain knowledge on how to couple available CFD models within a serious gaming 
engine. The hereby-presented state-of-the-art (see section 3.2) on visualization of floods results 
from a first attempt of completing the first branch of the workflow scheme. 

Once familiar with the characteristics, potential and limitations of available hydrodynamic 
and morphological models, the most suitable numerical model will be chosen based on testing 
and comparison of currently used ones among the scientific community (see section 3.1), such 
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as grid-based and particle-based (e.g. Smoothed-Particle Hydrodynamics, SPH) models. 
Furthermore, an integrated model based on state-of-the-art will be developed given the new 
demands on higher simulation speed without compromising the achieved level of complexity. 
Developing sharpened hydraulic modelling permits to focus, simplify and standardize the 
simulation methods before mentioned, thus, optimize risk assessment studies, as it will display 
the main factors controlling river response to flood events and allow to direct the efforts 
towards the parameters that are most relevant to study. Another reason to optimize the fluid 
simulations is to reduce the simulation time needed in order to achieve increasingly precise 
although not necessarily as accurate scenarios. By doing so, we will be one step closer to real-
time simulations in future prototypes. The need of this simplification will be verified through 
statistical comparison (R and RStudio) of simplified to full hydrodynamic fluid simulations.  

 

 

Figure 2. Approximate workflow diagram proposed for the research project. The pink and gray sections 
correspond to the link between the output of this investigation and the Human Behaviour and Risk Perception 
and Immersive and Interactive Experience of Natural Hazards work packages, respectively. The red dashed 

rectangle contains the implementation stage of the resulting model in WoWW. 

 

The model will first be developed and further tested in existing study cases affecting 
Norwegian rivers (e.g. Tokke in 2009, Flåm in 2014, Utvik and Innvik in 2017, etc.) within 
WoWW’s umbrella. Identifying critical locations along steep watercourses by integrating 
Geographical Information Systems (GIS) and existing 2D and 3D hydrodynamic fluid 
simulation models (e.g. see Table 1 for examples of trending software) will result in simplified 
flood simulations that contribute to a more efficient risk assessment. The reconstructed flood 
event will be based on steep mountainous areas, where hydrological data will be input and the 
fluid simulation will be run in a 3D geo-referenced environment (i.e. terrain, in most cases a 
DEM). Afterwards, the elements will be visualized by texturing and adding materials, as well 
as incorporating visualization effects such as rain or sky (i.e. world). The information needed 
in order to perform numerical simulations will be collected and implemented through field and 
experimental work, or from environmental sources available in the IoT. The data collected and 
modelled will need testing and validation with field observations.  
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Additionally, the simplified and validated numerical hydrodynamic model will be integrated 
in a serious gaming engine (by means of e.g. Unity), as represented in the red dashed rectangle 
on the right-hand side of Figure 2. As mentioned above, a prototype for a serious gaming engine 
will be created in 3D computer rendering software such as Blender or Maya. Available open 
source software will be employed during the research, as far as these have enough functionality 
(i.e. efficiency and compatibility with needed add-ons). However, certain adjustments might 
be required, as existing fluid solvers might need to be complemented with the development of 
additional material descriptions and customized computer algorithms in order to achieve the 
optimal fluid simulation.  

Furthermore, two to four scenarios, if not more, will be tested and presented in a Virtual 
Flood Game (i.e. Serious Gaming Engine), which will allow testing the prototype in selected 
watercourses. Certainly, the research could be extended to investigating worldwide study cases, 
validating the resulting optimized model in any river that might be interesting and meets the 
eligibility criteria (i.e. small steep catchment that has flood risk potential and with available 
data of the required resolution for further study and implementation in the Serious Gaming 
Engine).  

In order to achieve the World of Wild Waters’ goal of communicating the implications of 
natural hazards as a phenomenon and helping decision-making by means of reaching an end 
user without scientific background in a very relatable approach, the research carried out in this 
work package is very much interrelated with creating an immersive experience and will use 
risk perception as a basis during the content design, hence, contributing to the creation of a 
good Quality of Experience (QoE). For this purpose, it is expected to have a close collaboration 
with other work packages of the World of Wild Waters (i.e. WP4: Immersive and Interactive 
Experience of natural hazards, and WP5: Human Behaviour and Risk Perception of natural 
hazards). The results of this investigation will be used in a serious gaming engine and tested in 
selected subjects for the purpose of iteration and improving the communication of natural 
hazards and the pursue of a proactive and preventive response in the end user.  

The application of both 2D and 3D hydrodynamic models to flood risk assessment in small, 
ungauged steep rivers, as well as the visualization of results will be exemplified in the 
following section. Their suitability for the scope of this research will also be discussed.  
 

5. RESULTING VISUALIZATION OF HYDRODYNAMIC FLUID SIMULATIONS 
USING AN INTEGRATED WORKFLOW SCHEME 

For clarification purposes of the workflow scheme proposed in this document (Figure 2), in 
this section, we will describe an example applied on a step-wise fashion.  

A flooding event is characterized in terms of hydrologic and geographic parametres that are 
used as an input in hydrodynamic fluid simulations (Figure 3). These are the initial conditions 
and define the geometry and boundary conditions defined in the plan set up in any two- or 
three-dimensional numerical model. The computational grid needs to respect singularities 
present in the terrain and adapt in function of the level of interest of each section (i.e. denser 
mesh, break lines and refinement regions shall be used for a higher precision in the fluid 
simulation). To go one step closer to real-time flood simulations, hydrological data resulting 
from WoWW’s statistics of extremes and hydrologic work packages will be connected to the 
IoT and retrieved by means of algorithms included in the developed model. This previous stage 
is not shown in the workflow scheme, as it is resulting from simultaneous research within the 
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Figure 3. Documentation of the flood event that affected the municipalities of Utvik and Innvik in 2017, a study 
case for this project. Water flow direction is from South to North. See [3] for further reference on the case. 

The most suitable numerical model will be selected based on the state-of-the-art and model 
comparison presented in section 3, and implemented on open-source fluid simulation software, 
when feasible. Figure 4 shows a 2D hydrodynamic simulation in HEC-RAS, whereas figure 5 
presents a 3D overly simplified hydrodynamic simulation in Blender. The two-dimensional 
hydrodynamic simulation is solving the Shallow Water Equations (SWE) through a 
combination of Finite Difference (for orthogonal mesh sections) and Finite Volume (for local 
non-orthogonal sections) methods for unsteady flow (see computational mesh in Figure 4, 
right), while the three-dimensional fluid simulation is using the Lattice-Boltzmann free surface 
Method (LBM) on a quadrangular mesh (Figure 5, right). For further reference, see the manuals 
of HEC-RAS and Blender, respectively.  

 

 
Figure 4. Left: 2D simulation of Utvik flood event (2017) in HEC-RAS (v.5.0.6), where the water depth is 

represented in blue tones (darker tones correspond to larger water depths), and cross-section (red line in a)) of 
the river channel and the flooded riverbanks. Scale is 50m. Right: close-up of the computational mesh, where 

different cell sizes and shapes (orthogonal and non-orthogonal) are observed due to the use of mesh-refinement 
and break lines. 

The resulting hydrodynamic simulations will consider real-time and an increased efficiency 
will be sought out. The knowledge gathered will result in the development of a model that shall 
be replicable; hence, the comparison of several study cases will provide an insight on how to 
optimize the fluid simulation speed without compromising on precision. Hydrodynamic fluid 
simulations can be connected to the environmental data available in the IoT and optimized with 
the help of algorithms embedded in the numerical simulation model [5] [20] [28]. The level of 
optimization achieved relative to currently existing full hydrodynamic simulations will be 
estimated through statistical analysis.  
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Figure 5. a) Grid-based three-dimensional fluid simulation in Blender; b) detail of the computational (non-

orthogonal) mesh in the computational domain shown in a). 

As noted by Macchione et al. [37] and Wang et al. [5], the visualization of floods must 
integrate fluid simulations and 3D computer graphic modelling in a common platform that 
provides flexible design features and the monitoring of the scenario at hand. The rendering of 
the hydrodynamic simulations, regardless of the spatial dimensions considered, will result in a 
visually improved and more realistic scenario that will communicate the results in a very 
intuitive manner. Three-dimensional creation suites such as Blender or Maya and its Bifröst 
Fluids often include fluid simulation physics/fluid solvers that take into account rather 
restricted fluid physics (e.g. fluid type, density, buoyancy, velocity, turbulence, vorticity) as 
well as their interaction with other elements (be it terrain or other fluids) and emulate the 
physical behavior of the fluid visually. The specifications of such software include the 
possibility of customizing textures and materials of the modelled elements by means of node-
based schemes (Figures 6 and 7) with a significant degree of automation that do not increase 
the complexity of the modelling procedure and improve notably their visualization.  

 

 
Figure 6. Design of a node-structured water shader scheme in Unity 3D. The procedure is very alike to that used 

in Blender. 



276 277

Adina Moraru, Oddbjørn Bruland, Andrew Perkis and Nils Rüther 

12 
 

 

Figure 3. Documentation of the flood event that affected the municipalities of Utvik and Innvik in 2017, a study 
case for this project. Water flow direction is from South to North. See [3] for further reference on the case. 

The most suitable numerical model will be selected based on the state-of-the-art and model 
comparison presented in section 3, and implemented on open-source fluid simulation software, 
when feasible. Figure 4 shows a 2D hydrodynamic simulation in HEC-RAS, whereas figure 5 
presents a 3D overly simplified hydrodynamic simulation in Blender. The two-dimensional 
hydrodynamic simulation is solving the Shallow Water Equations (SWE) through a 
combination of Finite Difference (for orthogonal mesh sections) and Finite Volume (for local 
non-orthogonal sections) methods for unsteady flow (see computational mesh in Figure 4, 
right), while the three-dimensional fluid simulation is using the Lattice-Boltzmann free surface 
Method (LBM) on a quadrangular mesh (Figure 5, right). For further reference, see the manuals 
of HEC-RAS and Blender, respectively.  

 

 
Figure 4. Left: 2D simulation of Utvik flood event (2017) in HEC-RAS (v.5.0.6), where the water depth is 

represented in blue tones (darker tones correspond to larger water depths), and cross-section (red line in a)) of 
the river channel and the flooded riverbanks. Scale is 50m. Right: close-up of the computational mesh, where 

different cell sizes and shapes (orthogonal and non-orthogonal) are observed due to the use of mesh-refinement 
and break lines. 

The resulting hydrodynamic simulations will consider real-time and an increased efficiency 
will be sought out. The knowledge gathered will result in the development of a model that shall 
be replicable; hence, the comparison of several study cases will provide an insight on how to 
optimize the fluid simulation speed without compromising on precision. Hydrodynamic fluid 
simulations can be connected to the environmental data available in the IoT and optimized with 
the help of algorithms embedded in the numerical simulation model [5] [20] [28]. The level of 
optimization achieved relative to currently existing full hydrodynamic simulations will be 
estimated through statistical analysis.  

 

Adina Moraru, Oddbjørn Bruland, Andrew Perkis and Nils Rüther 

13 
 

 
Figure 5. a) Grid-based three-dimensional fluid simulation in Blender; b) detail of the computational (non-

orthogonal) mesh in the computational domain shown in a). 

As noted by Macchione et al. [37] and Wang et al. [5], the visualization of floods must 
integrate fluid simulations and 3D computer graphic modelling in a common platform that 
provides flexible design features and the monitoring of the scenario at hand. The rendering of 
the hydrodynamic simulations, regardless of the spatial dimensions considered, will result in a 
visually improved and more realistic scenario that will communicate the results in a very 
intuitive manner. Three-dimensional creation suites such as Blender or Maya and its Bifröst 
Fluids often include fluid simulation physics/fluid solvers that take into account rather 
restricted fluid physics (e.g. fluid type, density, buoyancy, velocity, turbulence, vorticity) as 
well as their interaction with other elements (be it terrain or other fluids) and emulate the 
physical behavior of the fluid visually. The specifications of such software include the 
possibility of customizing textures and materials of the modelled elements by means of node-
based schemes (Figures 6 and 7) with a significant degree of automation that do not increase 
the complexity of the modelling procedure and improve notably their visualization.  

 

 
Figure 6. Design of a node-structured water shader scheme in Unity 3D. The procedure is very alike to that used 

in Blender. 



278

Adina Moraru, Oddbjørn Bruland, Andrew Perkis and Nils Rüther 

14 
 

Efforts are being focused on integrating more complex fluid solvers into these creation 
suites. For instance, the 3D solver for the two-phase incompressible Navier-Stokes equations 
NaSt3DGPF was successfully coupled with Maya in a toolkit that enables the user to control 
the full fluid simulation within Maya’s interface [42] [43]. The solver uses high-order Finite 
Difference discretization methods and the rendering techniques result in realistic CFD 
visualizations. Moreover, the limitations of the discretization methods seem to be overcome by 
introducing an approximation method in stochastic space, with a high convergence order and 
a very small pre-asymptotic error, outperforming methods such as Monte Carlo. The use of 
coupled toolkits as such is desirable and is contemplated in the workflow scheme here 
proposed.  

 

 
Figure 7. Hydrodynamic fluid simulation in Blender, with textures and materials on terrain and water.  

Once the textures and materials have been incorporated to the hydrodynamic fluid 
simulation, visualization effects such as rain, a panoramic 360 degrees sky or buildings will 
make the resulting scenario more relatable to the non-expert user, hence, ready to use in further 
experiments (such as risk perception and QoE) or for direct decision-making.  

6. DISCUSSION 
Simulating flood scenarios allows iterating research objectives and potential answers to 

these. A quick display of information allows a more effective and competent implementation 
of alleviation measures and flood management practices. The comparison of frequently used 
fluid simulation models (Table 1, Figure 1), as well as the overview on recent related work on 
the visualization of flash floods gives an insight into the selection of an optimal model to 
simulate flash floods in small, ungauged steep rivers. The suitability of the model depends on 
the problem definition and the scale of analysis. For instance, for visualization purposes and 
further research on achieving an outstanding immersive experience, the main goal is to obtain 
optimized hydrodynamic fluid simulations and of increasing precision.  

Two-dimensional hydrodynamic modelling is the best alternative in terms of compromise 
between precision and computational expense. Even though 2D models are not very 
comprehensive in incorporating complex hydrodynamics, such as secondary circulation at 
bends, this feature is not required for a realistic visualization. Therefore, three-dimensional 
modelling is not necessarily favoured to represent flood scenarios in a precise and more 
understandable fashion. On the other hand, HEC-RAS solves 2D-SWE and is unable to work 
with falls and steps and changing flow regimes, which leads to shocks and instabilities when 
modelling flash floods in steep slopes [22]. Shock-capturing algorithms (e.g. Total Variation 
Diminishing) are not included in this and generally in most of the open-source modelling 
packages, with exception of, e.g. Telemac-Mascaret. Nevertheless, three-dimensional solutions 
seem to give the most realistic representation, although the computational cost of 3D models 
is still a noteworthy disadvantage.  
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Advanced solvers are often present in modelling packages without a graphical user interface 
(e.g. Telemac-Mascaret for 2D or REEF3D for both 2D and 3D). These tools have the 
advantage of solving complex physics at optimal speeds and with very satisfactory reliability. 
On the other hand, they need to be coupled to post-processors (e.g. Blue Kenue, Paraview) in 
order to visualize results. This means additional work for the researcher, often significantly 
time-consuming, in order to analyse, interpret and build up based on the simulated outcome. 
The lack of an integrated interface obviously hinders decision-making, as the user needs to be 
familiar with multiple platform, generally not user-friendly. Therefore, experts are looking for 
ways to integrate the existing tools and even use them in interdisciplinary projects in order to 
save cost and make the best of the immense possibilities these tools provide. Research efforts 
are currently oriented towards combining advanced two- and three-dimensional fluid solvers 
with algorithms that increase their efficiency or improve their precision for visualization 
purposes (see for example [27]).  

Realistic portrayal of flash floods in small steep rivers requires advanced hydrodynamic 
simulations and outstanding rendering of these, which is expected to be computationally 
expensive, anyhow. Hadimlioglu and King [28], for example, used a flexible mapping engine 
to visualize 3D-simulated water depth, which allowed adaptive resolution and the possibility 
to select the representation type dynamically. This resulted in an increased efficiency. The 
simulations were particle-based (Lagrangian), which seemed to provide more stable outcomes 
than grid-based fluid simulations. Their flexible mapping engine also provided increasing 
precision of the water level description by means of quadtrees (which is also used in signal 
processing in High Efficiency Video Coding, HEVC) and allowing the system to select the 
most suitable representation based on the demanded level of detail. Their model is efficient, 
provides good precision and has spatial scalability. However, it does not permit a dynamic 
change of parameters over time (e.g. changes in discharge, and no adaptive real-time response), 
although this could be potentially implemented. Their study alludes to the benefits of using 2D 
visualization over more complex and realistic 3D visualization, as it is easier to use. The 
visualization of such model is very promising, despite the fact that the sense of being there (i.e. 
good immersive experience) will not be achieved unless using three-dimensional visualization 
tools.  

It is noteworthy that computer graphics specifications are rarely included in fluid modelling 
packages, and the latter generally prioritize computational sources destined to the fluid solver, 
leaving the display of results in a secondary position. Although accuracy in terms of 
mathematics and physics is crucial when representing a realistic scenario, the data 
representation should not require the extensive post-processing that rendering often implies. 
When it comes to communication of flood risk to the stakeholders, not only precision is needed, 
but also an intuitive display of results. The step-wise workflow scheme hereinto presented 
(Figure 2) highlights the need to master diverse software, sometimes open-source and user-
friendly, but most of the times insufficient alone for a reliable and integrated presentation of 
the risk assessed. This is inefficient and leads to compatibility issues at times, as well as 
unsuited for real-time decision-making. Ideally, a unified visualization platform shall be used 
in such case. This means to combine, in a unique platform, advanced hydrodynamic fluid 
solvers with algorithms that increase their computational speed, and computer graphic 
rendering, achieving solid and optimized hydrodynamic fluid simulations that are immediately 
depicted into visually relatable scenarios (e.g. see [5] [42] [43]). 

Some visual scenarios are too complex or transitory, and an honest representation of them 
faces challenges that might be overcome by their implementation through a holistic approach. 
The use of risk perception-based knowledge together with a correctly represented content, in a 
well-studied context, will provide the unexperienced user the best Quality of Experience. 
Natural hazards concern many different target groups, thus, designing a valuable 
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communication of the assessed risk, as well as successfully guiding and influencing their 
choices, requires a level of interaction, usability, immersion, and compromise in the 
methodology used that is only comprehended by the concept of QoE. Quality of Experience, 
in the context of flash flood risk assessment and communication, evaluates the user experience 
on the serious gaming engine within WoWW by contemplating both objective and subjective 
metrics. QoE does not only evaluate the content presented to the end user, but is rather 
inherently dependent on system-, human- and context-influencing factors. It is, nonetheless, 
essential to provide precise and usable content, which has been designed taking into account 
the rest of the influencing factors (i.e. that fulfills the user’s needs and expectations and is 
provided in an intuitive manner), in order to achieve the best communication of flash flood risk 
to the stakeholders and support sound decision-making.  
 

7. CONCLUSIONS  

 The target of the hydraulic modelling executed in this research project is to achieve 
optimized simulations of flash floods affecting small, ungauged steep rivers that could 
be carried out in a realistic, scalable and reproducible prototype in a serious gaming 
engine.  

 Developing an integrated mathematical model with modern 3D graphics combined in a 
user-friendly model engine for satisfactory impact assessment will emphasize the 
potential use of visualization technology to enhance understanding of engineering 
problems for non-experts on hydraulic engineering.  

 Visualization results from the study can be self-sustaining and used in the analysis and 
estimation of the consequences of flash floods by a vast array of decision-maker 
profiles, such as emergency agencies, government, risk managers, risk consultants, and 
for educational purposes, risk communication and awareness, gaming industry, and 
users with no-scientific background among others. 

 The implementation of optimized fluid simulations in other applications will save time 
and cost to those seeking for a compromise between precise and accurate simulation 
results, such as researchers, companies and the administration. The data obtained from 
simplified simulations could be potentially used as a preliminary orientation in 
decision-making, permitting to narrow down the research focus when tackling a very 
complex problem, hence, increase efficiency by saving time and cost.  

 Soil erosion and sediment transport are important parameters to take into account, but 
not enclosed in hydrodynamic simulations. Most of the visualized models available do 
not include morphodynamics of small and steep ungauged rivers due to their 
complexity to be reproduced successfully even in two-dimensional numerical 
simulations. Sediment transport is studied parallel in WoWW and the feasibility to 
include morphodynamics in the visualization engine will be discussed in future work.  

 Developing virtual scenarios gives the opportunity to replicate and analyze complex 
real-life models and the human experiences that accompany them. Virtual reality 
engines can provide a laboratory of visual experience where different disciplines can 
meet and combine resources and knowledge for a common goal, such as the study and 
communication of natural hazards. Using Quality of Experience and Immersive Media 
Technology Experiences in the context of natural hazards will improve risk assessment 
and its delivery for better decision-making.  
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communication of the assessed risk, as well as successfully guiding and influencing their 
choices, requires a level of interaction, usability, immersion, and compromise in the 
methodology used that is only comprehended by the concept of QoE. Quality of Experience, 
in the context of flash flood risk assessment and communication, evaluates the user experience 
on the serious gaming engine within WoWW by contemplating both objective and subjective 
metrics. QoE does not only evaluate the content presented to the end user, but is rather 
inherently dependent on system-, human- and context-influencing factors. It is, nonetheless, 
essential to provide precise and usable content, which has been designed taking into account 
the rest of the influencing factors (i.e. that fulfills the user’s needs and expectations and is 
provided in an intuitive manner), in order to achieve the best communication of flash flood risk 
to the stakeholders and support sound decision-making.  
 

7. CONCLUSIONS  

 The target of the hydraulic modelling executed in this research project is to achieve 
optimized simulations of flash floods affecting small, ungauged steep rivers that could 
be carried out in a realistic, scalable and reproducible prototype in a serious gaming 
engine.  

 Developing an integrated mathematical model with modern 3D graphics combined in a 
user-friendly model engine for satisfactory impact assessment will emphasize the 
potential use of visualization technology to enhance understanding of engineering 
problems for non-experts on hydraulic engineering.  

 Visualization results from the study can be self-sustaining and used in the analysis and 
estimation of the consequences of flash floods by a vast array of decision-maker 
profiles, such as emergency agencies, government, risk managers, risk consultants, and 
for educational purposes, risk communication and awareness, gaming industry, and 
users with no-scientific background among others. 

 The implementation of optimized fluid simulations in other applications will save time 
and cost to those seeking for a compromise between precise and accurate simulation 
results, such as researchers, companies and the administration. The data obtained from 
simplified simulations could be potentially used as a preliminary orientation in 
decision-making, permitting to narrow down the research focus when tackling a very 
complex problem, hence, increase efficiency by saving time and cost.  

 Soil erosion and sediment transport are important parameters to take into account, but 
not enclosed in hydrodynamic simulations. Most of the visualized models available do 
not include morphodynamics of small and steep ungauged rivers due to their 
complexity to be reproduced successfully even in two-dimensional numerical 
simulations. Sediment transport is studied parallel in WoWW and the feasibility to 
include morphodynamics in the visualization engine will be discussed in future work.  

 Developing virtual scenarios gives the opportunity to replicate and analyze complex 
real-life models and the human experiences that accompany them. Virtual reality 
engines can provide a laboratory of visual experience where different disciplines can 
meet and combine resources and knowledge for a common goal, such as the study and 
communication of natural hazards. Using Quality of Experience and Immersive Media 
Technology Experiences in the context of natural hazards will improve risk assessment 
and its delivery for better decision-making.  
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Abstract. This study investigates the interaction of a shock wave with a fixed layer
of particles in cylindrical geometries using particle-resolved large eddy simulations. The
curvature radius of the particle layer is varied and effect on the flow is analyzed. The
mean flow field depends strongly on the curvature radius, but this is not the case for
flow fluctuations or particle drag coefficients. The results indicate that particle scale flow
phenomena are insensitive to geometric expansion within the range investigated here.
This is an encouraging result from a modeling perspective, since it means that results and
observations of particle scale phenomena obtained in planar configurations can likely be
extrapolated to diverging geometries.

1 INTRODUCTION

The interaction of shock waves with particle clouds plays an important role in a num-
ber of natural phenomena, industrial applications, and safety measures such as volcanic
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eruptions [1], shock wave mitigation using porous barriers [2, 3], and ejection of stellar
dust from supernovae [4]. The primary motivation for the present work is the role of shock
wave particle cloud interaction in heterogeneous explosives [5] and explosive dissemina-
tion of powders and liquids [6, 7, 8]. The latter applications typically include significant
geometric expansion effects. The effect of this expansion on the interaction process is the
topic of this work.

Dispersal of cylindrical particle shells by shock waves has previously been studied
experimentally using both explosives [7, 6, 9] and shock tubes [10, 8]. In both cases,
the particle layers have initially been very dense, with volume fractions approaching the
random packing limit. The initial dispersion of these shells are therefore subject to strong
particle collision effects. As the powders are accelerated outward, the particle volume
fraction quickly decreases as a result of geometric expansion. Consider for instance a layer
of initial thickness L and inner curvature radius R0 = L that initially has a particle volume
fraction, αp, of 0.5. If this layer is accelerated outwards without changing thickness, it
will have αp = 0.3 when the inner radius is 2L, and αp ≈ 0.2 at R0 = 3L. Thus, despite
having a large initial volume fraction, the particle cloud rapidly enters the intermediate
volume fraction regime (αp = 0.01 − 0.5) and remain there for a substantial part of the
dispersal process in such scenarios. Furthermore, one of the primary flow features of this
dispersal process is the formation of particle jets [9, 11]. The preferential concentration
of the particles in jets tends to increase the time during which particles remain in the
intermediate volume fraction regime. During this time, the flow periodically over-expands.
This results in implosions that generate secondary shock waves which propagate outwards
through the particle cloud. Interactions between shock waves and particle clouds in the
intermediate volume fraction regime is therefore one of the primary flow features in this
dispersal process.

From a modelling perspective, the intermediate volume fraction regime is especially
challenging because the dynamics are affected by a complex interaction between the flow
field and the particle distribution [12]. Each particle interacts with the incoming shock
wave and subsequent flow in a manner that depends on the local particle configuration.
The interaction generates reflected shocks, shear layers, and wakes that in turn interact
with nearby flow features. These flow perturbations result in large particle drag force
variations that alter the configuration of particles. Consequently, any modeling effort
where the interaction between the particles and the flow is assumed to consist of a sum
of interactions with isolated particles is unlikely to succeed. It is therefore necessary to
perform detailed investigations of the flow around and forces on the particles, and relate
the observations to available model quantities, in order to establish suitable simplified
models for this regime.

Experimental investigation of flow features at the particle scale inside particle clouds
is challenging. It is, however, possible to conduct particle-resolved simulations for this
purpose, and several recent studies have done just that [13, 14, 15, 16, 17, 18, 19]. Such
simulations are computationally expensive, since a large number of particles must be
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used to obtain meaningful statistics. In addition to yielding physical insight, particle
resolved simulations can be used to investigate closures for unresolved terms that appear
in simpler dispersed flow models. The unclosed terms are a result of averaging of products
of fluctuations. What the fluctuation products represent depends on the averaging type.
For shock wave particle cloud interaction it is convenient to apply volume averaging. With
this approach, both turbulent fluctuations and laminar flow effects around particles, often
referred to as pseudo-turbulent fluctuations, contribute to fluctuation correlations. In
addition, new terms appear due to averaging over volumes containing gas and particles,
as discussed in e.g. [20]. Particle-resolved simulation data can be utilized to examine
all of these terms. This is particularly useful for development of Eulerian-Eulerian and
Eulerian-Lagrangian dispersed flow models [21, 12, 22, 23]. Furthermore, the results of
resolved simulations can be used directly as validation data for the simplified models.

In this work, we examine the effect of flow expansion on the passage of shocks through
particle clouds in the intermediate volume fraction regime (αp = 0.1). Flow expansion
causes rapid spatial variation of mean flow fields, and this work explores how this affects
the flow through particle clouds. We conduct particle resolved large eddy simulations
of a shock wave passing through a cylindrical shell of randomly positioned stationary
particles. We vary the radius of curvature of the cylindrical shell and keep the shell
thickness constant. For each curvature radius we perform an ensemble of simulations to
obtain statistically representative results.

This paper is organized as follows. In Section 2 the governing equations and the volume
averaged equations used for analysis are presented. Section 3 describes the computational
method and the set-up of the problem. Section 4 contains results from grid and ensemble
convergence studies. Section 5 presents the simulation results. We examine wave tra-
jectories, mean flow fields, flow fluctuations and particle forces. We also investigate the
relative importance of the terms in the volume averaged momentum equation in different
regions. Finally, concluding remarks are given in section 6.

2 GOVERNING EQUATIONS

The governing equations for the gas dynamics in this work are the conservation equa-
tions of mass, momentum and energy

∂tρ + ∂k (ρuk) = 0, (1)

∂t (ρui) + ∂k (ρuiuk) = −∂ip + ∂jσij, (2)
∂t (ρE) + ∂k (ρEuk + puk) = ∂j (σijui) − ∂k (λ∂kT ) . (3)

Here, ρ is the mass density, u is the velocity, p is the pressure, σij = μ(∂jui + ∂iuj −
2∂kukδij/3) is the viscous stress tensor, E = ρe + 0.5ρukuk is the total energy per unit
volume, λ is the thermal conductivity, T is the temperature, μ is the dynamic viscosity
and e is the internal energy per unit mass. A calorically perfect ideal gas equation of state
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volume, λ is the thermal conductivity, T is the temperature, μ is the dynamic viscosity
and e is the internal energy per unit mass. A calorically perfect ideal gas equation of state

3



288

Andreas N. Osnes, Magnus Vartdal, Marianne G. Omang and Bjørn A. P. Reif

with γ = 1.4 is employed. Furthermore, we assume a power law dependence of viscosity
on temperature with an exponent of 0.76 and a constant Prandtl number of 0.7.

Due to the strong spatial variation within the particle cloud, the above equations are
inconvenient for analysis of the simulation results. Instead, the volume averaged equations
of motion are used for analysis. These are obtained by averaging eqs. (1) to (3) over a
volume, and carefully accounting for the effect of the dispersed phase within that volume.
In this study, · will be used to denote volume averaging, �·� denotes phase-averaging, and
·̃ denotes Favre-averaging. The deviations from Favre-averaged values are denoted by ·′′.
Phase and volume averaging are related by α�·� = ·, where α is the gas phase volume
fraction. The problem under consideration is statistically homogeneous in the axial (z)
and azimuthal (θ) directions. Therefore, the only component of the volume averaged
momentum equation that is of interest is the radial (r) one. Assuming stationary inert
particles, the volume averaged mass and momentum equations in the radial direction are

∂t (α�ρ�) + ∂r (α�ρ�ũr) = −α�ρ�ũr

r
, (4)

∂t (α�ρ�ũr) + ∂r (α�ρ�ũrũr + α�p�) = −α�ρ�
r

ũrũr + ∂r (α�σrr�) + α�σrr�
r

−∂r

(
α�ρ�R̃rr

)
− α�ρ�

r
R̃rr + 1

V

∫

S
pnrdS − 1

V

∫

S
σrknkdS.

(5)

Here, the boundary between the gas and the particles is denoted by S, V is the averaging
volume and nk is the particle surface normal. The integrals represent the forces acting
on the particle surfaces. R̃rr = ũ′′

ru′′
r is the radial component of the average stress due

to velocity fluctuations. The full tensor, R̃ij, is the single-point, density weighted (Favre
averaged), velocity fluctuation correlations, i.e.

R̃ij =
�ρu′′

i u′′
j �

�ρ�
. (6)

R̃ij contains both the classical turbulent stresses and the pseudo turbulent stresses men-
tioned in the introduction. Its role is analogous to that of the classical Reynolds stress in
the RANS equations and we thus refer to this term as Reynolds stress in the rest of the
paper.

3 COMPUTATIONAL METHOD AND SET-UP

3.1 Computational method

The governing equations are solved numerically using the compressible flow solver
”CharLES” from Cascade Technologies. It employs an entropy stable scheme on a Voronoi-
mesh with third order Runge-Kutta time stepping [24]. For more information on of entropy
stable schemes, consult e.g. [25, 26].
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Figure 1: Sketch of the computational domain. The dashed lines indicate the domain
being simulated. R0 is the radius of curvature and L = 1.2 3

√
4 mm is the particle layer

thickness. The particle cloud is located between R0 and R0 + L. The particle diameter is
Dp = 4−1/3 × 10−1 mm.

3.2 Problem set-up

This work considers the effect of geometric expansion on the passage of shocks through
particle clouds. To this end, we conduct simulations in a cylindrical geometry, where
the particle cloud is a cylindrical shell. We consider spherical particles with diame-
ter Dp = 4−1/3 × 10−1 mm. The shell-thickness is denoted L, and is kept constant at
1.2 3

√
4 mm � 30.2Dp. We consider three different radii of curvature defined such that the

inner particle shell radius, R0, takes the values L, 2L and ∞. Figure 1 shows a sketch
of the computational domain. The arc-length of the inner shell edge is kept constant at
8 3
√

4Dp by considering cylindrical sectors with different angles. In the axial direction, a
constant domain size of 8 3

√
4Dp is used. For each curvature radius, the inner boundary is

located 0.9L upstream of the particle shell edge.
The particles occupy a volume fraction αp = 0.1 within the layer, and their positions

are drawn randomly with the condition that none of the particles are closer than 0.05Dp
to another particle. Furthermore, the particles are not allowed to touch the boundaries
of the computational domain. This gives a number of particles ranging between approx-
imately 900 and 1400, depending on the given radius of curvature. For a discussion on
the effect of particle distribution regularity, consult [19]. For each radius of curvature,
five simulations with different particle distributions are conducted to reduce the effect of
fluctuations introduced by the particle distribution realizations. The effect of the number
of realizations considered is discussed in section 4.2.

Each simulation is initiated as a diverging shock tube. The initial state consists of a
high-pressure, high-density region and a region containing air at atmospheric conditions.
These are separated by a discontinuity, located 0.156L upstream of the particle cloud. The
driver section conditions are p0 = 3.6619 MPa, ρ0 = 12.508 kg/m3, and the gas is initially
at rest. This choice of driver section conditions yields a shock wave with Mach number
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Table 1: Control volume length scale (ΔCV) and total number of control volumes used in
the grid study (NCV).

ΔCV [μm] Dp/ΔCV NCV
7.5 8.4 3.99 × 106

5 12.6 13.5 × 106

3.35 18.8 41.3 × 106

2.25 28.0 14.5 × 107

1.5 42.0 49.8 × 107

M = 2.6 followed by a contact discontinuity without any density jump. The flow state
behind the incident shock wave in the planar case is used for normalization purposes
and is denoted by the subscript IS. Based on these conditions, the particle Reynolds
number Rep = ρISuISDp/μIS � 5000. The position of the initial gas state discontinuity
is chosen such that the time when the shock wave arrives at the outer shell edge coincides
with the arrival time of the head of the rarefaction wave at the inner boundary of the
computational domain. A symmetry boundary condition is employed at the inner and
axial boundaries and periodic boundary conditions are used in the azimuthal direction.

The results are analyzed using the volume averaged equations (eqs. (4) and (5)). We
define averaging volumes spanning the domain in the axial and azimuthal directions, with
a radial extent of L/60. The flow quantities are averaged over these bins and over the
ensemble of simulations at the same radius of curvature. A timescale based on the initial
shock wave velocity and layer thickness

τL = L

(
M

√
γ

p0

ρ0

)−1

, (7)

is used to compare the simulation results.

4 GRID AND ENSEMBLE CONVERGENCE

4.1 Grid convergence

To assess the effect of grid size, we perform a grid convergence study for R0 = L. This
study uses a slightly different set-up than the results presented below, with an initial
condition corresponding to a M = 2.6 shock wave located at r = R0 and a corresponding
inflow at r = R0 − 0.9L. The flow pattern for this configuration is similar to the con-
figuration described in section 3.2 for the initial part of the simulation and we therefore
expect the grid dependence to be similar in both cases. Five different grids were utilized,
and each new grid had a length scale of roughly 2/3 of the previous grid length scale. The
grid length scales and total number of control volumes are listed in table 1. These grid
length scales are used for regions within a distance 0.5Dp from any particle. Outside of
those regions, the grid length scale is doubled, and for r > R0 + 1.5L the length scale is
doubled once more.
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Figure 2: Grid convergence results for R̃θθ in the case R0 = L at t/τL = 1.5.

The volume averaged quantities in eqs. (4) and (5) that have the strictest requirement
on the computational grid are the Reynolds stresses and the particle forces. By inspection,
we find that the azimuthal component of the Reynolds stress is the slowest to converge.
Figure 2 shows the convergence of R̃θθ at t/τL = 1.5. We do not achieve completely
converged results within the range of grid length scales used here. Due to the extreme
computational cost for the simulations with the finest length scale, we find it necessary to
choose ΔCV = 2.25 μm for the simulations within this work. By extrapolating the trend
observed in fig. 2, we expect the converged Reynolds stresses to be slightly higher than
those obtained in our simulations.

4.2 Ensemble convergence

In order to minimize the effect of random particle distribution fluctuations, we perform
multiple simulations for each R0 and average the results over the simulation ensemble.
We determine the number of simulations needed to achieve reasonably converged results
based on how R̃θθ converges with the number of simulations in the case with R0 = L.
This estimate is based on a grid with ΔCV = 3.35μm, which is coarser than that used for
the final simulations.

Figure 3a shows R̃θθ at t/τL = 1.5 for ten different realizations. It is clear that the
general shape of all the curves is quite similar and impressions about the trend can be
obtained from single simulations. The variation is up to one third of the mean value, and
there is a lot to gain from performing an ensemble average.

We quantify the convergence by examining the relative change as we go from N to
N + 1 simulations. This is expressed by the function

f(N) =

⎡
⎢⎣ 1

2.9L

� R0+2L

R0−0.9L

⎛
⎝

1
N

�N
i=1 R̃i

θθ(r) − 1
N−1

�N−1
i=1 R̃i

θθ(r)
1

N−1
�N−1

i=1 R̃i
θθ(r)

⎞
⎠

2

dr

⎤
⎥⎦

1/2

. (8)
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Table 1: Control volume length scale (ΔCV) and total number of control volumes used in
the grid study (NCV).

ΔCV [μm] Dp/ΔCV NCV
7.5 8.4 3.99 × 106

5 12.6 13.5 × 106

3.35 18.8 41.3 × 106

2.25 28.0 14.5 × 107

1.5 42.0 49.8 × 107

M = 2.6 followed by a contact discontinuity without any density jump. The flow state
behind the incident shock wave in the planar case is used for normalization purposes
and is denoted by the subscript IS. Based on these conditions, the particle Reynolds
number Rep = ρISuISDp/μIS � 5000. The position of the initial gas state discontinuity
is chosen such that the time when the shock wave arrives at the outer shell edge coincides
with the arrival time of the head of the rarefaction wave at the inner boundary of the
computational domain. A symmetry boundary condition is employed at the inner and
axial boundaries and periodic boundary conditions are used in the azimuthal direction.

The results are analyzed using the volume averaged equations (eqs. (4) and (5)). We
define averaging volumes spanning the domain in the axial and azimuthal directions, with
a radial extent of L/60. The flow quantities are averaged over these bins and over the
ensemble of simulations at the same radius of curvature. A timescale based on the initial
shock wave velocity and layer thickness

τL = L

(
M

√
γ

p0

ρ0

)−1

, (7)

is used to compare the simulation results.

4 GRID AND ENSEMBLE CONVERGENCE

4.1 Grid convergence

To assess the effect of grid size, we perform a grid convergence study for R0 = L. This
study uses a slightly different set-up than the results presented below, with an initial
condition corresponding to a M = 2.6 shock wave located at r = R0 and a corresponding
inflow at r = R0 − 0.9L. The flow pattern for this configuration is similar to the con-
figuration described in section 3.2 for the initial part of the simulation and we therefore
expect the grid dependence to be similar in both cases. Five different grids were utilized,
and each new grid had a length scale of roughly 2/3 of the previous grid length scale. The
grid length scales and total number of control volumes are listed in table 1. These grid
length scales are used for regions within a distance 0.5Dp from any particle. Outside of
those regions, the grid length scale is doubled, and for r > R0 + 1.5L the length scale is
doubled once more.
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The volume averaged quantities in eqs. (4) and (5) that have the strictest requirement
on the computational grid are the Reynolds stresses and the particle forces. By inspection,
we find that the azimuthal component of the Reynolds stress is the slowest to converge.
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multiple simulations for each R0 and average the results over the simulation ensemble.
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obtained from single simulations. The variation is up to one third of the mean value, and
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Figure 3: Ensemble convergence results.

We compute f(N) for every permutation of the simulation order and average the results
over these combinations. The results are shown in fig. 3b. At five realizations, the average
relative change in R̃θθ from adding one more simulation is about 2%. At ten realizations,
it is 1%. Due to the high computational cost and relatively small gain in increasing the
number of simulation beyond this point, we use N = 5 for all subsequent results presented
in this study.

5 RESULTS

Due to similar initial conditions, the simulations for the different radii of curvature
display the same basic flow pattern. The discontinuity at the outer boundary of the
driver section generates an outward moving shock wave and a rarefaction wave with a
head moving inwards and a tail moving outwards. As the shock wave impacts the particle
cloud, a reflected shock wave is set up. Subsequently, the tail of the rarefaction also
interacts with the upstream boundary of the particle cloud. Thereafter, the head of
the rarefaction interacts with the cloud after having reflected off the inner boundary.
Finally, the reflected shock wave interacts with the cloud after having reflected off the
inner boundary. An x − t diagram showing the position of the above mentioned waves,
obtained numerically, is found in fig. 4. This figure also contains the acoustic characteristic
ũr − c generated as the shock wave exits the particle cloud. The right-ward trajectory
of these signals for R0 = 2L and R0 = ∞ indicates that the flow becomes supersonic
immediately at the downstream edge, but we do not observe the same phenomenon for
R0 = L.

The interaction of the shock wave with the particle cloud results in a continuous weak-
ening of the shock that slows it down. The geometric expansion also attenuates the shock
and slows it down further. If we correct for the weakening of the shock wave due to the
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Figure 4: x−t diagram showing the propagation of the primary shock wave (solid), acous-
tic signals resulting from the head and tail of the initial rarefaction (dashed), reflected
shock wave generated at the upstream particle cloud edge (solid) and acoustic signals
generated by the shock wave exiting the particle cloud (dashed).

geometric expansion, by comparing with simulation results obtained without particles, no
significant difference in shock weakening between the three curvature radii is observed.

Based on the wave system described above, we chose t/τL = 0.75, 1.5, 3 and 4.5 to
compare the results for the different cases. At t/τL = 0.75 the state inside the particle
cloud is only affected by the initial shock wave, while at t/τL = 1.5 both the tail of the
rarefaction and the shock wave are involved. At t/τL = 3, the head of the rarefaction is
part way through the cloud. Finally, at t/τL = 4.5 the flow has developed further but is
not yet affected by the reflected shock wave. For the last two times an expansion region
is present at the downstream edge of the particle cloud. The strength of this expansion is
important for the process of particle dispersion. Its dependence on the radius of curvature
will also be discussed below.

Figure 5 contains a visualization of the radial velocity and density gradients within the
particle cloud at t/τL = 1. It illustrates the complexity of the flow field resulting from the
interaction. The refracted initial shock wave is visible to the right and directly behind it,
the reflected shock waves from the particles. Further upstream, we see the development
of particle wakes and shear layers. Upstream of the particle cloud, the reflected shock
wave is clearly visible.

5.1 Mean flow

In this section, we examine the mean flow fields for the three curvature radii at the
four times t/τL = 0.75, 1.5, 3.0 and 4.5. Figure 6 shows the mean radial velocity. It
increases with distance within the particle cloud. At the two earliest times, there is a
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We compute f(N) for every permutation of the simulation order and average the results
over these combinations. The results are shown in fig. 3b. At five realizations, the average
relative change in R̃θθ from adding one more simulation is about 2%. At ten realizations,
it is 1%. Due to the high computational cost and relatively small gain in increasing the
number of simulation beyond this point, we use N = 5 for all subsequent results presented
in this study.

5 RESULTS

Due to similar initial conditions, the simulations for the different radii of curvature
display the same basic flow pattern. The discontinuity at the outer boundary of the
driver section generates an outward moving shock wave and a rarefaction wave with a
head moving inwards and a tail moving outwards. As the shock wave impacts the particle
cloud, a reflected shock wave is set up. Subsequently, the tail of the rarefaction also
interacts with the upstream boundary of the particle cloud. Thereafter, the head of
the rarefaction interacts with the cloud after having reflected off the inner boundary.
Finally, the reflected shock wave interacts with the cloud after having reflected off the
inner boundary. An x − t diagram showing the position of the above mentioned waves,
obtained numerically, is found in fig. 4. This figure also contains the acoustic characteristic
ũr − c generated as the shock wave exits the particle cloud. The right-ward trajectory
of these signals for R0 = 2L and R0 = ∞ indicates that the flow becomes supersonic
immediately at the downstream edge, but we do not observe the same phenomenon for
R0 = L.

The interaction of the shock wave with the particle cloud results in a continuous weak-
ening of the shock that slows it down. The geometric expansion also attenuates the shock
and slows it down further. If we correct for the weakening of the shock wave due to the
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geometric expansion, by comparing with simulation results obtained without particles, no
significant difference in shock weakening between the three curvature radii is observed.

Based on the wave system described above, we chose t/τL = 0.75, 1.5, 3 and 4.5 to
compare the results for the different cases. At t/τL = 0.75 the state inside the particle
cloud is only affected by the initial shock wave, while at t/τL = 1.5 both the tail of the
rarefaction and the shock wave are involved. At t/τL = 3, the head of the rarefaction is
part way through the cloud. Finally, at t/τL = 4.5 the flow has developed further but is
not yet affected by the reflected shock wave. For the last two times an expansion region
is present at the downstream edge of the particle cloud. The strength of this expansion is
important for the process of particle dispersion. Its dependence on the radius of curvature
will also be discussed below.

Figure 5 contains a visualization of the radial velocity and density gradients within the
particle cloud at t/τL = 1. It illustrates the complexity of the flow field resulting from the
interaction. The refracted initial shock wave is visible to the right and directly behind it,
the reflected shock waves from the particles. Further upstream, we see the development
of particle wakes and shear layers. Upstream of the particle cloud, the reflected shock
wave is clearly visible.

5.1 Mean flow

In this section, we examine the mean flow fields for the three curvature radii at the
four times t/τL = 0.75, 1.5, 3.0 and 4.5. Figure 6 shows the mean radial velocity. It
increases with distance within the particle cloud. At the two earliest times, there is a
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Figure 5: Flow snapshot for R0 = L at t/τL = 1. The top half displays the radial velocity
(ur) and the bottom half displays density gradients using numerical schlieren.
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Figure 6: Mean radial velocity as a function of r at t/τL = 0.75, 1.5, 3.0 and 4.5.

steep gradient just downstream of the inner cloud edge. This is expected since the flow is
locally subsonic when it enters the cloud due to the reflected shock. Therefore, the area
contraction at the particle cloud edge causes a flow acceleration. The region upstream
of the reflected shock has higher radial velocities for smaller R0 due to the geometric
expansion. A small numerical artifact can be seen at about r − R0 ≈ −0.2, which is a
result of the discontinuous initial condition on the Voronoi-grid. This effect is present
also for smaller R0, but is dampened much faster in those simulations.

At t/τL = 1.5, the shock wave has exited the particle cloud, and the flow accelerates
towards the downstream cloud edge. The head of the rarefaction wave has reflected off
the inner domain boundary, and can be seen as a kink in the velocity profiles around
(r − R0)/L ≈ −0.5. At later times, the flow slows down due to the reflected rarefaction
wave. Indeed, the gas flows inwards in parts of the cloud at t/τL = 3.0. We also observe
that the expansion region at the downstream edge is stronger for larger R0 and persists for
a long time. At t/τL = 4.5, the reflected shock wave is moving outwards, having reflected
off the inner boundary, and is visible at (r − R0)/L ≈ −0.25.

The local flow Mach numbers are shown in fig. 7. At t/τL = 0.75 and t/τL = 1.5, the
region inside the particle cloud has locally higher Mach numbers for smaller curvature
radii. In contrast, the local Mach number is larger for larger curvature radii at the
downstream cloud edge. For all cases, there is a transition to supersonic flow which
occurs just before the edge of the of the particle layer. For R0 = L, the flow only becomes

11



294 295

Andreas N. Osnes, Magnus Vartdal, Marianne G. Omang and Bjørn A. P. Reif

Figure 5: Flow snapshot for R0 = L at t/τL = 1. The top half displays the radial velocity
(ur) and the bottom half displays density gradients using numerical schlieren.
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ũ
r
[1
00

m
/s
]

t/τL = 0.75

R0 = L

R0 = 2L

R0 = ∞

−2.5

0.0

2.5

5.0

7.5
t/τL = 1.5

0 1 2

(r −R0)/L

−2.5

0.0

2.5

5.0

7.5

ũ
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locally subsonic when it enters the cloud due to the reflected shock. Therefore, the area
contraction at the particle cloud edge causes a flow acceleration. The region upstream
of the reflected shock has higher radial velocities for smaller R0 due to the geometric
expansion. A small numerical artifact can be seen at about r − R0 ≈ −0.2, which is a
result of the discontinuous initial condition on the Voronoi-grid. This effect is present
also for smaller R0, but is dampened much faster in those simulations.

At t/τL = 1.5, the shock wave has exited the particle cloud, and the flow accelerates
towards the downstream cloud edge. The head of the rarefaction wave has reflected off
the inner domain boundary, and can be seen as a kink in the velocity profiles around
(r − R0)/L ≈ −0.5. At later times, the flow slows down due to the reflected rarefaction
wave. Indeed, the gas flows inwards in parts of the cloud at t/τL = 3.0. We also observe
that the expansion region at the downstream edge is stronger for larger R0 and persists for
a long time. At t/τL = 4.5, the reflected shock wave is moving outwards, having reflected
off the inner boundary, and is visible at (r − R0)/L ≈ −0.25.

The local flow Mach numbers are shown in fig. 7. At t/τL = 0.75 and t/τL = 1.5, the
region inside the particle cloud has locally higher Mach numbers for smaller curvature
radii. In contrast, the local Mach number is larger for larger curvature radii at the
downstream cloud edge. For all cases, there is a transition to supersonic flow which
occurs just before the edge of the of the particle layer. For R0 = L, the flow only becomes
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Figure 7: Local Mach number as a function of r at t/τL = 0.75, 1.5, 3.0 and 4.5.

supersonic for a very limited time, with a Mach number just above one at t/τL = 3.0, while
for larger R0 local Mach numbers up to 1.5 are observed for extended periods of time.
For the latter cases, we observe that the expansion region is terminated by a quasi-steady
shock located at (r − R0)/L ≈ 1.25 at the two latest times.

The density profiles are shown in fig. 8. When the gas expands outwards the mass
is distributed over relatively larger volumes for smaller R0. This leads to lower mass
densities. It can be seen that the relative jump in density over the reflected shock is
higher for lower R0, which means that the reflected shock wave is stronger for smaller
curvature radii. This is in accordance with the path of the reflected shocks in fig. 4,
where it can be seen that the reflected shock for R0 = L accelerates strongly until it
reflects off the inner domain boundary.

The pressure profiles, found in fig. 9, display much of the same properties as the density
profiles. There is an almost constant gradient through the particle layer after the shock
wave has passed, and this state lasts until the rarefaction wave has reflected off the inner
boundary and begins to decelerate the flow within the particle cloud. The pressure drops
sharply in the expansion at the downstream cloud edge. This is most prominent for larger
curvature radii.
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curvature radii. This is in accordance with the path of the reflected shocks in fig. 4,
where it can be seen that the reflected shock for R0 = L accelerates strongly until it
reflects off the inner domain boundary.

The pressure profiles, found in fig. 9, display much of the same properties as the density
profiles. There is an almost constant gradient through the particle layer after the shock
wave has passed, and this state lasts until the rarefaction wave has reflected off the inner
boundary and begins to decelerate the flow within the particle cloud. The pressure drops
sharply in the expansion at the downstream cloud edge. This is most prominent for larger
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difference in scaling of the vertical axis for the top and bottom.
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difference in scaling of the vertical axis for the top and bottom.
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Figure 11: Mean drag coefficient as a function of r at t/τL = 0.75, 1.5, 3.0 and 4.5.

5.2 Particle forces

Average particle forces are shown in fig. 10. Smaller R0 lead to lower particle forces,
primarily as a result of the lower mean kinetic energy of the flow. At t/τL = 0.75, it is
clear that the largest forces on the particles are imposed during their interaction with
the shock wave. Subsequently, the forces tend to a roughly constant value through the
particle cloud, except for the drastic increase at the downstream cloud edge. This state
lasts until the passage of the rarefaction wave. Interestingly, for R0 = L and R0 = 2L
there is a slight dip in the forces on the particles towards the end of the particle cloud
at the later time intervals. This is in accordance with the distribution of the pressure
gradient, which is steepest at the location of the peak particle forces. At the end of the
particle layer, the pressure gradient is gentler and therefore contributes less to the forces
on the particles.

The drag coefficients, shown in fig. 11, also increase at the downstream particle cloud
edge. The particle drag coefficient is defined as

CD =
∫

Si
(−pδrk + σrk)nkdSi

0.5�ρ�ũ2
rAp

, (9)

where δij is the Kronecker delta, Ap is the projected area of the particle in the direction
of the flow, and Si denotes the surface of the particle. The increase in drag coefficient
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Figure 12: Radial Reynolds stress as a function of r at t/τL = 0.75, 1.5, 3.0 and 4.5.

signifies that the increase in particle forces is not merely an effect of an increased kinetic
energy of the flow. Instead, the increase is a result of the increased Mach number, cf.
fig. 7. This is consistent with findings in studies of single-particle drag as a function of
Mach number [27, 28].

In contrast to the particle forces, the drag coefficient does not vary much with curvature
radius. The minor variation is consistent with standard drag correlations, which predict
decreasing CD with increasing particle Reynolds numbers.

Compared to the isolated particle case, the average drag coefficients obtained here
are significantly higher. This has also been observed in previous studies [16, 19]. These
studies have shown that there is a wide distribution of drag coefficients, centered higher
than isolated particle drag correlations predicts, for particle clouds consisting of randomly
distributed particles. In addition to the Mach number effect, a likely contributing factor
to this result is the flow blockage effects of nearby particles. Blockage effects have exper-
imentally been shown to significantly increase drag for single particles in ducts [29, 30].

5.3 Velocity fluctuations

Figure 12 shows the radial component of the Reynolds stress. It can be seen that R̃rr

increases rapidly immediately behind the shock wave. While the shock wave is inside the
particle layer, its peak value occurs a few particle diameters behind the shock wave. After

17



300 301

Andreas N. Osnes, Magnus Vartdal, Marianne G. Omang and Bjørn A. P. Reif

0.0

0.5

1.0

1.5

2.0

C
D

t/τL = 0.75

R0 = L
R0 = 2L
R0 = ∞

0.0

0.5

1.0

1.5

2.0
t/τL = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

(r −R0)/L

0.0

0.5

1.0

1.5

2.0

C
D

t/τL = 3.0

0.0 0.2 0.4 0.6 0.8 1.0

(r −R0)/L

0.0

0.5

1.0

1.5

2.0
t/τL = 4.5

Figure 11: Mean drag coefficient as a function of r at t/τL = 0.75, 1.5, 3.0 and 4.5.

5.2 Particle forces

Average particle forces are shown in fig. 10. Smaller R0 lead to lower particle forces,
primarily as a result of the lower mean kinetic energy of the flow. At t/τL = 0.75, it is
clear that the largest forces on the particles are imposed during their interaction with
the shock wave. Subsequently, the forces tend to a roughly constant value through the
particle cloud, except for the drastic increase at the downstream cloud edge. This state
lasts until the passage of the rarefaction wave. Interestingly, for R0 = L and R0 = 2L
there is a slight dip in the forces on the particles towards the end of the particle cloud
at the later time intervals. This is in accordance with the distribution of the pressure
gradient, which is steepest at the location of the peak particle forces. At the end of the
particle layer, the pressure gradient is gentler and therefore contributes less to the forces
on the particles.

The drag coefficients, shown in fig. 11, also increase at the downstream particle cloud
edge. The particle drag coefficient is defined as

CD =
∫

Si
(−pδrk + σrk)nkdSi

0.5�ρ�ũ2
rAp

, (9)

where δij is the Kronecker delta, Ap is the projected area of the particle in the direction
of the flow, and Si denotes the surface of the particle. The increase in drag coefficient

16

Andreas N. Osnes, Magnus Vartdal, Marianne G. Omang and Bjørn A. P. Reif

0

20

40

60

R̃
r
r
/
10

3
[m

2
/s

2
]

t/τL = 0.75

R0 = L

R0 = 2L

R0 = ∞

0

20

40

60

t/τL = 1.5

0 1 2

(r −R0)/L

0

20

40

60

R̃
r
r
/
1
03

[m
2
/
s2
]

t/τL = 3.0

0 1 2

(r −R0)/L

0

20

40

60

t/τL = 4.5

Figure 12: Radial Reynolds stress as a function of r at t/τL = 0.75, 1.5, 3.0 and 4.5.

signifies that the increase in particle forces is not merely an effect of an increased kinetic
energy of the flow. Instead, the increase is a result of the increased Mach number, cf.
fig. 7. This is consistent with findings in studies of single-particle drag as a function of
Mach number [27, 28].

In contrast to the particle forces, the drag coefficient does not vary much with curvature
radius. The minor variation is consistent with standard drag correlations, which predict
decreasing CD with increasing particle Reynolds numbers.

Compared to the isolated particle case, the average drag coefficients obtained here
are significantly higher. This has also been observed in previous studies [16, 19]. These
studies have shown that there is a wide distribution of drag coefficients, centered higher
than isolated particle drag correlations predicts, for particle clouds consisting of randomly
distributed particles. In addition to the Mach number effect, a likely contributing factor
to this result is the flow blockage effects of nearby particles. Blockage effects have exper-
imentally been shown to significantly increase drag for single particles in ducts [29, 30].

5.3 Velocity fluctuations

Figure 12 shows the radial component of the Reynolds stress. It can be seen that R̃rr

increases rapidly immediately behind the shock wave. While the shock wave is inside the
particle layer, its peak value occurs a few particle diameters behind the shock wave. After
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Figure 13: Azimuthal Reynolds stress as a function of r at t/τL = 0.75, 1.5, 3.0 and 4.5.
Note the difference in scaling of the vertical axis for the top and bottom.

the shock exits the layer, the peak value is at the downstream layer edge. The variation
with curvature appears to only manifest in the magnitude of R̃rr at t/τL = 0.75 and
t/τL = 1.5. At later times this is no longer the case. Two peaks can be seen for R0 = L
and R0 = 2L at the two latest times. The second peak is the result of the standing
shock wave at the end of the expansion. For R0 = L, the two peaks merge because this
shock wave is closer than one bin-length to the particle layer. The radial component
of the Reynolds stress drops sharply over the downstream particle cloud edge. This is
expected, because particle wakes is the primary source of R̃rr in this problem. It does,
however, not vanish completely as flow fluctuations are advected downstream from the
cloud. Interestingly, apart from the previously mentioned shocks, the distribution seems
to become more symmetric around the edge at late times.

We note that the magnitude of the streamwise Reynolds stress is significant. It cor-
responds to root-mean square velocity fluctuations of up to 50% of the local mean flow
velocity. The relation between the mean flow velocity and radial velocity fluctuations will
be further discussed below.

The azimuthal component of the Reynolds stress, seen in fig. 13, behaves in much the
same way as R̃rr. At t/τL = 0.75 and t/τL = 1.5, it increases slower with downstream
distance than the radial component. Its magnitude is about 50% of R̃rr. Surprisingly,
the azimuthal and axial (not shown) components of the Reynolds stress are almost indis-
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tinguishable. This adds credibility to the claim that the majority of the fluctuations are
pseudo-turbulent in nature and that the flow at the particle scale is largely unaffected by
the expansion. This result is encouraging from a modeling perspective as it means that
results obtained for planar configurations are likely to hold for curvature radii within the
range considered here.

It has been observed that the correlation of streamwise velocity fluctuations (when the
fluctuations are defined as deviations from volume averages) is approximately proportional
to the square of the volume averaged velocity after the strong shock-induced transient
has decayed [19]. It is interesting to investigate whether this also holds in the current
configurations, which differs from the previous study both in domain geometry and initial
conditions. The proportionality factor was defined as

αsep = α
(
1 + ũ2/R̃rr

)−1
, (10)

and is plotted in fig. 14. It can be seen that this factor varies only slightly with R0 at the
two earliest times. The basis of the model is that the main flow effect that contributes
to R̃rr is the separated flow behind each particle, and αsep represents the volume fraction
of separated flow. It is clear that this is not a reasonable assumption when the flow
decelerates and eventually changes direction, because the particle wakes no longer have
the simple behavior required by the model. This effect can be seen at t ≥ 3τL. It does
however appear that as long as the velocity remains fairly high, the model is a decent
approximation, cf. αsep at t/τL = 3.0 for R0 = 2L and R0 = ∞, and even at t/τL = 4.5
in the outer half of the particle layer.

The derivation of this model approximates the flow field as two different homogeneous
regions. One region is the separated flow behind each particle, where the velocity is
approximated as zero. The second region is the flow between particles, where the velocity
is assumed to be constant. Improvements to the model can be obtained by analysis of the
flow fields around each particle. Such studies could extend the model to include the effects
of flow deflection and acceleration around particles, as well as particle volume fraction
dependency and particle acceleration. These are topics for future works.

One of the appealing aspects of this Reynolds stress model is that it is easily appli-
cable to simplified dispersed flow models. It is an algebraic fluctuation model, and thus
computationally efficient. Beyond the direct addition of the Reynolds stress, the model
also implies corrections to mean flow properties due to the non-negligible volume fraction
of the separated flow, as well as the appropriate velocities for computing drag coefficients
on the particles. For a more thorough discussion, consult [19].

5.4 Momentum balance

The time-dependence and radial distribution of flow statistics have been presented
above. Here, the relative importance of the terms in the volume averaged momentum
balance equation is investigated. Figure 15 shows the most important terms in the mo-
mentum balance as a function of time for the three curvature radii at r = R0 +L/20. This
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t/τL = 1.5. At later times this is no longer the case. Two peaks can be seen for R0 = L
and R0 = 2L at the two latest times. The second peak is the result of the standing
shock wave at the end of the expansion. For R0 = L, the two peaks merge because this
shock wave is closer than one bin-length to the particle layer. The radial component
of the Reynolds stress drops sharply over the downstream particle cloud edge. This is
expected, because particle wakes is the primary source of R̃rr in this problem. It does,
however, not vanish completely as flow fluctuations are advected downstream from the
cloud. Interestingly, apart from the previously mentioned shocks, the distribution seems
to become more symmetric around the edge at late times.

We note that the magnitude of the streamwise Reynolds stress is significant. It cor-
responds to root-mean square velocity fluctuations of up to 50% of the local mean flow
velocity. The relation between the mean flow velocity and radial velocity fluctuations will
be further discussed below.

The azimuthal component of the Reynolds stress, seen in fig. 13, behaves in much the
same way as R̃rr. At t/τL = 0.75 and t/τL = 1.5, it increases slower with downstream
distance than the radial component. Its magnitude is about 50% of R̃rr. Surprisingly,
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tinguishable. This adds credibility to the claim that the majority of the fluctuations are
pseudo-turbulent in nature and that the flow at the particle scale is largely unaffected by
the expansion. This result is encouraging from a modeling perspective as it means that
results obtained for planar configurations are likely to hold for curvature radii within the
range considered here.

It has been observed that the correlation of streamwise velocity fluctuations (when the
fluctuations are defined as deviations from volume averages) is approximately proportional
to the square of the volume averaged velocity after the strong shock-induced transient
has decayed [19]. It is interesting to investigate whether this also holds in the current
configurations, which differs from the previous study both in domain geometry and initial
conditions. The proportionality factor was defined as
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(
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)−1
, (10)

and is plotted in fig. 14. It can be seen that this factor varies only slightly with R0 at the
two earliest times. The basis of the model is that the main flow effect that contributes
to R̃rr is the separated flow behind each particle, and αsep represents the volume fraction
of separated flow. It is clear that this is not a reasonable assumption when the flow
decelerates and eventually changes direction, because the particle wakes no longer have
the simple behavior required by the model. This effect can be seen at t ≥ 3τL. It does
however appear that as long as the velocity remains fairly high, the model is a decent
approximation, cf. αsep at t/τL = 3.0 for R0 = 2L and R0 = ∞, and even at t/τL = 4.5
in the outer half of the particle layer.

The derivation of this model approximates the flow field as two different homogeneous
regions. One region is the separated flow behind each particle, where the velocity is
approximated as zero. The second region is the flow between particles, where the velocity
is assumed to be constant. Improvements to the model can be obtained by analysis of the
flow fields around each particle. Such studies could extend the model to include the effects
of flow deflection and acceleration around particles, as well as particle volume fraction
dependency and particle acceleration. These are topics for future works.
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cable to simplified dispersed flow models. It is an algebraic fluctuation model, and thus
computationally efficient. Beyond the direct addition of the Reynolds stress, the model
also implies corrections to mean flow properties due to the non-negligible volume fraction
of the separated flow, as well as the appropriate velocities for computing drag coefficients
on the particles. For a more thorough discussion, consult [19].
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above. Here, the relative importance of the terms in the volume averaged momentum
balance equation is investigated. Figure 15 shows the most important terms in the mo-
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Figure 14: Separation volume as a function of r at t/τL = 0.75, 1.5, 3.0 and 4.5.
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Figure 15: Main terms in the momentum balance close to the upstream edge of the particle
cloud (r = R0 + 0.05L).
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Figure 16: Main terms in the momentum balance close to the downstream edge of the
particle cloud (r = R0 + 0.95L).

specific location is chosen for a reason: the momentum balance around the inner cloud
boundary has a strong effect on the reflected shock wave. The strength of this shock deter-
mines the incoming flow which subsequently interacts with the particle cloud. Therefore,
capturing this reflected shock wave correctly is essential for all simplified models for this
problem.

It was shown in fig. 12 that around the inner particle cloud edge, the gradient of R̃rr

is initially sharp, and it is therefore likely to play an important role in the momentum
balance. Figure 15 confirms that this is the case. For all radii of curvature, ∂rα�ρ�R̃rr

is the same order of magnitude as the pressure force, Fp, acting on the particles. Both
of these terms are at least 25% of the pressure gradient, which is the most dominant.
The variation of the Reynolds stress gradient with curvature radius is insignificant. The
advection term decreases in importance with decreasing curvature radius, but this effect
is partially compensated for by its geometric expansion term. The results indicate that
geometric expansion becomes important at small R0, but does not cause any significant
changes in flow fluctuations or particle forces.

It can be seen that for R0 = ∞ and R0 = 2L, there is an abrupt change in the
momentum balance around t/τL = 2.0. The same phenomenon also occurs for R0 = L,
but the effect is much smaller. This time coincides with the arrival time of the reflected
rarefaction, which initiates a strong flow deceleration. This mainly affects the advection
term and the pressure gradient. The remaining terms have a delayed response to the
deceleration.

Figure 16 shows the momentum balance close to the downstream cloud edge. Here,
the Reynolds stress is not very important, but we note that this is very close to the
peak Reynolds stress, and therefore the gradient is gentler at this point than further
downstream. That the important terms in this region are the pressure gradient, the
advection term and the particle forces. The order of importance of these terms is similar
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specific location is chosen for a reason: the momentum balance around the inner cloud
boundary has a strong effect on the reflected shock wave. The strength of this shock deter-
mines the incoming flow which subsequently interacts with the particle cloud. Therefore,
capturing this reflected shock wave correctly is essential for all simplified models for this
problem.

It was shown in fig. 12 that around the inner particle cloud edge, the gradient of R̃rr

is initially sharp, and it is therefore likely to play an important role in the momentum
balance. Figure 15 confirms that this is the case. For all radii of curvature, ∂rα�ρ�R̃rr

is the same order of magnitude as the pressure force, Fp, acting on the particles. Both
of these terms are at least 25% of the pressure gradient, which is the most dominant.
The variation of the Reynolds stress gradient with curvature radius is insignificant. The
advection term decreases in importance with decreasing curvature radius, but this effect
is partially compensated for by its geometric expansion term. The results indicate that
geometric expansion becomes important at small R0, but does not cause any significant
changes in flow fluctuations or particle forces.

It can be seen that for R0 = ∞ and R0 = 2L, there is an abrupt change in the
momentum balance around t/τL = 2.0. The same phenomenon also occurs for R0 = L,
but the effect is much smaller. This time coincides with the arrival time of the reflected
rarefaction, which initiates a strong flow deceleration. This mainly affects the advection
term and the pressure gradient. The remaining terms have a delayed response to the
deceleration.

Figure 16 shows the momentum balance close to the downstream cloud edge. Here,
the Reynolds stress is not very important, but we note that this is very close to the
peak Reynolds stress, and therefore the gradient is gentler at this point than further
downstream. That the important terms in this region are the pressure gradient, the
advection term and the particle forces. The order of importance of these terms is similar
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for all R0, and the geometric expansion terms are insignificant.
To complete this discussion, we note that within the interior of the particle cloud, the

particle force is the dominant term. The Reynolds stress is non-negligible, but significantly
less important than at the upstream cloud edge since its slope is gentler. The pressure
gradient and advection terms remain important at all locations.

6 CONCLUDING REMARKS

The effect of geometric expansion on shock induced flow through stationary particle
clouds has been investigated using viscous particle-resolved simulations in cylindrical do-
mains with differing radii of curvature.

The main effect of the geometric expansion was found in the mean flow quantities.
Density, velocity and pressure were significantly affected, which also translated to differ-
ences in the magnitudes of forces experienced by the particles. Analysis of the volume
averaged momentum balance equations at the upstream particle cloud edge showed that
the Reynolds stresses (products of velocity fluctuations) play an important role during
the initial part of the flow. During this phase, the Reynolds stress contribution is of the
same order as the pressure forces acting on the particles. This means that the Reynolds
stresses cannot be ignored in simplified models of shock particle cloud interaction.

The flow fluctuations varied with curvature radius, but mainly due to differences in the
mean fields with which they are interacting. This observation is supported by the fact that
no significant difference in the axial and azimuthal components of the Reynolds stresses
were observed. This indicates that the geometric expansion rates considered in this work
are insufficient to affect the flow at the particle scale. It also supports the hypothesis that
the primary contributions to velocity fluctuations are the pseudo turbulent structures at
the particle scale.

We also examined whether the Reynolds stress model introduced in [19] holds for the
present configurations. Indeed, a remarkable agreement was obtained for the regions
where the mean velocity of the gas was substantial. From a modeling perspective, the
results concerning the velocity fluctuations are encouraging because they indicate that
results from planar geometries are likely to hold for diverging flows within the range
considered here. Furthermore, the relatively simple correlation between mean flow and
Reynolds stress is easy to transfer to simpler dispersed flow models.

Finally, the current results can be used to improve simplified models for shock wave
particle cloud interaction. The data from resolved simulations allow comparison of flow
fields within the particle cloud. The current data set includes stronger transient effects
than e.g. the simulations in [19], and can therefore be used as a more challenging verifi-
cation case for simplified models.
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Abstract. In the present work, two turbulence models are evaluated for predicting the 
interaction of breaking waves with a vertical cylinder. The numerical simulations are 
conducted by solving the Reynolds-Averaged Navier-Stokes (RANS) equations using the 
open-source Computational Fluid Dynamic (CFD) software OpenFOAM. The Volume of 
Fluid (VOF) method is employed to capture the free surface. Grid and time-step 
refinement studies have been carried out. The numerical results are compared with the 
experimental data from Irschik et al. [1]. It is found that the k − SST turbulence model 
[2] gives better predictions in term of wave elevation and wave force. The stabilized 
k −  SST  turbulence model [3] gives a good prediction for the surface elevation; 
however, the predicted horizontal breaking wave force is smaller than the published 
experimental data.  
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 1. INTRODUCTION 
The circular cylinder, as an elementary structure, is one of the most commonly used 

structures in the field of marine engineering. When the structure is installed in shallow 
water area, a large nonlinear breaking wave force will occur. It is of great importance to 
accurately predict breaking wave forces on structures for the design purpose. With the 
increase in computational capabilities, Computational Fluid Dynamics (CFD) based 
method by solving the Reynolds-Averaged Navier-Stokes (RANS) equations has become 
more and more popular in marine engineering. Xiao and Huang [4] employed the k −  
turbulence model with the Volume of Fluid (VOF) method to simulate solitary wave run-
up and breaking wave force on a vertical cylinder located at different positions of a slope. 
The relative variation between the maximum numerical run-up height in vertical direction 
and experimental measurement was 1.96% and breaking wave force on the cylinder 
showed a satisfactory agreement with the experiment in the validation study. Kamath et 
al. [5] used the k −  turbulence model with the level set method to investigate the 
influences of breaking locations on the breaking wave forces on a vertical cylinder. In 
their study, the largest total horizontal wave force was observed when the overturning 
wave tongue was just below the wave crest level and impact the cylinder. Liu et al. [6] 
investigated breaking wave past a vertical cylinder using the k − SST turbulence model 
in combination with the VOF method. Both the surface elevation and breaking wave force 
on the cylinder showed a good agreement with the experimental measurement. 

However, one of the weaknesses of traditional two-equation turbulence models is that 
the turbulent kinetic energy (TKE) is generally over-estimated for the breaking wave, 
which will cause an under-prediction of the breaking wave elevation. Xie [7] investigated 
spilling and plunging breakers in the surf zone using k −  turbulence model with the 
VOF method to capture the free surface. As compared to the experimental data, the 
numerical breaking wave heights were under-estimated in both spilling and plunging 
breakers. Devolder et al. [8] evaluated the performances of buoyancy-modified k − and 
k − SST  turbulence model for both spilling and plunging breakers. They pointed out 
that the buoyancy-modified turbulence models significantly reduce the common over-
estimation of TKE in the flow field and numerical results agreed well with the 
experimental data. Recently, in order to overcome the overprediction of turbulent kinetic 
energy, Larsen and Fuhrman [9] proposed a new formulation by a modification to the 
stress-limiting feature for the commonly used two-equation turbulence models. The new 
model gave a satisfactory prediction for the surface elevation, TKE, as well as undertow 
velocity. 

To the authors’ knowledge, evaluation of different turbulence models for simulating 
the breaking waves past a vertical cylinder has not been performed thoroughly. In this 
paper, the k − SST [2], and stabilized k − SST [3] turbulence models are selected to 
evaluate the performance of each for the surface elevations and horizontal breaking wave 
forces on the vertical cylinder. The air-water surface is captured by VOF method. The 
paper is organized as follows. First, the equations of two turbulence models are presented, 
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followed by the grid and time-step refinement studies. Then, the numerical results with 
different turbulence models are compared to the experimental measurements. Finally, the 
conclusions are drawn based on the present numerical results.  

2. METHODOLOGY 

2.1. Numerical model 
The numerical simulations are conducted using OpenFOAM along with a wave 

generation toolbox waves2Foam developed by Jacobsen et al. [10]. The governing 
equations for the incompressible air and water phases are expressed as follows: 
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where iu are the Cartesian components of the velocity,  is the fluid density, p is the 
pressure,  is the kinematic viscosity, t is the turbulent kinematic viscosity and ig is the 
acceleration due to gravity.  

2.1.1. The k − SST model 

The k − SST  turbulence model was proposed by Menter [2] to effectively blend the 
k − turbulence model in the far field and k −  turbulence model in the near-wall 
region. It avoids the problem that the k − turbulence model is very sensitive to the inlet 
free-stream turbulence properties. In addition, the k − SST  turbulence model provides 
good behavior in adverse pressure gradients and separation flow. Two advection-
diffusion equations for turbulent kinetic energy k and turbulent characteristic frequency 
 are expressed as 
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The details of model parameters definitions and coefficients can be found in Menter [2]. 
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 1. INTRODUCTION 
The circular cylinder, as an elementary structure, is one of the most commonly used 

structures in the field of marine engineering. When the structure is installed in shallow 
water area, a large nonlinear breaking wave force will occur. It is of great importance to 
accurately predict breaking wave forces on structures for the design purpose. With the 
increase in computational capabilities, Computational Fluid Dynamics (CFD) based 
method by solving the Reynolds-Averaged Navier-Stokes (RANS) equations has become 
more and more popular in marine engineering. Xiao and Huang [4] employed the k −  
turbulence model with the Volume of Fluid (VOF) method to simulate solitary wave run-
up and breaking wave force on a vertical cylinder located at different positions of a slope. 
The relative variation between the maximum numerical run-up height in vertical direction 
and experimental measurement was 1.96% and breaking wave force on the cylinder 
showed a satisfactory agreement with the experiment in the validation study. Kamath et 
al. [5] used the k −  turbulence model with the level set method to investigate the 
influences of breaking locations on the breaking wave forces on a vertical cylinder. In 
their study, the largest total horizontal wave force was observed when the overturning 
wave tongue was just below the wave crest level and impact the cylinder. Liu et al. [6] 
investigated breaking wave past a vertical cylinder using the k − SST turbulence model 
in combination with the VOF method. Both the surface elevation and breaking wave force 
on the cylinder showed a good agreement with the experimental measurement. 

However, one of the weaknesses of traditional two-equation turbulence models is that 
the turbulent kinetic energy (TKE) is generally over-estimated for the breaking wave, 
which will cause an under-prediction of the breaking wave elevation. Xie [7] investigated 
spilling and plunging breakers in the surf zone using k −  turbulence model with the 
VOF method to capture the free surface. As compared to the experimental data, the 
numerical breaking wave heights were under-estimated in both spilling and plunging 
breakers. Devolder et al. [8] evaluated the performances of buoyancy-modified k − and 
k − SST  turbulence model for both spilling and plunging breakers. They pointed out 
that the buoyancy-modified turbulence models significantly reduce the common over-
estimation of TKE in the flow field and numerical results agreed well with the 
experimental data. Recently, in order to overcome the overprediction of turbulent kinetic 
energy, Larsen and Fuhrman [9] proposed a new formulation by a modification to the 
stress-limiting feature for the commonly used two-equation turbulence models. The new 
model gave a satisfactory prediction for the surface elevation, TKE, as well as undertow 
velocity. 

To the authors’ knowledge, evaluation of different turbulence models for simulating 
the breaking waves past a vertical cylinder has not been performed thoroughly. In this 
paper, the k − SST [2], and stabilized k − SST [3] turbulence models are selected to 
evaluate the performance of each for the surface elevations and horizontal breaking wave 
forces on the vertical cylinder. The air-water surface is captured by VOF method. The 
paper is organized as follows. First, the equations of two turbulence models are presented, 
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followed by the grid and time-step refinement studies. Then, the numerical results with 
different turbulence models are compared to the experimental measurements. Finally, the 
conclusions are drawn based on the present numerical results.  

2. METHODOLOGY 

2.1. Numerical model 
The numerical simulations are conducted using OpenFOAM along with a wave 

generation toolbox waves2Foam developed by Jacobsen et al. [10]. The governing 
equations for the incompressible air and water phases are expressed as follows: 
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where iu are the Cartesian components of the velocity,  is the fluid density, p is the 
pressure,  is the kinematic viscosity, t is the turbulent kinematic viscosity and ig is the 
acceleration due to gravity.  
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The details of model parameters definitions and coefficients can be found in Menter [2]. 
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2.1.2. The stabilized k − SST model 

Larsen et al. [3] proposed a stabilized k − SST closure model recently, which added 
stress-limiting modifications to the k − SST model.  The aim of new turbulence model 
is to avoid non-physical exponential growth of the turbulent kinetic energy and eddy 
viscosity in the nearly potential flow region. The eddy viscosity is redefined according to 
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where 0 2 ij ijP S S= , 2 ij ijP =   2 =0.05 . The other parameters definitions are the same as 
the k − SST [2] turbulence model. 

2.2. Free surface capture 
The free surface is captured by the VOF method [11]. The method is based on a volume 

fraction coefficient  , which is 0 for air and 1 for water. The volume fraction is solved 
by following the advection equation: 
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where iru is the relative velocity between the water and the air.  The density and kinematic 
viscosity at the interface are obtained by a weighted value based on the volume fraction 
coefficient  .         
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where w  and a  denote the densities of water and air; w  and a  are the kinematic 
viscosity coefficients of water and air. 

2.3. Boundary conditions 
The three-dimensional numerical wave tank (NWT) is 120.0 m long, 5 m wide and 8 

m height, as shown in Fig.1. A cylinder with the diameter of 0.7D =  m was installed 
with its central axis at the edge of the slope (1:10). The water depth in the NWT is fixed 
to 3.8d = m. Fifth-order Stokes wave with a wave height of 1.3H = m and wave period 
of 4.0T = s is generated. A wave gauge (WG) is set at near the wall along the frontline 
of the cylinder. At the inlet boundary, the velocity of water and phase fraction are given 
according to wave theory while the pressure is set to normal zero-gradient condition. At 
the outlet of domain, a Neumann condition is set for the pressure p , k , and  , and the 
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velocities of water and air are zero. The top boundary of the computational domain is set 
to a mixed Dirichlet-Neumann boundary condition for the velocity, pressure and volume 
fraction. The no-slip wall boundary condition is used at the front, back, bottom boundaries 
of NWT and the cylinder's surface. Meanwhile, wall functions are applied to capture the 
boundary layer characteristics. The dimensionless wall distance y+  for the present 
simulations is at the range of 45~200. 

 

Fig. 1. Sketch of the numerical wave tank: front view (top); overlook view (bottom). 

3. NUMERICAL IMPLEMENTATION 
In the present simulations, both the wave generation zone and the absorption zone of 

NWT are one wavelength long. The Navier–Stokes equations are solved using the finite 
volume method. The PIMPLE algorithm is used for the pressure-velocity coupling. 
Second-order implicit Crank-Nicolson scheme is used for the time derivatives. The grid 
and time-step refinement studies are carried out by examining the total horizontal wave 
forces on the cylinder with k − SST turbulence model. Three different meshes with 
refined areas in the vicinity of the cylinder and the free surface are shown in Table 1.  

Table 1: The resolutions of three different grids 

Grid Coarse grid Medium grid Fine grid 
Total number of cells 4791152 6371680 8564864 

Figure 2 shows the horizontal breaking wave forces HF  on the cylinder with three 
different grid resolutions over one wave period. The relative variation of the peak 
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horizontal wave forces between medium grid and fine grid is 2.6%. Moreover, a time-
step refinement study is also conducted by decreasing the maximum Courant number 
from 0.5 to 0.3. The relative variation of the peak horizontal breaking wave forces 
between two time-steps is 2.1% in Fig. 3. Therefore, the medium grid with the Courant 
number 0.5 is considered to give sufficient accuracy to capture the variation of horizontal 
wave forces on the cylinder and will be used for the present simulations.  
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Fig. 2. Horizontal wave forces on the cylinder with different grid resolutions.  
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Fig. 3. Horizontal wave forces on the cylinder with different Courant number. 
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4. RESULTS AND DISCUSSION 
In this section, the characteristics of free surface elevations  and horizontal wave 

forces HF  on the cylinder are investigated using k − SST  and stabilized k − SST
turbulence models. Meanwhile, these two quantities are compared with the experimental 
data from Irschik et al. [1] to evaluate the performances of different models. All the 
present numerical simulations are conducted for a minimum duration of 140 s (35 wave 
periods), which ensures that the stable results can be obtained. 

4.1. Free surface elevation 
Figure 4 shows the comparison of surface elevations at WG (see Figure 1) between 

the numerical results with two turbulence models and experimental data [1]. The 
horizontal axis denotes the normalized time, where T is the incident wave period. It can 
be seen that the stabilized k − SST turbulence model gives an accurate prediction at the 
peak of the wave elevation. However, it does not give sufficient accuracy for the wave 
elevation in the wave initiation and termination stages. The wave elevation calculated by 
the k − SST turbulence model is in  good agreement with the experimental data over one 
wave period. The relative different between the peak wave elevations of the numerical 
result and the experimental data is 1.9%. 
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Fig. 4. Comparison of surface elevations between the numerical results and experimental data.  

4.2. Breaking wave force on the cylinder  

The horizontal breaking wave forces HF  on the cylinder using two turbulence models 
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are shown in Fig. 5. It clearly indicates that the breaking wave force predicted by the 
k − SST turbulence model agrees best with the experimental data. The stabilized k −
SST turbulence model produce a lower value of wave forces as compared to the 
experimental data. In addition, the peak value of wave force on the cylinder predicted by 
the stabilized k − SST turbulence model appears earlier than experimental 
measurement. The reason for this is that the stabilized k − SST turbulence model 
modifies the turbulent kinetic energy and it is smaller than the other turbulence models. 
The energy is concentrated at the crest, which results in the wave crest to overturn 
prematurely and hit the cylinder. The details of the wave shapes can be seen in Fig. 6. 
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Fig. 5. Comparison of the horizontal breaking wave forces between the numerical results and experimental 
data 

4.3. The processes of breaking waves past a vertical cylinder 

Figure 6 shows the variations of predicted the free surface shapes with the horizontal 
velocity using the two turbulence models at the middle transverse section of NWT. It 
clearly shows that the crest is almost vertical at time instant t/T=0.525 using the k −
SST turbulence model. Meanwhile, the cylinder will subject to a large dynamic pressure. 
For the case of the stabilized k − SST turbulence model, the wave already breaks before 
reaching the cylinder. The overturned wave tongue hits the cylinder and a smaller 
breaking wave force on the cylinder is obtained as compared with the experimental data.  
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Fig. 6. Snapshots of the waves past the cylinder with the horizontal velocity magnitude contours at different 
time instants using different turbulence models.  
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5.CONCLUSIONS 
In this paper, two different turbulence models have been evaluated for breaking wave 

past a vertical cylinder using OpenFOAM. The obtained numerical results of the surface 
elevations and breaking wave forces on the cylinder are compared to the experimental 
data. The main conclusions can be drawn from the present study: 
(1) The breaking wave force on the cylinder not only depends on the wave elevation but 

also on the wave shape, i.e., the extent of crest overturn, as well as the hitting degree 
between the wave crest and the cylinder.  

(2) The stabilized k − SST turbulence model predicted the peak of wave elevation well. 
However, it caused the waves to overturn prematurely, resulting in smaller breaking 
wave force than the experimental value. 

(3) The k − SST turbulence model shows a better agreement with the experimental 
measurement for the both wave elevation and wave force. 

However, each RANS turbulence model has its own applicable scope, and there are 
also no available general guidelines on the application of turbulence model for free 
surface wave simulations. Therefore, different turbulence models can be chosen 
according to different research situations. 
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Abstract. The paper describes the ability of a high-resolution Computational Fluid
Dynamics model to predict terrain-induced turbulence and wind shear close to the ground
for aviation safety. The capabilities of the model are demonstrated by applying it to the
Sandnessjøen Airport, Stokka, in Norway, an airport that is located in a mountainous
area. The model is able to forecast turbulence in real time and trigger an alert when
atmospheric conditions might result in high wind shear and turbulence. It is nested with
two coarser grid mesoscale meteorological models, and constitute an hourly operational
turbulence forecast system for 20 Norwegian airports at the time of writing.

1 INTRODUCTION

Atmospheric flows in mountainous regions are often characterized by high level of
turbulence and wind shear. In the context of aviation science, wind shear refers to spatio-
temporal variations of wind speed and direction experienced by an aircraft. The definition
covers an extremely wide range of meteorological phenomena including jet streams, mi-
crobursts, gust fronts, internal gravity waves, vertical shears, hydraulic jumps, terrain
effects, rotor formations etc. Presence of strong wind shear might result in a sudden gain
or loss of altitude by the aircraft if the latter does not respond quick enough, resulting in
passenger’s discomfort and increased pilot’s work load. Generally, such a change of alti-
tude is compensated without any risk at higher altitudes when the pilot and the aircraft
has enough time to execute corrective measures. However, situation can turn potentially
hazardous when the aircraft is close to the ground in mountainous regions where strong
wind shear almost always prevails. Every year a number of accidents and incidents linked
to turbulence and wind shear are reported (http://planecrashinfo.com). It then goes with-
out saying that an alarm system capable of predicting and identifying the zones of high
wind shear and turbulence will be very much appreciated by the aviation community. In
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fact several alarm systems are already in operation throughout the world.But generally
these low level wind alert systems are based upon the hypothesis that the most hazardous
flows are associated with relatively large coherent and deterministic structures. In fact
several alarm systems are already in operation throughout the world. But generally these
low level wind alert systems are based upon the hypothesis that the most hazardous flows
are associated with relatively large coherent and deterministic structures. Such struc-
tures are commonly related to convective or gravity flows and classified as wind shear,
gust fronts, thunderstorms and micro-bursts. It is implicitly understood that when the
flow field is represented in terms of such structures, the number of degrees of freedom
is so limited that a few local data can be interpreted rationally with respect to actual
hazardous flying conditions. Alert systems based on this assumption are discussed by
[1, 2, 3].

But in the context of present work when we talk about low level wind shear we are
generally implying the shear existing due to terrain variations in the first couple of kilo-
meters in the vertical direction, containing valleys and fjords (in a country like Norway).
Such terrain induced flow variations include coherent flow structures that may be partic-
ularly hazardous to flying, such as recirculation, mountain waves, hydraulic transitions,
rotors and vortices. These kind of flows are quite complicated and therefore cannot be
represented efficiently by a few degrees of freedom. This may be illustrated by referring
to experimental and numerical results for flow over and around a single model hill ([4] and
[5]). A few local data alone will, in most cases, contain insufficient information about the
local flow in a mountainous terrain. Hence, from aviation safety point of view, there are
reasons to assume that a high resolution numerical wind and turbulence prediction sys-
tem could be very useful along with the traditional alert systems in cases of mountainous
terrain near airports.

In this paper we present the potential of an turbulence alarm system that has been
developed in our group. We start with a brief description of the theories and equations
that form the basis of the modeling code. Then we apply the model to a real site contain-
ing the Sandnessjøen Airport, Stokka, where the terrain variations are very sharp. We
investigate some of the issues related to domain size, orientation, resolution, practicality
of the work, and potential of the model to model main characteristics of flows in a complex
terrain. A comparison of forecasts for one landing and one takeoff at Trondheim Airport,
Værnes, with processed Flight Data Recorder (FDR) data is included, and finally, so is
the communication of the results to pilots and the air traffic management.

2 Theory

2.1 Governing Equations

The general equations of motion for incompressible flow may be adapted to atmospheric
flows by the use of so-called anelastic approximation. This formulation is often applied
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in meteorological models, and may be written in the following conservative form :

∇ · (ρsu) = 0 (1)

Du

Dt
= −∇

(
pd
ρs

)
+ g

θd
θs

+
1

ρs
∇ · τ + f (2)

Dθ

Dt
= ∇ · (γ∇θ) + q (3)

Here (u, p, θ, ρ) represent velocity, pressure, potential temperature and density, respec-
tively. Furthermore, τ is the stress tensor, f is a source term that may include rotational
effects, g is the gravitational acceleration, γ is the thermal diffusivity and q is the energy
source term. Subscript s indicates hydrostatic values and subscript d the deviation be-
tween the actual value and its hydrostatic part, i.e. p = ps + pd, θ = θs + θd, ρ = ρs + ρd,
where the hydrostatic part is given by ∂ps/∂z = −gρs. In addition, the following expres-
sion for hydrostatic density may be derived from the state equation and the definition of
potential temperature:

ρs =
ps
Rθs

(
po
ps

)R/Cp

(4)

where R is the gas constant and Cp is the specific heat at constant pressure. Hence,
once the hydrostatic (potential) temperature profile is given, the hydrostatic pressure and
density may be calculated, and then substituted into Equations 1 and 2.

It may be noted that the Boussinesq approximation is obtained from the system of
Equations 1 and 2 by assuming constant values (ρo, θo) instead of the hydrostatic values,
and that formulation may well be used for incompressible flow and ordinary temperature.

The aim of the present study is to solve these equations for high Reynolds-number
flows. For this purpose we apply an unsteady Reynolds-averaged modelling of the equation
system, together with a turbulence model. Presently a standard high-Reynolds (k − ε)
turbulence model is used for this purpose. With these assumptions the model equations
take the following form:

∇ · (ρsu) = 0 (5)
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where turbulent viscosity is given by νT = Cν
k2

ε
. The Reynolds stress tensor is given by

Rij = νT

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
kδij (10)

while the eddy diffusivity appearing in the energy equation is γT = νT/σT , σT being the
turbulent Prandtl number. The production and stratification terms in the turbulence
model are given by

Pk = νT

(
∂ui

∂xj

+
∂uj

∂xi

)
∂ui

∂xj

, Gθ = −g

θ

νT
σT

∂θ

∂z
(11)

Conventional constants for the high-Reynolds (k − ε) model are given by

(Cν , C1, C2, σe) = (0.09, 1.44, 1.92, 1.3) (12)

The value for C3 is more uncertain. In the present study we assume C3Gθ = max(Gθ, 0),
i.e. C3 = 0 in stably stratified flows, else C3 = 1 .

2.2 Safety Analysis

F -factor or wind shear and turbulence represented by ε1/3 given by Equations 13 and
14 are the two simplest meteorological variables considered most important for aviation
safety.

F = − c

g

∂u

∂x
+

w

c

�f

= − c

g	f
[u(x+ 	f/2)− u(x− 	f/2)] +

w�f

c
(13)

ε1/3 ≈

(
(C

1/2
µ K)3/2

	t

)1/3

≈ 0.67K1/2	
−1/3
t (14)

Here c is the fly path, g is the acceleration due to gravity, u is the wind component
along the fly path, w is the vertical wind component, ε is the turbulent dissipation, K
is turbulent kinetic energy, 	t turbulent length scale and 	f is the minimum response
distance for landing configuration and is of the order of ∼ 500m, which corresponds to
a time interval of about t = O(7 s). Averaging over this distance is indicated by the
overline. Coefficient Cµ is given by Cµ ≈ 0.09.

Prevalence of the two conditions F < −0.1 and ε1/3 > 0.5m2/3s−1 correspond to severe
turbulence for commercial aircrafts and represent potential danger ([6]). These conditions
are easily met when

√
K > 3.5ms−1. We refer to this quantity as turbulence intensity ut.

3 Results and discussion

3.1 Validation with Benchmark Bolund Hill

Bolund Hill [7] is considered a challenging validation case owing to its (a) geometric
shape which features an sudden vertical escarpment with almost 90 degree crest (see
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Figure 1) and owing to (b) abrupt change in terrain roughness (from a flat sea level
to grass dominated land above the Bolund hill terrain). It has now become a popular
benchmark with the modeling community to test their models as care has been taken
by experimentalists to reduce the modelling input related uncertainty by quantifying
the terrain roughness parameters used in describing the ground boundary condition in
numerical models and by ensuring that the inflow neutral boundary condition do not
change much for westerly wind as it is surrounded by sea-water with a long uniform
fetch. Hence, the experimental velocity and turbulence data measured at a reference
mast (located about one hill height upstream) can be specified as a model boundary
condition. The high certainty in input values enables us to to judge the performance of
our computational model vis-a-vis other computational models and experiment.

The details of simulations and results are given below :

3.1.1 Bolund Terrain and Computational domain with measurements point
location

Bolund hill is a 12 m high peninsula located at Roskilde Fjord, 1 km north of Ris DTU
as shown in Figure 1. The hill topography is approximately 130 m long and 75 m wide
and it is surrounded by sea on all sides (assumed to have a constant sea-surface height
of 0.75 m). This results in sharp change in surface roughness length (z0) at the point of
transition from water (z0 = 0.0003 m) to grass (z0 = 0.015 m), which are used as inputs in
the numerical model. The field experimental measurements were conducted here in 2007-
2008 at various masts for four wind directions. The values of velocity components and
turbulence at different heights along the masts were collected for validation of models.
Figure 1 shows the location of four such measurement masts (M7,M6,M3,M8) for 270
degree wind direction and this data is used for validation in the work. The computational
domain (figure 1) used for simulation has a size of 400 m (in stream-wise direction) x 270
m (in span-wise-direction) x 150 m (in vertical direction). The meshing details are given
below :

3.1.2 Meshing Details

Figure 2 shows the mesh used for simulation. The mesh is dominated by hexahedral
cells and mesh size is 6.6 Million cells. The finest mesh size is the near the terrain surface
( about 0.0663 m mesh size). A refinement zone is used in the vicinity of terrain to
capture terrain induced flows i.e. the flow separation at crest and at downstream end
of hill. Using three different zones of different refinement levels, the mesh grid spacing
is slowly increased away from terrain to reach 10 m grid resolution in upper regions of
domain where the flow is expected to be uniform and without velocity gradients. The
boundary conditions are given below next :
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m (in span-wise-direction) x 150 m (in vertical direction). The meshing details are given
below :

3.1.2 Meshing Details

Figure 2 shows the mesh used for simulation. The mesh is dominated by hexahedral
cells and mesh size is 6.6 Million cells. The finest mesh size is the near the terrain surface
( about 0.0663 m mesh size). A refinement zone is used in the vicinity of terrain to
capture terrain induced flows i.e. the flow separation at crest and at downstream end
of hill. Using three different zones of different refinement levels, the mesh grid spacing
is slowly increased away from terrain to reach 10 m grid resolution in upper regions of
domain where the flow is expected to be uniform and without velocity gradients. The
boundary conditions are given below next :
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Figure 1: Terrain of Bolund and computational domain with measurement location
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3.1.3 Boundary conditions

A standard logarithmic atmospheric boundary velocity profile is used as the inlet ve-
locity boundary condition and this fits the experimental data at Mast M0 (located 150m
away from Bolund hill). The friction velocity used here is 0.4 for defining the input veloc-
ity profile. A constant turbulence value as suggested by experimental data is used. The
ground condition involves no-slip boundary for velocity and use of wall function. The
wall function uses the roughness values as suggested before. The side and top boundary
conditions for the computational domain involve slip boundary condition.

3.1.4 Results - comparison between simulation and experiments

Figure 2(b) shows simulation predicted contours of turbulent kinetic energy (TKE)
and velocity vectors along a plane across the terrain for 270 degree wind-direction. The
vertical black lines in figure 2(b) are locations of masts (M7,M6,M3,M8) and the black
spheres represents the measurement points which are located 2 m above the ground on
these masts. Experimental data on velocity and turbulence are measured at these mea-
surement points and are compared with simulation predicted results (see figure 3 and
figure 3(b) for comparisons). The measurement locations are located so as to understand
the complex physics and fluid dynamics and provide dataset for validation of numerical
models. The measurement locations are : (a) Just upstream of steep escarpment of the
Bolund hill (Measurement M7), (b) immediately downstream of steep 90 degree escarp-
ment (Measurement M6) , (c) in middle of flatter terrain above hill (Measurement M3) and
(d) immediately downstream of Bolund hilll (Measurement M8). The regions of 90 degree
escarpment and Bolund downhill are high turbulence regions (as seen in TKE contour of
figure 2(b)-A top figure) with high velocity gradients (as seen in vector plot of figure 2(b)-
B the bottom figure). The field experiments reveal that the 90 degree escarpment causes
wind to increase suddenly and lead to flow separation at the crest edge (thus resulting
in the high velocity gradients and turbulence), while as the Bolund hill slopes downward
steeply at the end, the wind speeds-down and the resulting shear generates higher turbu-
lence. The numerical model captures this trend in an expected manner (see figures 2(b) -
3). Numerical results (figure 2(b)) shows that : (a) at the M7 location (in hill upstream),
there is not much turbulence and the boundary layer is attached to the ground, (b) at
M6 location (downstream of escarpment) very high turbulence values and wind-speed up
is seen (as compared to M7) which is owing to the separation at escarpment, (c) the flow
attaches to the ground by the time it reaches the M3 location in the middle of the hill
but the turbulence is still higher as compared to M7 location and (d) as the flow descends
across the sharp slope, it detaches and creates a low velocity wake with high turbulence
that can be seen near M8 location. These results can also been seen in figure 3(a) and
figure 3(b), where the comparison is presented. Regarding results in comparison, for any
RANS turbulence model to accurately capture the velocity magnitude and TKE values
at M6 and M8 regions is a challenge due to the highly anisotropic nature of flow in these
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Figure 3: Comparison of velocity magnitude and turbulent kinetic energy.
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regions (as seen in deviations predicted by various turbulence models for the Bolund hill
in [7]). The current results should be seen in this context. In our case, the numerical
model has been able to capture the velocity magnitude with around 10% deviation from
the field experimental values at M3 and M7 locations while the deviations at M6 and M8
regions are in order of 30-40% (as seen in figure 3(a)). This is along expected lines for the
RANS turbulence model as reported in [7] . For TKE, the simulations are consistently
under predicting the turbulent kinetic energy with deviations of the order of 40-80% from
experimentally measured value (as seen in figure 3(b)). This trend of under-prediction of
TKE is consistent with that reported by other RANS models for Bolund hill ([7]) and the
range of deviations are comparable with other numerical models.

4 Sandnessjøen Airport : Model Verification for simulating a realistic con-
dition involving the impact of terrain-induced turbulence on flight safety

Sandnessjøen Airport, Stokka is a regional airport serving Sandnessjøen in Norway. The
airport is operated by AVINOR and served byWiderøe with Dash 8 aircraft connecting the
community to Bodø and Trondheim. The routes are operated on public service obligation
with the Norwegian Ministry of Transport and Communication. The airport is located
on a relatively flat area close to the sea with a runway oriented parallel to the shoreline.
The nearby terrain on the east side is hilly with heights up to 100− 150m. Further away
in the E-SE sector, at a distance of about 5km, lays the rugged mountain chain named
the Seven Sisters. This mountain chain where all the seven peaks rise up to a height
of about 1000m above the sea level, offers ideal conditions for the generation of rotors,
recirculation, flow separations and mountain waves.

On 15th September 2010, DHC-8-103B LW-WIF of Widerøe Flyveselskap was substan-
tially damaged in a hard landing when the undercarriage collapsed. The aircraft was
operating a domestic schedules passenger flight from the Bodø Airport. Most of such
incidents appear to be associated with the turbulence generated due to the presence of
the Seven Sisters on the south-east side of the airport. The pilots operating at the airport
report their experiences after the arrival. Based on the reports we found the following
facts:

1. Moderate turbulence occurs frequently at Stokka for the south-easterly wind and
the turbulence may be quite strong around 1000m above sea level for stronger wind
fields.

2. The turbulence is damped significantly below 150m. Under these conditions the
wind close to the ground is often changing rapidly and significantly, with low mean
wind speed values, strong gusts, and variable wind direction.

3. Sometime it is difficult to choose the landing or takeoff direction due to the preva-
lence of tail winds on both the ends of the runway.
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In the absence of detailed measurement data in this article, we rely solely on these obser-
vations. Here we want to evaluate the performance of the model in a realistic setup.

5 Simulation setup

Most of the pilot experiences reported in section 4 are related to the south- easterly
wind. The orientation of the Seven Sisters mountain chain with respect to the runway,
giving an impression that the south-easterly wind direction has the potential of creating
the worst flight conditions. We therefore have chosen this wind direction for a detailed
investigation presented in this work and for the optimization of the numerical simulation
procedure. Best practice guidelines for CFD simulations give elaborate guidelines for
conducting such simulations. However, most of those are applicable to very idealized
cases of flow around an isolated hill, ridge or any other simplified flow obstacle. The
requirements posed by the kind of realistic problem we deal with here hardly allows those
guidelines to be followed by words. We have therefore, used reasonings and numerical
experiments for the choice of domain size, its orientation, grid resolution and specification
of boundary conditions, keeping in mind the computational constraints. We discuss each
of these aspects in the following subsections.

5.1 Domain size and orientation

In the absence of any constraint one would like to have a domain as big as possible,
but the limitation imposed by computational constraints (in a forecasting context) on the
number of grid cells means that any expansion of the domain will come at the loss of grid
resolution. In short, by increasing the domain size, one will be able to capture the large
scale phenomena at the expense of under-resolution of the small scale ones. We therefore
settled for a domain large enough to include the airport, mountain chain comprising of
the Seven Sisters and the smaller chain of hills on the north-northwesterly side of the
airport. This resulted in a domain of 30km × 30km with the airport occupying almost
the central position as shown in Figure 4.

Any deviation from this size would result in the vertical boundary plane cutting the
complex terrain, a situation we tried to avoid as it makes the specification of boundary
conditions on the plane complicated. The domain was further rotated by an angle of 30
degrees in order to align the inlet plane of the domain normal to the wind direction. This
is known to improve robustness, minimize numerical errors and speed up convergence of
the solution.

5.2 Grid resolution

The importance of grid resolution is well known. Mesh resolution is critical to an
accurate estimate of wind shear and turbulence intensity. In the code we have devel-
oped, the non-orthogonal terms in the discretized equations of turbulent kinetic energy
and dissipation are ignored to make the solver fast and robust. In order to negate the
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Figure 4: Terrain close to the airport in meters above sea level. Note that the legend is log-scaled.

effects of the approximation, mesh cells with mutually orthogonal faces are required. The
orthogonality criteria close to the wall is satisfied by forcing the vertical lines to be in-
cident normal to the ground surface. Away from the ground surface the imposition of
orthogonality condition is trivial. The imposition of orthogonality helps in improving the
mesh quality which results in lesser discretization error, increased robustness and faster
solutions but at the same time, depending upon the complexity of the terrain, imposes a
constrain on the finest achievable resolution. It is worth emphasizing here that although
we are presenting off-line simulations in this article, the final goal is to reproduce similar
results in real time. Hence, we conducted three simulations with different resolutions:
71 × 61 × 41, 101 × 97 × 41 and 201 × 191 × 41 with the grids stretching in the vertical
direction in a geometric progression with a ratio of 1.02. A comparison of the turbulence
intensity in the vertical direction at the middle of the runway and in the horizontal direc-
tion along the runway at a height of 100m above the ground is presented in the figure 5.
It can be concluded from the figure that coarse mesh resolutions lead to under-prediction
of turbulent intensity both the horizontal and vertical directions. Also the troughs and
crests in the profile are closely related to the seven peaks of the Seven Sisters. This can
be attributed either to the numerical errors associated with the discretization of the nu-
merical equations or with the smoothening of the terrain due to its coarse representation.
However, the difference in the predicted turbulence intensity by almost doubling the res-
olution from 101×97×41 to 201×191×41 is only about 5% while the computation time
increases several times. This is critical to forecasting and hence the rest of the simulations
presented here are with 101× 97× 41 grid points giving an average horizontal resolution
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Figure 5: Effects of grid resolution on ut. Uppermost row shows the 3D contour of ut = 3.5 for three
different resolutions. Middle rows shows the vertical ut profile at the middle of the runway. Lowermost
row shows the ut along a line passing through the runway.

of 300m× 300m which we think is a good trade-off between accuracy and computational
time. A terrain adapted mesh is utilized giving a horizontal mesh resolution of 30−100m
in regions of steep terrain variations. Resolution of 30m is also the resolution of the digi-
tal elevation data (Figure 4) that is being used. Any higher resolution simulation would
require artificial interpolation of the terrain data which might not necessarily translate
into the actual terrain. Also, in a complex terrain it is almost impossible to generate a
mesh which accurately satisfies the y+ criteria imposed by the turbulence model (k − ε
in this case). The case of the airport under investigation is an extreme one with very
steep terrain variations (more than 45o). The choice was thus to either work with coarser
mesh close to the ground or work with severely skewed mesh (which would break the
assumption of orthogonal vertical lines) close to the ground. We chose the former option
as it has the potential to reduce the simulation time considerably and increase robustness
of the code.
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of 300m× 300m which we think is a good trade-off between accuracy and computational
time. A terrain adapted mesh is utilized giving a horizontal mesh resolution of 30−100m
in regions of steep terrain variations. Resolution of 30m is also the resolution of the digi-
tal elevation data (Figure 4) that is being used. Any higher resolution simulation would
require artificial interpolation of the terrain data which might not necessarily translate
into the actual terrain. Also, in a complex terrain it is almost impossible to generate a
mesh which accurately satisfies the y+ criteria imposed by the turbulence model (k − ε
in this case). The case of the airport under investigation is an extreme one with very
steep terrain variations (more than 45o). The choice was thus to either work with coarser
mesh close to the ground or work with severely skewed mesh (which would break the
assumption of orthogonal vertical lines) close to the ground. We chose the former option
as it has the potential to reduce the simulation time considerably and increase robustness
of the code.
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5.3 Boundary conditions and influence of Froude Number

In a complicated mountainous terrain it is generally difficult to specify a realistic inlet
profile. Therefore, a standard profile for wind speed and turbulent kinetic energy was
used to specify the boundary conditions and initialize the domain. The profiles for the
wind speed u(z), the turbulent kinetic energy k(z) and dissipation of turbulent kinetic
energy ε(z) are given by

u(z) =
u∗

κ

(
ln

z

z0
+W

( z

D

))
(15)

k(z) = C−1/2
µ u2

∗

(
1− z

D

)
(16)

ε(z) = C0.75
µ k(z)3/2/�; � =

κz

1 + 4z/D
(17)

where u∗, z0, z and D represent friction velocity, surface roughness, height above the
ground surface and boundary layer thickness, respectively. The so-called wake function
W is defined by the formula W (z/D) = (A− 1)(z/D)−A/2(z/D)2 such that W (1) = 1.
The coefficients κ = 0.42 and A = 4.0. Synoptic wind (mesoscale) U is given by U = u(D).
In the present simulations we have used (z0, D, U) = (0.3m, 1500m, 20m/s) such that
the friction velocity u∗ ≈ 0.9m/s and wind speed 10m above the ground is u0 ≈ 7.5m/s.
A surface roughness value of 0.001 have been used for the sea surface. Along with the
magnitude, direction of the synoptic wind is also specified. For a proper imposition of
the inlet boundary condition give by equations 15 - 17 the vertical inlet plane should
lie on the sea surface. Also a zero gradient boundary condition is applied at the exit
boundaries which again requires that the vertical exit plane should lie on the sea surface
for the satisfaction of the boundary conditions mathematically. These conditions are
rarely satisfied in the case of flow in a complex terrain. Some researchers have resorted
to using a periodic boundary condition for such simulations. This according to us is not
correct physically hence, we have tried to place the boundary planes on the sea surface.
By doing so we satisfy the boundary conditions accurately, but make a compromise with
the placement of the inlet boundary closer to the Seven Sisters than is what is allowed by
the best practice guidelines.

Atmospheric flows are significantly influenced by atmospheric stability and hence we did
a test to evaluate the significance. We simulated the effects using a potential temperature
profile corresponding to a stable stratification given by figure 6 which is typical in the
region and gives a Froude number of 1 based on the free stream speed of 20m/s and
average mountain height of 1000m.

5.4 Verifying pilot observations : Sensitivity analysis of Froude Number

Buoyancy perturbations develop when stably stratified air (dθ/dz > 0) ascends a steep
mountain barrier. These perturbations often trigger disturbances that propagate away
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Figure 6: Vertical potential temperature profile used for simulations.

from the mountain as gravity (or buoyancy) waves. When these waves are triggered by the
flow over a mountain, they are referred to as mountain waves. Large-amplitude mountain
waves can generate regions of clear-air-turbulence that pose a hazard to aviation. A
relevant non-dimensional number to characterize mountain waves is the Froude number
defined as

Fr =
U

NL
(18)

where U is a reference velocity and L a reference length. N is called the buoyancy
frequency (also called the Brunt-Väisälä frequency) given by
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The relevant quantities for mountain waves are the free stream wind velocity, vertical
potential temperature profile and mountain width or height distributing the flow, or
actually a natural length of the mountain(s) that can create an internal wave of wavelength
2L. Mountain waves may occur if the actual Froude number is of the order of one,
Fr = O(1). A detailed behavior of these waves can be found in [8].

Simulations were also conducted for different Froude numbers by changing the free
stream speed to see if the terrain induced flow structures could be modeled in a realistic
terrain. The Froude number being a ratio of the inertial to buoyant forces is a good
parameter to categorize the flow and predict the expected behavior. In the subsequent
simulations we have used the boundary conditions given by equations 15 - 17.

Generally, the stable stratification significantly dampens the turbulence and prevents
the formation of big rotors close to the foot hills. This ”flows approaching the mountain
range” can be interpreted in the light of the analogy of a moving ball as given by [9]. He
concluded that an air parcel must overcome a gravity force to reach the crest of a mountain.
The parcel might not ascend up to the top of a hill if it does not have enough kinetic
energy or the height of the mountain is large. Relative to a neutral state, an approaching
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5.3 Boundary conditions and influence of Froude Number

In a complicated mountainous terrain it is generally difficult to specify a realistic inlet
profile. Therefore, a standard profile for wind speed and turbulent kinetic energy was
used to specify the boundary conditions and initialize the domain. The profiles for the
wind speed u(z), the turbulent kinetic energy k(z) and dissipation of turbulent kinetic
energy ε(z) are given by
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κz

1 + 4z/D
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where u∗, z0, z and D represent friction velocity, surface roughness, height above the
ground surface and boundary layer thickness, respectively. The so-called wake function
W is defined by the formula W (z/D) = (A− 1)(z/D)−A/2(z/D)2 such that W (1) = 1.
The coefficients κ = 0.42 and A = 4.0. Synoptic wind (mesoscale) U is given by U = u(D).
In the present simulations we have used (z0, D, U) = (0.3m, 1500m, 20m/s) such that
the friction velocity u∗ ≈ 0.9m/s and wind speed 10m above the ground is u0 ≈ 7.5m/s.
A surface roughness value of 0.001 have been used for the sea surface. Along with the
magnitude, direction of the synoptic wind is also specified. For a proper imposition of
the inlet boundary condition give by equations 15 - 17 the vertical inlet plane should
lie on the sea surface. Also a zero gradient boundary condition is applied at the exit
boundaries which again requires that the vertical exit plane should lie on the sea surface
for the satisfaction of the boundary conditions mathematically. These conditions are
rarely satisfied in the case of flow in a complex terrain. Some researchers have resorted
to using a periodic boundary condition for such simulations. This according to us is not
correct physically hence, we have tried to place the boundary planes on the sea surface.
By doing so we satisfy the boundary conditions accurately, but make a compromise with
the placement of the inlet boundary closer to the Seven Sisters than is what is allowed by
the best practice guidelines.

Atmospheric flows are significantly influenced by atmospheric stability and hence we did
a test to evaluate the significance. We simulated the effects using a potential temperature
profile corresponding to a stable stratification given by figure 6 which is typical in the
region and gives a Froude number of 1 based on the free stream speed of 20m/s and
average mountain height of 1000m.

5.4 Verifying pilot observations : Sensitivity analysis of Froude Number

Buoyancy perturbations develop when stably stratified air (dθ/dz > 0) ascends a steep
mountain barrier. These perturbations often trigger disturbances that propagate away

14

Mandar V. Tabib and Adil Rasheed

270 275 280 285 290
potential temperature (K)

0

1000

2000

3000

4000

z(
m

)

Figure 6: Vertical potential temperature profile used for simulations.

from the mountain as gravity (or buoyancy) waves. When these waves are triggered by the
flow over a mountain, they are referred to as mountain waves. Large-amplitude mountain
waves can generate regions of clear-air-turbulence that pose a hazard to aviation. A
relevant non-dimensional number to characterize mountain waves is the Froude number
defined as

Fr =
U

NL
(18)

where U is a reference velocity and L a reference length. N is called the buoyancy
frequency (also called the Brunt-Väisälä frequency) given by
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fluid parcel must also overcome a potential energy deficit due to stratification. Blocking
or stagnation and separation of the flow on the upwind side of a hill occurs when the air
doesn’t have enough energy to surmount the hill.

Four different simulations were conducted for Fr = 0.25, 0.5, 1, 1.5.Figure 7 show the
evolution of flow in the vicinity of the Seven Sisters as a function of the Fr number.
Fr = 0.25 represents light wind and a stable atmosphere. This leads to the stagnation of
air on the upwind side of the mountain chain. It shows the lateral movement of the flow
at low Fr numbers. Fr = 0.5 represents slightly faster winds and weaker stability. Air in
such cases flows both around and over the mountain. The air that flows over is perturbed
by the mountains to form lee waves above non-oscillating wind that flows around the hill.
When Fr = 1 most of the air flows over the hill and in the event of doing so, produces
large amplitude lee waves and rotor circulations close to the ground on the lee side. When
the Fr increases to 1.5, the winds are even stronger and the stability is relatively weaker.
Boundary layer separation is observed on the lee-side of the hill, which creates a reversal of
the surface flow close to the ground on the lee side. The formation of rotors and vertical
perturbation of the flow on the leeward side results in strong wind shear consequently
giving rise to shear generated turbulence close to the height of the mountain peaks. From
the figures it is also easy to visualize the presence of three-dimensional eddies which are
more pronounced at lower Froude numbers. At this point it is interesting to look at the
figure 7 which presents the projection of the three-dimensional turbulence intensity field
on a conical surface centered at the middle of the runway and containing the glide path of
the aircrafts that operate in the region. The two dotted circles in each figure correspond to
the altitudes of 400m and 800m above the sea level. For smaller Fr = 0.25 corresponding
to calm wind condition there is no zone of high turbulence intensity. Figure 7 further
reveals low turbulence intensity below an altitude of 200m. However, at high wind speed
(or Fr number), the rotors formed on the leewards side of the mountain gets stronger
and stronger resulting in large wind shear at an altitude of 800m. The pilots report quote
the zones close to an altitude of 1000m as the most turbulent zone. The streaks of high
turbulence zone shown in the figure 7 is closely related to the seven peaks. It appears
that flow accelerates in the gaps between the peaks resulting in horizontal wind shear in
addition to the vertical wind shear resulting from the ascend and descend of the flow.
These streaks at Fr = 1 itself starts creating turbulent zones along the trajectory of the
aircrafts.

6 Conclusion

In this article we have shown the capability of a high resolution CFD code to predict
flow behavior in a complex terrain by validating it with both benchmark problem (Bolund
Hill) and realistic turbulence alert system for Norwegian Airports. Several simulations
for different Froude numbers were conducted and the flow characteristics were analyzed.
Below we enumerate the most important findings from the study.
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Figure 7: ut contour on the conical section containing the glide path. Top-Left Fr = 0.25, Top-Right
Fr = 0.5, Bottom-Left Fr = 1.0, Bottom-Right Fr = 1.5.
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1. Confirmation of models ability to predict aviation safety : The pilots’ reports of
observing turbulence at Stokka Airport has been confirmed by the CFD model that
captures the terrain-induced turbulence. The model has verified that the turbulent
intensity can be very high for the south-easterly wind. The long streaks of high
turbulence intensity intersect the gliding plane and can pose potential danger for
aviation activities. It was also observed that for the south-easterly wind, flight
operations can be quite dangerous when the free wind speed reaches about 20 −
30m/s, a value that is reached frequently.

2. Identification of high risk zones using the CFD model: The study resulted in ability
of the model to identify zones where turbulence can be maximum. It was shown
that a zone quite safe in a calm situation (low wind speed) can turn hazardous with
increasing free stream speed.

3. At low wind speed the tendency of the flow to go around the mountain chain results
in the propagation of tail winds at both the ends of the runway, a conclusion that
is confirmed by the pilots reports.

Having concluded the above list, it is worth mentioning here that we have not accounted
for the large scale phenomena which might also influence the flight conditions significantly.
However, in the meteorological communities there are good mesoscale models existing
which are more suited for the purpose. The model explained in this article, coupled with
such a mesoscale model are complementary to each other, and it comprises a turbulence
alert system for the aviation community. Such a system is presently undergoing a thorough
validation process using data from Flight Data Recorders (FDR) as well as ground-based
measurement data.
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Abstract. In this paper we consider a computational model for the motion of thin, rigid
fibers in viscous flows based on slender body theory. Slender body theory approximates
the fluid velocity field about the fiber as the flow due to a distribution of singular solutions
to the Stokes equations along the fiber centerline. The velocity of the fiber itself is often
approximated by an asymptotic limit of this expression. Here we investigate the efficacy
of simply evaluating the slender body velocity expression on a curve along the surface of
the actual 3D fiber, rather than limiting to the fiber centerline. Doing so may yield an
expression better suited for numerical simulation. We validate this model for two simple
geometries, namely, thin ellipsoids and thin rings, and we compare the model to results in
the literature for constant and shear flow. In the case of a fiber with straight centerline,
the model coincides with the prolate spheroid model of Jeffery. For the thin torus, the
computed force agrees with the asymptotically accurate values of Johnson and Wu and
gives qualitatively similar dynamics to oblate spheroids of similar size and inertia.

1 Introduction

Understanding the dynamics of particles immersed in viscous fluids is of importance in
many areas of nature and industry. The first problem one encounters when simulating the
dynamics of particles with complicated shapes is determining an appropriate model. As
the forces and torques of arbitrarily shaped particles are not known in general, one must
make a number of assumptions on the particle size and shape to accurately and cheaply
specify the forces and torques on the particle. If the particle length scale is small (for
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example, smaller than the Kolmogorov scale in turbulent flows), the local fluid velocity
can be accurately approximated by creeping Stokes flow and then the problem is amenable
to a number of mathematical techniques that are available in the literature. One popular
technique involves implementing slender body theories to model long and thin particles.
An advantage of using slender body models is that they have the freedom to model flexible
and arbitrarily shaped particles (with free ends or closed loops) provided that the particle
is thin and the parametrization of centerline is known. The theoretical assumptions on
which slender body models are based are also valid for long particles whose centerline
lengths are comparable or extend beyond the limiting length scales of the fluid field. In
particular, slender body theory has the potential to model particles that are longer than
the Kolmogorov scale, where conventional models such as the Jeffery model for ellipsoids
are not valid. This is a major advantage over current state-of-the-art particle simulations
in, for example, [23, 30]. We also refer to [28] and references therein for a review of other
available models and methodologies for treating anisotropic particles in turbulent flows.

In this article, we will consider a model based on slender body theory for rigid fibers
that have either free ends or are closed loops. The purpose of this paper is primarily to
provide a numerical validation of the proposed slender body model. For this reason, we
will primarily focus on two simple geometries: long ellipsoids and thin rings (also referred
to as thin tori). These geometries are chosen as there are verified ellipsoid and torus
models available in the literature with well-studied dynamics, see for example [29, 23]
for prolate ellipsoids and [15] for thin torus models. This will serve as grounding for
future work that will focus on more interesting and complex particle shapes (e.g., helical
particles, complex closed loops or very long particles) in more complex flows (e.g., 3D
numerical turbulence) that can be approached with more advanced numerical methods
[25, 26]. Such studies could impact our understanding of the transport and deposition of
microplastics in the ocean, since a large percentage of these microplastics are thin fibers
[20].

The slender body approximation expresses the fluid velocity away from the fiber center-
line as an integral of singular solutions to the Stokes equations along the fiber centerline.
As such, the approximation itself is singular along the fiber centerline, and there exist
various methods to obtain a limiting integral expression for the velocity of the slender
body itself [17, 16, 7]. For the purposes of particle simulations, we are primarily interested
in solving for the forces and torques on the particle given a flow about the body. In the
case of slender body theory, this involves inverting the limiting integral expression for
the fiber velocity to find the force per unit length. Thus we need to be careful that the
limiting expression is suitable for numerical inversion. In particular, we hope to avoid
the high wavenumber instabilities that arise in some of the existing centerline expressions
which require additional regularization to overcome. Often the methods for regularization
lack a physical justification.

Here we consider approximating the fiber velocity by simply evaluating the slender body
fluid velocity expression on a curve along the actual slender body surface, away from the
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fiber centerline. Numerical evidence suggests that this method does not require further
regularization to yield an invertible matrix equation for any discretization level or fiber
centerline shape. We also show that our model agrees well with exact or asymptotically
accurate expressions for the forces and torques on fibers with simple geometries in simple
flows.

The next section presents the mathematical theory for the slender body formalism, as
well as a brief review of rigid body mechanics and spheroidal particle models. Section 3
is dedicated to numerical experiments, and the final section is for conclusions.

2 Particle modeling

We begin by reviewing the rigid body dynamics that are relevant to particle modeling.
The theoretical basis for the slender body model is then presented for rigid free ended
fibers and rigid closed loops. Finally, we present the Jeffery model for torques on an
ellipsoid, which is used for comparison purposes.

2.1 Dynamics

The angular momentumm of a rigid particle with torqueN is governed by the ordinary
differential equation

ṁ = m× ω +N , (1)

where ω = J−1m is the angular velocity and J is the diagonal moment of inertia ten-
sor. All the above quantities are given in the particle frame of reference. The particle
orientation (with respect to a fixed inertial frame of reference) is specified using Euler
parameters q ∈ R4 which satisfy the constraint ||q||2 = 1 and are determined by solving
the ODE

q̇ =
1

2
q · w,

where w = (0,ωT)T ∈ R4 and · here denotes the Hamilton product of two quaternions
[10]. A vector in the particle reference frame xp can be rotated to a vector in an inertial
co-translating reference frame xT = Qxp where Q is the rotation matrix that is the image
of q under the Euler-Rodriguez map. We refer the reader to [10] for details on quaternion
algebra and rigid body mechanics.

2.2 Slender body theory

We begin by describing the slender body geometries that will be considered in the free
end and closed loop settings. To condense notation, we will use I to denote the interval
[−1/2, 1/2] in the free end setting and the unit circle T = R/Z in the closed loop setting.
We take X : I → R3 to be the coordinates of an open or closed non-self-intersecting C2

curve in R3, parameterized by arclength s. We let es(s) = dX
ds

denote the unit tangent
vector to X(s). The curve X(s) will be the centerline of the slender body, and we assume
that all cross sections of the slender body are circular.
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example, smaller than the Kolmogorov scale in turbulent flows), the local fluid velocity
can be accurately approximated by creeping Stokes flow and then the problem is amenable
to a number of mathematical techniques that are available in the literature. One popular
technique involves implementing slender body theories to model long and thin particles.
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in, for example, [23, 30]. We also refer to [28] and references therein for a review of other
available models and methodologies for treating anisotropic particles in turbulent flows.
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the fiber velocity to find the force per unit length. Thus we need to be careful that the
limiting expression is suitable for numerical inversion. In particular, we hope to avoid
the high wavenumber instabilities that arise in some of the existing centerline expressions
which require additional regularization to overcome. Often the methods for regularization
lack a physical justification.

Here we consider approximating the fiber velocity by simply evaluating the slender body
fluid velocity expression on a curve along the actual slender body surface, away from the
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fiber centerline. Numerical evidence suggests that this method does not require further
regularization to yield an invertible matrix equation for any discretization level or fiber
centerline shape. We also show that our model agrees well with exact or asymptotically
accurate expressions for the forces and torques on fibers with simple geometries in simple
flows.
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well as a brief review of rigid body mechanics and spheroidal particle models. Section 3
is dedicated to numerical experiments, and the final section is for conclusions.
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ellipsoid, which is used for comparison purposes.
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1

2
q · w,

where w = (0,ωT)T ∈ R4 and · here denotes the Hamilton product of two quaternions
[10]. A vector in the particle reference frame xp can be rotated to a vector in an inertial
co-translating reference frame xT = Qxp where Q is the rotation matrix that is the image
of q under the Euler-Rodriguez map. We refer the reader to [10] for details on quaternion
algebra and rigid body mechanics.

2.2 Slender body theory

We begin by describing the slender body geometries that will be considered in the free
end and closed loop settings. To condense notation, we will use I to denote the interval
[−1/2, 1/2] in the free end setting and the unit circle T = R/Z in the closed loop setting.
We take X : I → R3 to be the coordinates of an open or closed non-self-intersecting C2

curve in R3, parameterized by arclength s. We let es(s) = dX
ds

denote the unit tangent
vector to X(s). The curve X(s) will be the centerline of the slender body, and we assume
that all cross sections of the slender body are circular.
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Let 0 < ε � 1. In the closed loop setting, we consider fibers with uniform ra-
dius ε on each cross section. In the free end setting, we consider the actual endpoints
of the fiber to be ±

√
1/4 + ε2 rather than ±1/2, and define a radius function r ∈

C2(−
√
1/4 + ε2,

√
1/4 + ε2) such that 0 < r(s) ≤ 1 for each s ∈ [−1/2, 1/2], and r(s)

decays smoothly to zero at the fiber endpoints ±
√
1/4 + ε2. We will mostly be concerned

with the prolate spheroid, for which we have

r(s) =
1

(1
4
+ ε2)1/2

(
1

4
+ ε2 − s2

)1/2

. (2)

Notice that the interval [−1/2, 1/2] extends from focus to focus of this prolate spheroid,
and that r = O(ε) at s = ±1

2
(see figure 1). In numerical applications, we will also briefly

consider the case of a free end fiber with uniform radius (except for hemispherical caps at
the fiber endpoints – see section 3.2), but we note that the slender body approximation is
better suited for the prolate spheroid. Throughout this paper, for the sake of conciseness,
we will often write one expression to encompass both the free end and closed loop settings,
in which case we note that in the closed loop setting we define r(s) = 1 for each s ∈ T.

εr(s)

es(s)

er(s)

es(s)

Closed loop: r(s) = 1,

Free ends: 0 < r(s) ≤ 1,
s ∈ [−1/2, 1/2]

Rε(s1, s2)

X(s1) + εer(s1)

X(s2)

s ∈ T = R/Z

X(s)

Figure 1: A depiction of the geometries under consideration in the free end and closed
loop settings.

The idea behind slender body theory is to approximate the fluid velocity about the fiber
as the Stokes flow due to a one-dimensional curve of point forces in R3. The basic theory
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originated with Hancock [12], Cox [8], and Batchelor [2] with later improvements by Keller
and Rubinow [16] and Johnson [14]. Here we will consider specifically the slender body
theory of Johnson, which was further studied by Götz [11] and Tornberg and Shelley [27].
Let u0(x, t) denote the (known) velocity of the fluid in the absence of the fiber at time
t, and let µ denote the viscosity of the fluid. The classical slender body approximation
uSB(x, t) to the fluid velocity at any point x away from the fiber centerline X(s, t) is then
given by

8πµ
(
uSB(x, t)− u0(x, t)

)
= −

∫

I

(
S(R) +

ε2r2(s′)

2
D(R)

)
f(s′, t) ds′, R = x−X(s′, t);

S(R) =
I

|R|
+

RRT

|R|3
, D(R) =

I

|R|3
− 3RRT

|R|5
. (3)

Here 1
8πµ

S(R) is the Stokeslet, the free space Green’s function for the Stokes equations in

R3, and 1
8πµ

D(R) = 1
16πµ

∆S(R) is the doublet, a higher order correction to the velocity

approximation. The force density f(s, t) is here considered as the force per unit length
exerted by the fluid on the body. The sign convention is opposite if we instead consider f
to be the force exerted by the body on the fluid. Note that in the free end case, this force
density is only distributed between the generalized foci of the slender body (s = ±1/2)
rather than between the actual endpoints of the fiber.

In the stationary setting, Mori et al. in [21] (closed loop case) and [22] (free end case)
prove a rigorous error bound for the difference between the velocity field given by (3) and
the velocity field around a three-dimensional flexible rod satisfying a well-posed slender
body PDE. In particular, for the closed loop, given a force density f ∈ C1(T), the difference
between uSB and the PDE solution exterior to the slender body is bounded by an expres-
sion proportional to ε |log ε|. In the free end case, given a force density f ∈ C1(−1/2, 1/2)
which decays like a spheroid at the fiber endpoints (f(s) ∼

√
1/4− s2 as s → ±1/2), the

difference between the free end slender body approximation uSB and the well-posed PDE
solution of [22] is similarly bounded by an expression proportional to ε |log ε|. Thus the
Stokeslet/doublet expression (3) is quantitatively a good approximation of the flow field
around a slender body.

To approximate the velocity of the slender body itself, we would like to use (3) to

obtain an expression for the relative velocity of the fiber centerline ∂X(s,t)
∂t

depending only
on the arclength parameter s and time t. In the case of a rigid fiber, given the velocity
∂X(s,t)

∂t
= v + ω ×X(s, t), v,ω ∈ R3, of the filament centerline, we would like to then be

able to invert the centerline velocity expression to solve for the force density f(s, t) along
the fiber. We use this f(s, t) to compute the total force F (t) and torque N (t) exerted on
the body as ∫

I
f(s, t) ds = F (t),

∫

I
X(s, t)× f(s, t) ds = N (t).
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Let 0 < ε � 1. In the closed loop setting, we consider fibers with uniform ra-
dius ε on each cross section. In the free end setting, we consider the actual endpoints
of the fiber to be ±
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1/4 + ε2 rather than ±1/2, and define a radius function r ∈

C2(−
√
1/4 + ε2,
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1/4 + ε2) such that 0 < r(s) ≤ 1 for each s ∈ [−1/2, 1/2], and r(s)

decays smoothly to zero at the fiber endpoints ±
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1/4 + ε2. We will mostly be concerned

with the prolate spheroid, for which we have
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1

(1
4
+ ε2)1/2

(
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4
+ ε2 − s2

)1/2

. (2)

Notice that the interval [−1/2, 1/2] extends from focus to focus of this prolate spheroid,
and that r = O(ε) at s = ±1

2
(see figure 1). In numerical applications, we will also briefly

consider the case of a free end fiber with uniform radius (except for hemispherical caps at
the fiber endpoints – see section 3.2), but we note that the slender body approximation is
better suited for the prolate spheroid. Throughout this paper, for the sake of conciseness,
we will often write one expression to encompass both the free end and closed loop settings,
in which case we note that in the closed loop setting we define r(s) = 1 for each s ∈ T.

εr(s)

es(s)

er(s)

es(s)

Closed loop: r(s) = 1,
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s ∈ [−1/2, 1/2]
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Figure 1: A depiction of the geometries under consideration in the free end and closed
loop settings.

The idea behind slender body theory is to approximate the fluid velocity about the fiber
as the Stokes flow due to a one-dimensional curve of point forces in R3. The basic theory
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originated with Hancock [12], Cox [8], and Batchelor [2] with later improvements by Keller
and Rubinow [16] and Johnson [14]. Here we will consider specifically the slender body
theory of Johnson, which was further studied by Götz [11] and Tornberg and Shelley [27].
Let u0(x, t) denote the (known) velocity of the fluid in the absence of the fiber at time
t, and let µ denote the viscosity of the fluid. The classical slender body approximation
uSB(x, t) to the fluid velocity at any point x away from the fiber centerline X(s, t) is then
given by

8πµ
(
uSB(x, t)− u0(x, t)

)
= −

∫

I

(
S(R) +

ε2r2(s′)

2
D(R)

)
f(s′, t) ds′, R = x−X(s′, t);

S(R) =
I

|R|
+

RRT

|R|3
, D(R) =

I

|R|3
− 3RRT

|R|5
. (3)

Here 1
8πµ

S(R) is the Stokeslet, the free space Green’s function for the Stokes equations in

R3, and 1
8πµ

D(R) = 1
16πµ

∆S(R) is the doublet, a higher order correction to the velocity

approximation. The force density f(s, t) is here considered as the force per unit length
exerted by the fluid on the body. The sign convention is opposite if we instead consider f
to be the force exerted by the body on the fluid. Note that in the free end case, this force
density is only distributed between the generalized foci of the slender body (s = ±1/2)
rather than between the actual endpoints of the fiber.

In the stationary setting, Mori et al. in [21] (closed loop case) and [22] (free end case)
prove a rigorous error bound for the difference between the velocity field given by (3) and
the velocity field around a three-dimensional flexible rod satisfying a well-posed slender
body PDE. In particular, for the closed loop, given a force density f ∈ C1(T), the difference
between uSB and the PDE solution exterior to the slender body is bounded by an expres-
sion proportional to ε |log ε|. In the free end case, given a force density f ∈ C1(−1/2, 1/2)
which decays like a spheroid at the fiber endpoints (f(s) ∼

√
1/4− s2 as s → ±1/2), the

difference between the free end slender body approximation uSB and the well-posed PDE
solution of [22] is similarly bounded by an expression proportional to ε |log ε|. Thus the
Stokeslet/doublet expression (3) is quantitatively a good approximation of the flow field
around a slender body.

To approximate the velocity of the slender body itself, we would like to use (3) to

obtain an expression for the relative velocity of the fiber centerline ∂X(s,t)
∂t

depending only
on the arclength parameter s and time t. In the case of a rigid fiber, given the velocity
∂X(s,t)

∂t
= v + ω ×X(s, t), v,ω ∈ R3, of the filament centerline, we would like to then be

able to invert the centerline velocity expression to solve for the force density f(s, t) along
the fiber. We use this f(s, t) to compute the total force F (t) and torque N (t) exerted on
the body as ∫

I
f(s, t) ds = F (t),

∫

I
X(s, t)× f(s, t) ds = N (t).
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Since the expression (3) is singular at x = X(s, t), deriving a limiting expression for the
fiber centerline must be done carefully. There are various ways to use (3) to obtain a
centerline expression depending on s only, including the methods of Lighthill [17], Keller
and Rubinow [16], and the method of regularized Stokeslets [3, 6, 7]. Each method

expresses the velocity of the slender body centerline ∂X(s,t)
∂t

as an integral operator acting
on the force density f(s, t). A brief overview of these methods is given in appendix A.

Because solving for the force density f(s, t) given ∂X(s,t)
∂t

involves inverting an inte-
gral operator at each time step, we need to take particular care that the operator – at
least when discretized – is suitable for inversion. In particular, we need to avoid the
high wavenumber instabilities that limit discretization of the integral operator and hinder
some of the asymptotic methods described in appendix A. At the same time, we would
like the centerline expression to have a clear physical meaning and connection to the
Stokeslet/doublet expression (3).

Thus we will use the following expression to approximate the velocity ∂X(s,t)
∂t

of the
slender body itself. Taking er(s, t) to be a particular unit vector normal to X(s, t) (we
will discuss the choice of er later), we essentially evaluate (3) at x = X(s, t)+εr(s)er(s, t),
a curve along the actual surface of the slender body. For S, D as in (3), we have

8πµ

(
∂X

∂t
− u0(X(s, t), t)

)
= −

∫

I

(
Sε(s, s

′, t) +
ε2r2(s′)

2
Dε(s, s

′, t)

)
f(s′, t) ds′; (4)

Sε = S(Rε(s, s
′, t))− ε2r2ere

T
r

|Rε(s, s′, t)|3
, Dε = D(Rε(s, s

′, t)) +
3ε2r2ere

T
r

|Rε(s, s′, t)|5
,

Rε(s, s
′, t) = X(s, t)−X(s′, t) + εr(s)er(s, t).

Here we are relying on the fact that for any point x on the actual fiber surface, the
expression (3) for uSB(x) is designed to depend only on arclength s to leading order in ε
– in particular, on each cross section of the slender body, the angular dependence about
the fiber centerline is only O(ε log ε) (see [21], proposition 3.9, and [22], proposition 3.11).
This is because the leading order angular-dependent terms (the ε2r2ere

T
r term in both

the Stokeslet and the doublet, which is O(1) at s = s′) cancel each other asymptotically
to order ε log(ε) (see estimates 3.62 and 3.65 in [21] and estimates 3.40 and 3.43 in [22]).
We therefore eliminate these two terms from the formulation (4), in part due to this
cancellation and in part because their omission appears to improve the stability of the
discretized integral operator (4) when n, the number of discretization points, is large.
This apparent improvement in stability merits further study in future work.

Thus to approximate the velocity of the fiber centerline, we evaluate (3) on the actual
slender body surface along a normal vector er(s, t) ∈ C2(I) extending from X(s, t) but
cancel the ε2r2ere

T
r terms that would otherwise appear. Note that the choice of normal

vector er is somewhat arbitrary, and does have an O(ε log ε) effect on the resulting ap-
proximation. These effects can and should be studied further in future work. However, we
use this normal vector as a physically meaningful means of avoiding the high wavenumber
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instabilities that appear in other asymptotic methods (see appendix A). Numerical evi-
dence suggests that the discretized centerline equation (4) yields a matrix equation that

is solvable for f(s, t) given ∂X(s,t)
∂t

, as all eigenvalues of the matrix are positive even for
very large n. This is not necessarily the case for some of the other centerline equations
(again, see appendix A) unless additional regularizations are added, which may affect the
physical meaning of the equations. The possibility of resolving very fine scales along the
length of the fiber is desirable especially when dealing with turbulent flows.

2.3 Spheroid model

The above slender body model is valid for arbitrary parameterizations of the centerline
X(s, t) and a wide choice of radius functions. However, to validate the model we will focus
on a simple case where the centerline is a straight line and the radius function corresponds
to an ellipsoid. In this case the torques have a known expression due to Jeffery [13] and
the motion of such a particle in simple flows is well-known [4, 19] which makes this choice
of geometry a perfect arena for model validation. We will now briefly review some theory
related to spheroids immersed in viscous fluids.

An axisymmetric spheroid in the particle frame is given by

x2

a2
+

y2

a2
+

z2

b2
= 1,

where a and b are the distinct semi-axis lengths. The particle shape is characterized by the
dimensionless aspect ratio λ = b/a > 0, which distinguishes between spherical (λ = 1),
prolate (λ > 1) and oblate (λ < 1) particles (the latter two shapes are also called as rods
and disks). In the case of a slender prolate spheroid, we take a = ε. The axisymmetric
moment of inertia tensor for a spheroid in the body frame is

J = ma2diag

(
(1 + λ2)

5
,
(1 + λ2)

5
,
2

5

)
,

where m = 4
3
πλa3ρp is the particle mass and ρp is the particle density. Jeffery [13] calcu-

lated the torqueN of an ellipsoid in creeping Stokes flow, which in the above axisymmetric
case reads

Nx =
16πλµa3

3(β0 + λ2γ0)

[
(1− λ2)Syz + (1 + λ2)(Ωx − ωx)

]
,

Ny =
16πλµa3

3(α0 + λ2γ0)

[
(λ2 − 1)Szx + (1 + λ2)(Ωy − ωy)

]
, (5)

Nz =
32πλµa3

3(α0 + β0)
(Ωz − ωz),

where Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
is the fluid shear tensor and Ω = 1

2
∇×u is the fluid rotation,

both taking constant values in shear flow. The values α0, β0 and γ0 are λ-dependent
parameters that were calculated in [9].

7



348 349

L. Ohm, B.K. Tapley, H.I. Andersson, E. Celledoni, and B. Owren

Since the expression (3) is singular at x = X(s, t), deriving a limiting expression for the
fiber centerline must be done carefully. There are various ways to use (3) to obtain a
centerline expression depending on s only, including the methods of Lighthill [17], Keller
and Rubinow [16], and the method of regularized Stokeslets [3, 6, 7]. Each method

expresses the velocity of the slender body centerline ∂X(s,t)
∂t

as an integral operator acting
on the force density f(s, t). A brief overview of these methods is given in appendix A.

Because solving for the force density f(s, t) given ∂X(s,t)
∂t

involves inverting an inte-
gral operator at each time step, we need to take particular care that the operator – at
least when discretized – is suitable for inversion. In particular, we need to avoid the
high wavenumber instabilities that limit discretization of the integral operator and hinder
some of the asymptotic methods described in appendix A. At the same time, we would
like the centerline expression to have a clear physical meaning and connection to the
Stokeslet/doublet expression (3).

Thus we will use the following expression to approximate the velocity ∂X(s,t)
∂t

of the
slender body itself. Taking er(s, t) to be a particular unit vector normal to X(s, t) (we
will discuss the choice of er later), we essentially evaluate (3) at x = X(s, t)+εr(s)er(s, t),
a curve along the actual surface of the slender body. For S, D as in (3), we have

8πµ

(
∂X

∂t
− u0(X(s, t), t)

)
= −

∫

I

(
Sε(s, s

′, t) +
ε2r2(s′)

2
Dε(s, s

′, t)

)
f(s′, t) ds′; (4)
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,

Rε(s, s
′, t) = X(s, t)−X(s′, t) + εr(s)er(s, t).

Here we are relying on the fact that for any point x on the actual fiber surface, the
expression (3) for uSB(x) is designed to depend only on arclength s to leading order in ε
– in particular, on each cross section of the slender body, the angular dependence about
the fiber centerline is only O(ε log ε) (see [21], proposition 3.9, and [22], proposition 3.11).
This is because the leading order angular-dependent terms (the ε2r2ere

T
r term in both

the Stokeslet and the doublet, which is O(1) at s = s′) cancel each other asymptotically
to order ε log(ε) (see estimates 3.62 and 3.65 in [21] and estimates 3.40 and 3.43 in [22]).
We therefore eliminate these two terms from the formulation (4), in part due to this
cancellation and in part because their omission appears to improve the stability of the
discretized integral operator (4) when n, the number of discretization points, is large.
This apparent improvement in stability merits further study in future work.

Thus to approximate the velocity of the fiber centerline, we evaluate (3) on the actual
slender body surface along a normal vector er(s, t) ∈ C2(I) extending from X(s, t) but
cancel the ε2r2ere

T
r terms that would otherwise appear. Note that the choice of normal

vector er is somewhat arbitrary, and does have an O(ε log ε) effect on the resulting ap-
proximation. These effects can and should be studied further in future work. However, we
use this normal vector as a physically meaningful means of avoiding the high wavenumber
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instabilities that appear in other asymptotic methods (see appendix A). Numerical evi-
dence suggests that the discretized centerline equation (4) yields a matrix equation that

is solvable for f(s, t) given ∂X(s,t)
∂t

, as all eigenvalues of the matrix are positive even for
very large n. This is not necessarily the case for some of the other centerline equations
(again, see appendix A) unless additional regularizations are added, which may affect the
physical meaning of the equations. The possibility of resolving very fine scales along the
length of the fiber is desirable especially when dealing with turbulent flows.

2.3 Spheroid model

The above slender body model is valid for arbitrary parameterizations of the centerline
X(s, t) and a wide choice of radius functions. However, to validate the model we will focus
on a simple case where the centerline is a straight line and the radius function corresponds
to an ellipsoid. In this case the torques have a known expression due to Jeffery [13] and
the motion of such a particle in simple flows is well-known [4, 19] which makes this choice
of geometry a perfect arena for model validation. We will now briefly review some theory
related to spheroids immersed in viscous fluids.

An axisymmetric spheroid in the particle frame is given by

x2

a2
+

y2

a2
+

z2

b2
= 1,

where a and b are the distinct semi-axis lengths. The particle shape is characterized by the
dimensionless aspect ratio λ = b/a > 0, which distinguishes between spherical (λ = 1),
prolate (λ > 1) and oblate (λ < 1) particles (the latter two shapes are also called as rods
and disks). In the case of a slender prolate spheroid, we take a = ε. The axisymmetric
moment of inertia tensor for a spheroid in the body frame is

J = ma2diag

(
(1 + λ2)

5
,
(1 + λ2)

5
,
2

5

)
,

where m = 4
3
πλa3ρp is the particle mass and ρp is the particle density. Jeffery [13] calcu-

lated the torqueN of an ellipsoid in creeping Stokes flow, which in the above axisymmetric
case reads

Nx =
16πλµa3

3(β0 + λ2γ0)

[
(1− λ2)Syz + (1 + λ2)(Ωx − ωx)

]
,

Ny =
16πλµa3

3(α0 + λ2γ0)

[
(λ2 − 1)Szx + (1 + λ2)(Ωy − ωy)

]
, (5)

Nz =
32πλµa3

3(α0 + β0)
(Ωz − ωz),

where Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
is the fluid shear tensor and Ω = 1

2
∇×u is the fluid rotation,

both taking constant values in shear flow. The values α0, β0 and γ0 are λ-dependent
parameters that were calculated in [9].
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There are a number of distinctions to make between this model and the slender body
model. First, Jeffery assumes that the particle is small enough that the fluid Jacobian ∇u
is constant across the volume of the spheroid. In shear flow, ∇u is constant everywhere,
hence this assumption is true and the model validity is independent of the size of the
particle. However, in more complex flows such as turbulence, the Jeffery model is only
valid for a, b << η for Kolmogorov length η. On the other hand, the slender model
requires only that the maximal cross sectional radius ε << η to be valid. Hence, the
slender body model is valid for particles with lengths larger than η whilst satisfying
the Stokes flow assumptions. Second, the Jeffery torque depends on the fluid velocity
derivatives only, while the slender body model derives the torques from the velocity field
along the centerline. Because of this, we cannot expect the models to coincide when the
particle is aligned exactly in the shear plane (i.e., the plane where u = 0 but

∂uj

∂xi
�= 0).

3 Numerical experiments

This section presents numerical results for the slender body model and comparisons
with other similar models. We begin with a validation of the slender body expression (4)
by comparing the total force F given by inverting (4) for a stationary slender body velocity
with the exact expression for the Stokes drag on a particular object (when available)
or with an expression valid asymptotically as ε → 0. We consider the slender prolate
spheroid (section 3.2; exact expression given by Chwang and Wu [5]), the straight, uniform
cylinder with hemispherical endpoints (section 3.2; asymptotic expression given by Keller
and Rubinow [16]), and the slender torus (section 3.3; asymptotic expression given by
Johnson and Wu [15]). In each case we expect O(ε log ε) agreement between the force F
computed using (4) and the exact or asymptotically accurate expressions; however, we
find that this trend is clearly visible only in the closed loop setting. We then examine the
rotational dynamics of a prolate spheroid in shear flow using expression (4) and compare
it with the Jeffery model for ellipsoids [13]. We look at the dynamics of the two models for
a range of aspect ratios and orientations and then explore the effect of the discretization
parameter on the periodic Jeffery orbits. We finally compare the dynamics of thin rings
to oblate spheroids for a range of fluid viscosities.

3.1 Computational considerations

In many applications, one needs to simulate the dynamics of thousands or millions of
particles; hence computational cost plays a role in determining the model choice. One
thing to consider is that the slender body model involves inverting a 3n × 3n matrix
at each time step, where n is the user-defined discretization parameter that arises from
discretizing the integral in equation (4). On the other hand, the Jeffery model requires an
accurate approximation of the fluid Jacobian at the location of the particle center of mass,
while the slender body model only requires the fluid velocity values at the n locations
on its centerline. When the fluid velocity is defined at discrete locations in space, such
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as in direct numerical simulations of turbulent flows, the Jeffery model is faced with the
problem of approximating the fluid Jacobian at the location of the particle center of mass,
which is more costly than just interpolating the velocity field. In practice, however, one
should use the Jeffery model when computing dynamics of small, thin ellipsoids when
possible and the slender body model for more complicated shapes or longer particles. As
the purpose of this article is focused on the theoretical and numerical validation of the
slender body model, computational cost and numerical methods will be left for future
work.

3.2 Free ended fibers in constant flow

We validate the free end formulation of (4) in the case of a slender body with straight
centerline X(s) = sex, s ∈ [−1/2, 1/2], aligned with the x-axis. Here we will consider
both the slender prolate spheroid with radius function r(s) as in (2) and a slender cylinder
with hemispherical caps at the fiber endpoints. In both cases, we take the actual filament
length to be 2

√
1/4 + ε2, but distribute the force density f(s) only along [−1/2, 1/2]. As

in the closed loop setting, we use (4) to calculate the drag force F on the slender body
as it translates with unit speed, and compare this F to either exact or asymptotically
accurate expressions for the Stokes drag on a prolate spheroid or cylinder. In both cases
we will use the unit normal vector er(s) = cos(2πs)ey + sin(2πs)ez, which rotates once
in the yz-plane perpendicular to X(s) = sex for s ∈ [−1/2, 1/2]. This normal vector is
chosen because it represents a sort of average normal direction along the length of the
filament.

In the free end setting, we also need to make sure that the computed force density f(s)
is decaying sufficiently rapidly at the fiber endpoints to ensure that the solution makes
sense physically. The inclusion of the decaying radius function r(s) in the slender body
velocity expression (4) ensures this decay by making the integral kernel very large near
the fiber endpoints.

In the case of a prolate spheroid, we can actually compare the total force F given
by (4) to the analytical expression for Stokes drag on a spheroid calculated by Chwang
and Wu [5] (see table 1). We consider the drag force on a slender prolate spheroid
translating with unit speed in either the y-direction (perpendicular to the semi-major
axis) or the x-direction (parallel to the semi-major axis). In all cases, the integral term of
(4) is discretized using the trapezoidal rule with uniform discretization along the filament
centerline. We use n = 2/ε discretization points.

We also look at a plot of the computed force per unit length f(s) along the filament
(figure 2) to verify that the force density makes sense physically.

From figure 2, we can see that the force density f(s) decays rapidly as s → ±1/2, but
does not vanish identically at |s| = 1/2. However, it should be noted that in [22], we are
given the force density f(s), s ∈ [−1/2, 1/2], and use it to solve for the corresponding
slender body velocity. In that case, the force must vanish identically at ±1/2 to yield a
unique velocity. Since in this case we are using the fiber velocity to solve for the force
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There are a number of distinctions to make between this model and the slender body
model. First, Jeffery assumes that the particle is small enough that the fluid Jacobian ∇u
is constant across the volume of the spheroid. In shear flow, ∇u is constant everywhere,
hence this assumption is true and the model validity is independent of the size of the
particle. However, in more complex flows such as turbulence, the Jeffery model is only
valid for a, b << η for Kolmogorov length η. On the other hand, the slender model
requires only that the maximal cross sectional radius ε << η to be valid. Hence, the
slender body model is valid for particles with lengths larger than η whilst satisfying
the Stokes flow assumptions. Second, the Jeffery torque depends on the fluid velocity
derivatives only, while the slender body model derives the torques from the velocity field
along the centerline. Because of this, we cannot expect the models to coincide when the
particle is aligned exactly in the shear plane (i.e., the plane where u = 0 but

∂uj

∂xi
�= 0).

3 Numerical experiments

This section presents numerical results for the slender body model and comparisons
with other similar models. We begin with a validation of the slender body expression (4)
by comparing the total force F given by inverting (4) for a stationary slender body velocity
with the exact expression for the Stokes drag on a particular object (when available)
or with an expression valid asymptotically as ε → 0. We consider the slender prolate
spheroid (section 3.2; exact expression given by Chwang and Wu [5]), the straight, uniform
cylinder with hemispherical endpoints (section 3.2; asymptotic expression given by Keller
and Rubinow [16]), and the slender torus (section 3.3; asymptotic expression given by
Johnson and Wu [15]). In each case we expect O(ε log ε) agreement between the force F
computed using (4) and the exact or asymptotically accurate expressions; however, we
find that this trend is clearly visible only in the closed loop setting. We then examine the
rotational dynamics of a prolate spheroid in shear flow using expression (4) and compare
it with the Jeffery model for ellipsoids [13]. We look at the dynamics of the two models for
a range of aspect ratios and orientations and then explore the effect of the discretization
parameter on the periodic Jeffery orbits. We finally compare the dynamics of thin rings
to oblate spheroids for a range of fluid viscosities.

3.1 Computational considerations

In many applications, one needs to simulate the dynamics of thousands or millions of
particles; hence computational cost plays a role in determining the model choice. One
thing to consider is that the slender body model involves inverting a 3n × 3n matrix
at each time step, where n is the user-defined discretization parameter that arises from
discretizing the integral in equation (4). On the other hand, the Jeffery model requires an
accurate approximation of the fluid Jacobian at the location of the particle center of mass,
while the slender body model only requires the fluid velocity values at the n locations
on its centerline. When the fluid velocity is defined at discrete locations in space, such
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as in direct numerical simulations of turbulent flows, the Jeffery model is faced with the
problem of approximating the fluid Jacobian at the location of the particle center of mass,
which is more costly than just interpolating the velocity field. In practice, however, one
should use the Jeffery model when computing dynamics of small, thin ellipsoids when
possible and the slender body model for more complicated shapes or longer particles. As
the purpose of this article is focused on the theoretical and numerical validation of the
slender body model, computational cost and numerical methods will be left for future
work.

3.2 Free ended fibers in constant flow

We validate the free end formulation of (4) in the case of a slender body with straight
centerline X(s) = sex, s ∈ [−1/2, 1/2], aligned with the x-axis. Here we will consider
both the slender prolate spheroid with radius function r(s) as in (2) and a slender cylinder
with hemispherical caps at the fiber endpoints. In both cases, we take the actual filament
length to be 2

√
1/4 + ε2, but distribute the force density f(s) only along [−1/2, 1/2]. As

in the closed loop setting, we use (4) to calculate the drag force F on the slender body
as it translates with unit speed, and compare this F to either exact or asymptotically
accurate expressions for the Stokes drag on a prolate spheroid or cylinder. In both cases
we will use the unit normal vector er(s) = cos(2πs)ey + sin(2πs)ez, which rotates once
in the yz-plane perpendicular to X(s) = sex for s ∈ [−1/2, 1/2]. This normal vector is
chosen because it represents a sort of average normal direction along the length of the
filament.

In the free end setting, we also need to make sure that the computed force density f(s)
is decaying sufficiently rapidly at the fiber endpoints to ensure that the solution makes
sense physically. The inclusion of the decaying radius function r(s) in the slender body
velocity expression (4) ensures this decay by making the integral kernel very large near
the fiber endpoints.

In the case of a prolate spheroid, we can actually compare the total force F given
by (4) to the analytical expression for Stokes drag on a spheroid calculated by Chwang
and Wu [5] (see table 1). We consider the drag force on a slender prolate spheroid
translating with unit speed in either the y-direction (perpendicular to the semi-major
axis) or the x-direction (parallel to the semi-major axis). In all cases, the integral term of
(4) is discretized using the trapezoidal rule with uniform discretization along the filament
centerline. We use n = 2/ε discretization points.

We also look at a plot of the computed force per unit length f(s) along the filament
(figure 2) to verify that the force density makes sense physically.

From figure 2, we can see that the force density f(s) decays rapidly as s → ±1/2, but
does not vanish identically at |s| = 1/2. However, it should be noted that in [22], we are
given the force density f(s), s ∈ [−1/2, 1/2], and use it to solve for the corresponding
slender body velocity. In that case, the force must vanish identically at ±1/2 to yield a
unique velocity. Since in this case we are using the fiber velocity to solve for the force
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F · ey for u = ey F · ex for u = ex

ε Expression (4) Chwang-Wu Expression (4) Chwang-Wu ε |log ε|
0.01 -2.4498 -2.4618 -1.5245 -1.5302 0.0461
0.005 -2.1579 -2.1673 -1.3051 -1.3094 0.0265
0.0025 -1.9281 -1.9358 -1.1408 -1.1442 0.0150
0.00125 -1.7426 -1.7491 -1.0133 -1.0159 0.0084

Table 1: Comparison of the computed (via expression (4)) and exact (from Chwang and
Wu [5]) Stokes drag force F on a slender prolate spheroid of length 2

√
1/4 + ε2 with

semi-major axis aligned with the x-axis. Columns 2 and 3 compare the y-component of
F for a spheroid translating with unit speed in the y-direction, while columns 4 and 5
compare the x-component of F for translation in the x-direction. Note that for both
directions, the force difference decreases with ε, but not quite at the expected ε log ε rate.
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Figure 2: Force per unit length f(s), s ∈ [−1/2, 1/2], along the prolate spheroid with
semi-major axis aligned with the x-axis. The left figure shows the y-component of the
force density for the cylinder translating with unit speed in the y-direction, while the
right figure shows the x-component of the force density for the cylinder translating in
the x-direction. Note that in both flows the force density f(s) decays to near zero at
s = ±1/2, as expected.

density, it appears that what we are doing instead here is ignoring a certain (small) amount
of force contribution from the very ends of the fiber (between 1/2 ≤ |s| ≤

√
1/4 + ε2).

Whether or not this is a good approximation is unclear – it is possible that the same force
density could result from flows that differ slightly at the actual fiber endpoints. However,
it appears that because f(s) decays so rapidly at s = ±1/2, any force contribution beyond
this would be negligible. This may indicate that sufficient decay in the slender body radius
toward the endpoints of the fiber ensures that the endpoints (beyond |s| = 1/2) are not
contributing a significant amount to the total force and thus can be safely ignored.

To test the formulation (4) for a different choice of radius function r(s), we next consider
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the drag force on a straight cylinder with uniform radius everywhere along its length except
for hemispherical caps at the fiber endpoints. In particular, we take the cylinder to be
the same length as the prolate spheroid (actual fiber endpoints at s = ±

√
1/4 + ε2) with

a radius that decays smoothly to zero at the endpoint via a hemispherical cap of radius
ε centered at dε =

√
1/4 + ε2 − ε:

εr(s) =




ε, −dε ≤ s ≤ dε√
ε2 − (s+ dε)2, s < −dε√
ε2 − (s− dε)2, s > dε

dε :=
√
1/4 + ε2 − ε.

As in the case of the prolate spheroid, we distribute the force density f(s) along the
interval [−1/2, 1/2]. Using (4) to find F in the same way as in the case of the prolate
spheroid, we compare the resulting drag force with the asymptotic expression derived by
Keller and Rubinow [16] in table 2.

F · ey for u = ey F · ex for u = ex

ε Eqn (4) Keller-Rubinow Eqn (4) Keller-Rubinow ε |log ε|
0.01 -2.6433 -2.6401 -1.6864 -1.6712 0.0461
0.005 -2.3085 -2.3024 -1.4216 -1.4094 0.0265
0.0025 -2.0472 -2.0417 -1.2274 -1.2189 0.0150
0.00125 -1.8384 -1.8342 -1.0796 -1.0738 0.0084

Table 2: Comparison of the computed (via expression (4)) and asymptotic (from Keller
and Rubinow [16]) Stokes drag force F on a cylinder of length 2

√
1/4 + ε2 with hemi-

spherical endpoints and with centerline along the x-axis. Columns 2 and 3 compare the
y-component of F for a cylinder translating with unit speed in the y-direction, while
columns 4 and 5 compare the x-component of F for translation in the x-direction. Here
the expected ε log ε scaling of the difference between forces is less apparent, particularly
in the y-direction. This may be due to endpoint effects (see figure 3).

The computed drag force in table 2 agrees well with the asymptotic expression of
Keller and Rubinow [16]; however, the computed force-per-unit-length f(s) is not as
physically reasonable at the fiber endpoints. According to [22], in the case of a cylinder
with hemispherical caps, we actually want a faster rate of decay in the force near the
fiber endpoints – in particular, we need f(s)/(1/4 − s2) ∈ C(−1/2, 1/2). However, as
shown in figure 3, flow about the cylinder results in wild oscillations in f(s) near the fiber
endpoints. Possibly this indicates that this method (and likely others based on slender
body theory) are really designed to treat prolate spheroids with sufficient decay in radius
near the fiber endpoints.
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F · ey for u = ey F · ex for u = ex
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0.01 -2.4498 -2.4618 -1.5245 -1.5302 0.0461
0.005 -2.1579 -2.1673 -1.3051 -1.3094 0.0265
0.0025 -1.9281 -1.9358 -1.1408 -1.1442 0.0150
0.00125 -1.7426 -1.7491 -1.0133 -1.0159 0.0084

Table 1: Comparison of the computed (via expression (4)) and exact (from Chwang and
Wu [5]) Stokes drag force F on a slender prolate spheroid of length 2

√
1/4 + ε2 with

semi-major axis aligned with the x-axis. Columns 2 and 3 compare the y-component of
F for a spheroid translating with unit speed in the y-direction, while columns 4 and 5
compare the x-component of F for translation in the x-direction. Note that for both
directions, the force difference decreases with ε, but not quite at the expected ε log ε rate.
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Figure 2: Force per unit length f(s), s ∈ [−1/2, 1/2], along the prolate spheroid with
semi-major axis aligned with the x-axis. The left figure shows the y-component of the
force density for the cylinder translating with unit speed in the y-direction, while the
right figure shows the x-component of the force density for the cylinder translating in
the x-direction. Note that in both flows the force density f(s) decays to near zero at
s = ±1/2, as expected.

density, it appears that what we are doing instead here is ignoring a certain (small) amount
of force contribution from the very ends of the fiber (between 1/2 ≤ |s| ≤

√
1/4 + ε2).

Whether or not this is a good approximation is unclear – it is possible that the same force
density could result from flows that differ slightly at the actual fiber endpoints. However,
it appears that because f(s) decays so rapidly at s = ±1/2, any force contribution beyond
this would be negligible. This may indicate that sufficient decay in the slender body radius
toward the endpoints of the fiber ensures that the endpoints (beyond |s| = 1/2) are not
contributing a significant amount to the total force and thus can be safely ignored.

To test the formulation (4) for a different choice of radius function r(s), we next consider
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the drag force on a straight cylinder with uniform radius everywhere along its length except
for hemispherical caps at the fiber endpoints. In particular, we take the cylinder to be
the same length as the prolate spheroid (actual fiber endpoints at s = ±

√
1/4 + ε2) with

a radius that decays smoothly to zero at the endpoint via a hemispherical cap of radius
ε centered at dε =

√
1/4 + ε2 − ε:

εr(s) =




ε, −dε ≤ s ≤ dε√
ε2 − (s+ dε)2, s < −dε√
ε2 − (s− dε)2, s > dε

dε :=
√

1/4 + ε2 − ε.

As in the case of the prolate spheroid, we distribute the force density f(s) along the
interval [−1/2, 1/2]. Using (4) to find F in the same way as in the case of the prolate
spheroid, we compare the resulting drag force with the asymptotic expression derived by
Keller and Rubinow [16] in table 2.

F · ey for u = ey F · ex for u = ex

ε Eqn (4) Keller-Rubinow Eqn (4) Keller-Rubinow ε |log ε|
0.01 -2.6433 -2.6401 -1.6864 -1.6712 0.0461
0.005 -2.3085 -2.3024 -1.4216 -1.4094 0.0265
0.0025 -2.0472 -2.0417 -1.2274 -1.2189 0.0150
0.00125 -1.8384 -1.8342 -1.0796 -1.0738 0.0084

Table 2: Comparison of the computed (via expression (4)) and asymptotic (from Keller
and Rubinow [16]) Stokes drag force F on a cylinder of length 2

√
1/4 + ε2 with hemi-

spherical endpoints and with centerline along the x-axis. Columns 2 and 3 compare the
y-component of F for a cylinder translating with unit speed in the y-direction, while
columns 4 and 5 compare the x-component of F for translation in the x-direction. Here
the expected ε log ε scaling of the difference between forces is less apparent, particularly
in the y-direction. This may be due to endpoint effects (see figure 3).

The computed drag force in table 2 agrees well with the asymptotic expression of
Keller and Rubinow [16]; however, the computed force-per-unit-length f(s) is not as
physically reasonable at the fiber endpoints. According to [22], in the case of a cylinder
with hemispherical caps, we actually want a faster rate of decay in the force near the
fiber endpoints – in particular, we need f(s)/(1/4 − s2) ∈ C(−1/2, 1/2). However, as
shown in figure 3, flow about the cylinder results in wild oscillations in f(s) near the fiber
endpoints. Possibly this indicates that this method (and likely others based on slender
body theory) are really designed to treat prolate spheroids with sufficient decay in radius
near the fiber endpoints.
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Figure 3: Force per unit length f(s), s ∈ [−1/2, 1/2], along the uniform cylinder with
hemispherical caps at the endpoints and centerline aligned with the x-axis. The left figure
shows the y-component of the force density for the cylinder translating with unit speed in
the y-direction, while the right figure shows the x-component of the force density for the
cylinder translating in the x-direction. Comparing with figure 2, it is clear that the shape
of the radius function r(s) at the fiber endpoint has a large effect on f(s). In particular,
despite the decay in f(s) at the very endpoint of the fiber, the oscillations leading up to
the endpoint brings the physical validity of this force density into question.

3.3 Closed loops in constant flow

To validate the slender body approximation (4) in the closed loop setting (I = T),
we compute the Stokes drag about a translating thin torus of length 1 with centerline
in the xy-plane and axis of symmetry about the z-axis. We compare the computed drag
force for various values of ε to the asymptotic expression of Johnson and Wu [15] (see
table 3). Note that for the thin filaments that we consider here, the Johnson and Wu
expression for the drag force corresponds well with the semianalytic expression for a torus
translating in the z-direction, derived by Majumdar and O’Neill [18] with corrections by
Amarakoon, et al. [1]. The Majumdar-O’Neill expression, consisting of an infinite sum of
Legendre functions, holds for general values of s0, where s0 is defined to be the ratio of the
outer radius of the torus (measured centerline to longitudinal axis) to the cross sectional
radius. In [1], Amarakoon, et al. numerically verify the reported O(s−2

0 ) accuracy of the
Johnson-Wu expression. In our case, we are mainly concerned with the parameter region
s0 = 1/(2πε) > 10, so the Johnson-Wu expression agrees with the exact expression for
Stokes drag in the z-direction to at least two digits.

Since the torus centerline X(s) is planar, we choose the normal vector cos(2πs)ex +
sin(2πs)ey to also lie in the xy-plane. The integral term in (4) is discretized using the
trapezoidal rule, and the number of discretization points n along the fiber centerline is
taken to be n = 2/ε. Given zero background flow and uniform unit speed in the z-
direction (columns 2 and 3, table 3) and y-direction (columns 4 and 5, table 3), the
discretized operator (4) is inverted to find the force per unit length f(s), which is then
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summed over s to find the drag force F . We plot the calculated f(s) in figure 4 to verify
that the computed force density makes physical sense. For all computations, we take the
viscosity µ = 1.

F · ez for u = ez F · ey for u = ey

ε Eqn (4) Johnson-Wu Eqn (4) Johnson-Wu ε |log ε|
0.01 -2.4093 -2.3503 -1.8740 -1.8292 0.0461
0.005 -2.1076 -2.0806 -1.6309 -1.6103 0.0265
0.0025 -1.8788 -1.8664 -1.4484 -1.4389 0.0150
0.00125 -1.6979 -1.6922 -1.3051 -1.3007 0.0084

Table 3: We consider a translating slender torus of length 1 with centerline lying in
the xy-plane, and compare the resulting Stokes drag force given by the slender body
model (expression (4)) to the asymptotic expression calculated by Johnson and Wu [15].
Columns 2 and 3 compare the z-component of the drag force for a slender torus translating
with speed 1 in the z-direction (“broadwise translation”), while columns 4 and 5 show the
y-component of the drag for translation in the y-direction (“translation perpendicular to
the longitudinal axis”). Here we can see an approximate ε log ε scaling in the difference
between the two expressions.

Our method agrees quite well with the asymptotic expression of Johnson and Wu –
as expected, table 3 shows roughly an O(ε log ε) difference between the slender body
approximation to the drag force and the asymptotic expression. This is encouraging since
both (4) and the Johnson-Wu asymptotics are based on the Stokeslet/doublet expression
(3). We have chosen these particular values of ε so that our method can also be compared
with the regularized Stokeslet method of Cortez and Nicholas [7].

3.4 Free ended fibers in shear flow

In this section we calculate the angular momentum of a prolate spheroid with aspect
ratio λ = 1/ε in the shear flow field u(z) = (z, 0, 0)T. The torques are derived using both
slender body theory (equation (4)) and the Jeffery model (equation (5)) for comparison.
Figure 5a shows how the torque of the ellipsoid varies as a function of its orientation.
Here, θ2 is the second Euler angle and θ2 = [−π/2, π/2] corresponds to a full revolution
about the y-axis. We see that the torques agree at θ2 = ±π/2 and the discrepancy
between the two models increases as the orientation approaches alignment in the shear
plane; in particular, the torque in the slender body model goes to zero but the Jeffery
torque remains bounded away from zero. Since the fluid velocity is exactly zero along the
particle centerline, the slender body model does not yield a torque on the particle. On
the other hand, in the Jeffery model, the spheroid is aware of the non-zero fluid velocity
gradient, and hence experiences a non-zero torque at this orientation.

Figure 5b shows the difference between the y-component of the torques due to Jeffery
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Figure 3: Force per unit length f(s), s ∈ [−1/2, 1/2], along the uniform cylinder with
hemispherical caps at the endpoints and centerline aligned with the x-axis. The left figure
shows the y-component of the force density for the cylinder translating with unit speed in
the y-direction, while the right figure shows the x-component of the force density for the
cylinder translating in the x-direction. Comparing with figure 2, it is clear that the shape
of the radius function r(s) at the fiber endpoint has a large effect on f(s). In particular,
despite the decay in f(s) at the very endpoint of the fiber, the oscillations leading up to
the endpoint brings the physical validity of this force density into question.

3.3 Closed loops in constant flow

To validate the slender body approximation (4) in the closed loop setting (I = T),
we compute the Stokes drag about a translating thin torus of length 1 with centerline
in the xy-plane and axis of symmetry about the z-axis. We compare the computed drag
force for various values of ε to the asymptotic expression of Johnson and Wu [15] (see
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expression for the drag force corresponds well with the semianalytic expression for a torus
translating in the z-direction, derived by Majumdar and O’Neill [18] with corrections by
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0 ) accuracy of the
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sin(2πs)ey to also lie in the xy-plane. The integral term in (4) is discretized using the
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taken to be n = 2/ε. Given zero background flow and uniform unit speed in the z-
direction (columns 2 and 3, table 3) and y-direction (columns 4 and 5, table 3), the
discretized operator (4) is inverted to find the force per unit length f(s), which is then
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summed over s to find the drag force F . We plot the calculated f(s) in figure 4 to verify
that the computed force density makes physical sense. For all computations, we take the
viscosity µ = 1.

F · ez for u = ez F · ey for u = ey

ε Eqn (4) Johnson-Wu Eqn (4) Johnson-Wu ε |log ε|
0.01 -2.4093 -2.3503 -1.8740 -1.8292 0.0461
0.005 -2.1076 -2.0806 -1.6309 -1.6103 0.0265
0.0025 -1.8788 -1.8664 -1.4484 -1.4389 0.0150
0.00125 -1.6979 -1.6922 -1.3051 -1.3007 0.0084

Table 3: We consider a translating slender torus of length 1 with centerline lying in
the xy-plane, and compare the resulting Stokes drag force given by the slender body
model (expression (4)) to the asymptotic expression calculated by Johnson and Wu [15].
Columns 2 and 3 compare the z-component of the drag force for a slender torus translating
with speed 1 in the z-direction (“broadwise translation”), while columns 4 and 5 show the
y-component of the drag for translation in the y-direction (“translation perpendicular to
the longitudinal axis”). Here we can see an approximate ε log ε scaling in the difference
between the two expressions.

Our method agrees quite well with the asymptotic expression of Johnson and Wu –
as expected, table 3 shows roughly an O(ε log ε) difference between the slender body
approximation to the drag force and the asymptotic expression. This is encouraging since
both (4) and the Johnson-Wu asymptotics are based on the Stokeslet/doublet expression
(3). We have chosen these particular values of ε so that our method can also be compared
with the regularized Stokeslet method of Cortez and Nicholas [7].

3.4 Free ended fibers in shear flow

In this section we calculate the angular momentum of a prolate spheroid with aspect
ratio λ = 1/ε in the shear flow field u(z) = (z, 0, 0)T. The torques are derived using both
slender body theory (equation (4)) and the Jeffery model (equation (5)) for comparison.
Figure 5a shows how the torque of the ellipsoid varies as a function of its orientation.
Here, θ2 is the second Euler angle and θ2 = [−π/2, π/2] corresponds to a full revolution
about the y-axis. We see that the torques agree at θ2 = ±π/2 and the discrepancy
between the two models increases as the orientation approaches alignment in the shear
plane; in particular, the torque in the slender body model goes to zero but the Jeffery
torque remains bounded away from zero. Since the fluid velocity is exactly zero along the
particle centerline, the slender body model does not yield a torque on the particle. On
the other hand, in the Jeffery model, the spheroid is aware of the non-zero fluid velocity
gradient, and hence experiences a non-zero torque at this orientation.

Figure 5b shows the difference between the y-component of the torques due to Jeffery
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Figure 4: Force per unit length f(s), s ∈ T, along the slender torus with centerline in the
xy-plane. The left figure shows the z-component f(s) · ez for a slender body translating
with unit speed in the z-direction, while the right picture shows the y component f(s) ·ey

for translation with unit speed in the y-direction.

and slender body theory as a function of ε for different values of n. The particles are
oriented with θ2 = π/2, perpendicular to the shear plane. We see roughly O(ε log(ε))
convergence for the five largest values of ε. For smaller values of ε, the model converges
at a slower rate. This is similar to the observed convergence in the force values (table 1),
which are calculated for ε ≤ 10−2. In addition, the two models show better agreement as
the discretization parameter n is increased.

Figure 6 shows the the y-component from equation (1) of the torques due to slen-
der body theory and Jeffery. The ODE for angular momentum is solved using one of
MATLAB’s built in functions such as ode15s. The particles are aligned as before with
initial conditions m0 = (0, 0.1, 0)T and Euler angles (0, π/2, 0)T; hence the only non-zero
component of the angular momentum is my. We observe that for a relatively low aspect
ratio (i.e., figure 6a) the models do not agree so well, however λ = 5 is not considered to
be in the “slender” regime and we therefore do not expect good agreement here. As λ
increases, the dynamics become almost indistinguishable.

We now turn our attention to figure 7, which displays how the choice of the discretiza-
tion parameter n affects the solution quality. Figure 7a shows my for the slender body
model for different numbers of discretization points n and figure 7b shows its 40 highest
Fourier modes. The main observation here is that the model becomes more accurate as n
increases. In particular, if n is chosen to be too low (here, too low corresponds to roughly
less than 1/(2ε)) then the model does not resolve the low frequency modes, which can be
seen by the spike at k = 16 in figure 7b, where only the n = 50 and 100 lines are able to
reasonably capture this mode correctly.
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Figure 5: (a) The y-component of the torque for a prolate spheroid with λ = 100 for differ-
ent orientations in shear flow. The values θ2 = 0,±π/2 correspond to alignment parallel
and perpendicular to the shear plane, respectively. (b) The difference ∆Ny between the
y-component of the torques due to Jeffery and slender body theory for a prolate spheroid
of aspect ratio λ = 1/ε aligned in the z-direction in shear flow.

3.5 Closed loops and oblate spheroids in shear flow

In this section we compare the rotational dynamics of a thin torus modeled by slender
body theory to the rotational dynamics of an oblate disk of similar shape and mass.
This comparison differs from the prolate spheroid comparisons in that here the particle
shapes are different and we do not expect the two solutions to coincide. The slender torus
experiences a force only along its centerline, whilst the oblate spheroid experiences a force
all across its surface. In addition, the moment of inertia tensor for a torus of inner radius
2ε and of outer radius a (measured from the center of mass to the centerline) is given by

JT = mT diag

(
4 a2 + 5 ε2

8
,
4 a2 + 5 ε2

8
,
4 a2 + 3 ε2

4

)
.

Setting the mass of the torus to mT = 2mp/5, where mp is the mass of the spheroid,
we have the relation J − JT = O(ε2) for an oblate spheroid with semi minor axis length
b = ε. Due to the particle shape, the oblate spheroid experiences a much stronger torque;
hence for the torques to be of the same magnitude, a viscosity of µT = 200µ is chosen
for the torus. The particles are placed at rest in the shear flow with the initial Euler
angles (0.01, 0.01, 0.01). We do this for two reasons: the first being that the Euler angles
(0, 0, 0) correspond to a neutrally stable orbit where the ellipsoid exhibits a tumbling
motion forever. The second reason is that these angles correspond to exact alignment in
the xy plane, where the slender model will not experience a force since the fluid velocity
is exactly zero.
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Figure 4: Force per unit length f(s), s ∈ T, along the slender torus with centerline in the
xy-plane. The left figure shows the z-component f(s) · ez for a slender body translating
with unit speed in the z-direction, while the right picture shows the y component f(s) ·ey

for translation with unit speed in the y-direction.

and slender body theory as a function of ε for different values of n. The particles are
oriented with θ2 = π/2, perpendicular to the shear plane. We see roughly O(ε log(ε))
convergence for the five largest values of ε. For smaller values of ε, the model converges
at a slower rate. This is similar to the observed convergence in the force values (table 1),
which are calculated for ε ≤ 10−2. In addition, the two models show better agreement as
the discretization parameter n is increased.

Figure 6 shows the the y-component from equation (1) of the torques due to slen-
der body theory and Jeffery. The ODE for angular momentum is solved using one of
MATLAB’s built in functions such as ode15s. The particles are aligned as before with
initial conditions m0 = (0, 0.1, 0)T and Euler angles (0, π/2, 0)T; hence the only non-zero
component of the angular momentum is my. We observe that for a relatively low aspect
ratio (i.e., figure 6a) the models do not agree so well, however λ = 5 is not considered to
be in the “slender” regime and we therefore do not expect good agreement here. As λ
increases, the dynamics become almost indistinguishable.

We now turn our attention to figure 7, which displays how the choice of the discretiza-
tion parameter n affects the solution quality. Figure 7a shows my for the slender body
model for different numbers of discretization points n and figure 7b shows its 40 highest
Fourier modes. The main observation here is that the model becomes more accurate as n
increases. In particular, if n is chosen to be too low (here, too low corresponds to roughly
less than 1/(2ε)) then the model does not resolve the low frequency modes, which can be
seen by the spike at k = 16 in figure 7b, where only the n = 50 and 100 lines are able to
reasonably capture this mode correctly.
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Figure 5: (a) The y-component of the torque for a prolate spheroid with λ = 100 for differ-
ent orientations in shear flow. The values θ2 = 0,±π/2 correspond to alignment parallel
and perpendicular to the shear plane, respectively. (b) The difference ∆Ny between the
y-component of the torques due to Jeffery and slender body theory for a prolate spheroid
of aspect ratio λ = 1/ε aligned in the z-direction in shear flow.

3.5 Closed loops and oblate spheroids in shear flow

In this section we compare the rotational dynamics of a thin torus modeled by slender
body theory to the rotational dynamics of an oblate disk of similar shape and mass.
This comparison differs from the prolate spheroid comparisons in that here the particle
shapes are different and we do not expect the two solutions to coincide. The slender torus
experiences a force only along its centerline, whilst the oblate spheroid experiences a force
all across its surface. In addition, the moment of inertia tensor for a torus of inner radius
2ε and of outer radius a (measured from the center of mass to the centerline) is given by

JT = mT diag

(
4 a2 + 5 ε2

8
,
4 a2 + 5 ε2

8
,
4 a2 + 3 ε2

4

)
.

Setting the mass of the torus to mT = 2mp/5, where mp is the mass of the spheroid,
we have the relation J − JT = O(ε2) for an oblate spheroid with semi minor axis length
b = ε. Due to the particle shape, the oblate spheroid experiences a much stronger torque;
hence for the torques to be of the same magnitude, a viscosity of µT = 200µ is chosen
for the torus. The particles are placed at rest in the shear flow with the initial Euler
angles (0.01, 0.01, 0.01). We do this for two reasons: the first being that the Euler angles
(0, 0, 0) correspond to a neutrally stable orbit where the ellipsoid exhibits a tumbling
motion forever. The second reason is that these angles correspond to exact alignment in
the xy plane, where the slender model will not experience a force since the fluid velocity
is exactly zero.
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Figure 6: The y-component of the angular momentum of a particle in shear flow calculated
from slender body theory (blue) and Jeffery (black, dashed). The aspect ratio takes
different values in the range λ ∈ [10, 100]. The simulation parameters are µ = 0.06, n = 2
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Figure 7: The y-component of the angular momentum of a particle in shear flow (a) and
the first 40 Fourier modes (b). The colored lines are calculated from slender body theory
with discretization parameter varying in the range n ∈ [12, 100] and the dashed line is due
to Jeffery. The simulation parameters are µ = 0.01 and λ = 50 and m0 = (0, 0.11, 0)T.

Challabotla et al. [4] conduct a similar experiment with oblate spheroids in shear flow
and observe two phases of rotation: (1) an unstable wobbling phase of length proportional
to the particle inertia, and (2) a stable rolling phase, where the spheroid aligns and rolls
perfectly in the shear plane. Figure 8 shows m(t) for the thin ring with ε = 1/100 and
oblate spheroid with λ = 1/100 for three different values of µ (and the corresponding
values of µT ). For the spheroid model, we observe the temporary initial wobbling phase
followed by the stable rolling phase where the particle rotates in the shear plane with
a constant mz component. In addition, as the relative particle inertia increases (that
is, as the µ decreases), the wobbling phase is prolonged. These two observations are in
agreement with the results in [4]. If we turn our attention to the thin ring, we observe some
similarities: there is an initial wobbling phase followed by a somewhat different rolling
phase. In the rolling phase, the particle’s symmetry axis (the z-axis in the particle frame)
precesses about the y-axis in the inertial frame. This is seen as oscillations in the mx and
my components about a mean zero value, which in turn affects the mz component. A
possible explanation for this precession is the fact that the slender ring does not experience
a torque in the x or y directions (i.e., a restoring torque) when the axis of symmetry aligns
perfectly with the y-axis in the inertial frame, since the gradient of the fluid velocity is
not used in the calculation of the slender body torque. Hence the ring is susceptible
to wobbling/precession at this orientation. This is in contrast with the spheroid, which
experiences a non-zero torque in shear flow because of the positive fluid velocity gradient,
regardless of the particle orientation. These discrepancies may not appear in more complex
3D flows and geometries.
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Figure 6: The y-component of the angular momentum of a particle in shear flow calculated
from slender body theory (blue) and Jeffery (black, dashed). The aspect ratio takes
different values in the range λ ∈ [10, 100]. The simulation parameters are µ = 0.06, n = 2
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Figure 7: The y-component of the angular momentum of a particle in shear flow (a) and
the first 40 Fourier modes (b). The colored lines are calculated from slender body theory
with discretization parameter varying in the range n ∈ [12, 100] and the dashed line is due
to Jeffery. The simulation parameters are µ = 0.01 and λ = 50 and m0 = (0, 0.11, 0)T.

Challabotla et al. [4] conduct a similar experiment with oblate spheroids in shear flow
and observe two phases of rotation: (1) an unstable wobbling phase of length proportional
to the particle inertia, and (2) a stable rolling phase, where the spheroid aligns and rolls
perfectly in the shear plane. Figure 8 shows m(t) for the thin ring with ε = 1/100 and
oblate spheroid with λ = 1/100 for three different values of µ (and the corresponding
values of µT ). For the spheroid model, we observe the temporary initial wobbling phase
followed by the stable rolling phase where the particle rotates in the shear plane with
a constant mz component. In addition, as the relative particle inertia increases (that
is, as the µ decreases), the wobbling phase is prolonged. These two observations are in
agreement with the results in [4]. If we turn our attention to the thin ring, we observe some
similarities: there is an initial wobbling phase followed by a somewhat different rolling
phase. In the rolling phase, the particle’s symmetry axis (the z-axis in the particle frame)
precesses about the y-axis in the inertial frame. This is seen as oscillations in the mx and
my components about a mean zero value, which in turn affects the mz component. A
possible explanation for this precession is the fact that the slender ring does not experience
a torque in the x or y directions (i.e., a restoring torque) when the axis of symmetry aligns
perfectly with the y-axis in the inertial frame, since the gradient of the fluid velocity is
not used in the calculation of the slender body torque. Hence the ring is susceptible
to wobbling/precession at this orientation. This is in contrast with the spheroid, which
experiences a non-zero torque in shear flow because of the positive fluid velocity gradient,
regardless of the particle orientation. These discrepancies may not appear in more complex
3D flows and geometries.
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Figure 8: The angular momentum components of a thin ring (left column) and an oblate
spheroid (right column) for µ0 = 0.01, 0.001 and 0.0001 (from top to bottom). The
particle parameters are ε = 1
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4 Conclusion

In this paper we consider a model for thin, rigid fibers in viscous flows based on
slender body theory. We investigate using the slender body approximation for the fluid
field away from the fiber centerline as an approximation for the motion of the fiber itself
by evaluating the expression on a curve along the slender body surface. Numerically, this
yields a matrix equation for the force density along the length of the fiber that appears
to be suitable for inversion even for very fine discretization of the fiber centerline.

For simple geometries and simple flows, we compare the slender body model to exact or
asymptotically accurate expressions for the total force and torque acting on the particle.
For the thin prolate spheroid, we compare the Stokes drag force predicted by slender
body theory to the exact expression of Chwang and Wu [5]; for the cylinder, we compare
with the asymptotic expression of Keller and Rubinow [16]; and for the thin torus, we
compare with the asymptotic force expression of Johnson and Wu [15]. In the case of the
prolate spheroid and the thin torus, we find essentially O(ε log ε) agreement between our
model and the exact or asymptotically accurate force values (tables 1 and 3), which is the
accuracy predicted by rigorous error analyses [21, 22].

We also compared the torques on a thin prolate spheroid in shear flow for which the
exact torques are given by Jeffery [13]. In the case of a thin torus, we qualitatively
compared the dynamics of the torus with the Jeffery torques on an oblate spheroid of
similar size. For the prolate spheroid, we found good agreement between our model and
the Jeffery model, especially as the aspect ratio of the particle increases. In particular, in
the slender body model, the dynamics appear to be better resolved for finer discretization
of the filament (large n). For the thin torus, we observe somewhat similar results to those
of Challabotla [4] for oblate spheroids; namely, we observe an initial “wobbling” phase
followed by a steady “rolling” phase. The main difference is that in the rolling phase,
the thin torus precesses about the directions perpendicular to the shear plane, while the
spheroid maintains a constant angular momentum. This may be due to the fact that the
slender model does not explicitly experience torque through the gradient, but only the
values of the fluid velocity at the location of the centerline.

In the future, we aim to use this model to simulate elongated particles to determine
the length scale at which the Jeffery model for prolate spheroids begins to lose validity
in turbulent flows. We also aim to study the aggregation properties of many slender
particles with more complicated shapes in turbulence (for example, helices or arbitrary
closed loops). On the theoretical side, we would also like to obtain a more complete
characterization of solvability conditions for the centerline equation. This would involve
a spectral analysis of the equation (4) as well as the slender body PDE of [21, 22].

A Other limiting slender body velocity expressions

Here we provide a brief overview of other methods used to obtain an expression for the
motion of the fiber centerline ∂X(s,t)

∂t
.
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Figure 8: The angular momentum components of a thin ring (left column) and an oblate
spheroid (right column) for µ0 = 0.01, 0.001 and 0.0001 (from top to bottom). The
particle parameters are ε = 1
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4 Conclusion

In this paper we consider a model for thin, rigid fibers in viscous flows based on
slender body theory. We investigate using the slender body approximation for the fluid
field away from the fiber centerline as an approximation for the motion of the fiber itself
by evaluating the expression on a curve along the slender body surface. Numerically, this
yields a matrix equation for the force density along the length of the fiber that appears
to be suitable for inversion even for very fine discretization of the fiber centerline.

For simple geometries and simple flows, we compare the slender body model to exact or
asymptotically accurate expressions for the total force and torque acting on the particle.
For the thin prolate spheroid, we compare the Stokes drag force predicted by slender
body theory to the exact expression of Chwang and Wu [5]; for the cylinder, we compare
with the asymptotic expression of Keller and Rubinow [16]; and for the thin torus, we
compare with the asymptotic force expression of Johnson and Wu [15]. In the case of the
prolate spheroid and the thin torus, we find essentially O(ε log ε) agreement between our
model and the exact or asymptotically accurate force values (tables 1 and 3), which is the
accuracy predicted by rigorous error analyses [21, 22].

We also compared the torques on a thin prolate spheroid in shear flow for which the
exact torques are given by Jeffery [13]. In the case of a thin torus, we qualitatively
compared the dynamics of the torus with the Jeffery torques on an oblate spheroid of
similar size. For the prolate spheroid, we found good agreement between our model and
the Jeffery model, especially as the aspect ratio of the particle increases. In particular, in
the slender body model, the dynamics appear to be better resolved for finer discretization
of the filament (large n). For the thin torus, we observe somewhat similar results to those
of Challabotla [4] for oblate spheroids; namely, we observe an initial “wobbling” phase
followed by a steady “rolling” phase. The main difference is that in the rolling phase,
the thin torus precesses about the directions perpendicular to the shear plane, while the
spheroid maintains a constant angular momentum. This may be due to the fact that the
slender model does not explicitly experience torque through the gradient, but only the
values of the fluid velocity at the location of the centerline.

In the future, we aim to use this model to simulate elongated particles to determine
the length scale at which the Jeffery model for prolate spheroids begins to lose validity
in turbulent flows. We also aim to study the aggregation properties of many slender
particles with more complicated shapes in turbulence (for example, helices or arbitrary
closed loops). On the theoretical side, we would also like to obtain a more complete
characterization of solvability conditions for the centerline equation. This would involve
a spectral analysis of the equation (4) as well as the slender body PDE of [21, 22].

A Other limiting slender body velocity expressions

Here we provide a brief overview of other methods used to obtain an expression for the
motion of the fiber centerline ∂X(s,t)

∂t
.
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One such method is that of Lighthill [17] in which, away from s = s′, we simply plug
x = X(s) into the integral expression (3) (note that the doublet has negligible effect away
from s = s′). Near s = s′, under the assumption that the centerline is essentially straight
and the force density is approximately constant within this small region, the expression
(3) can be evaluated exactly to obtain

8πµ
(
uL(s, t)− u0(X(s, t), t)

)
= 2(I− ese

T
s )f(s, t) +

∫

|R0|>δ

(
I

|R0|
+

R0R
T
0

|R0|3

)
f(s′, t) ds′;

R0(s, s
′, t) = X(s, t)−X(s′, t), δ = εr(s)

√
e/2.

Here uL(s, t) approximates ∂X(s,t)
∂t

, the actual motion of the fiber centerline, and u0(X(s, t), t)
is the fluid flow at the spatial point x = X(s, t) in the absence of the fiber.

Another popular method is that of Keller and Rubinow [16] in which the expression
(3) is evaluated on the actual slender body surface (i.e. at a distance εr(s) from X(s, t))
and the method of matched asymptotics is used to obtain an expression for ε = 0. In the
far field (away from s = s′), (3) is simply Taylor expanded about ε = 0. In the near field
(near s = s′), the expression (3) is rewritten in terms of the rescaled variable ξ = (s−s′)/ε
and then expanded about ε = 0. The far- and near-field expressions are then matched
to create a centerline velocity expression that includes a local operator and a singular
finite-part non-local operator:

8πµ
(
uKR(s, t)− u0(X(s, t), t)

)
= −Λ[f ](s, t)−K[f ](s, t).

In the free end setting, the operators Λ and K are given by

Λ[f ](s, t) :=
[
(I− 3ese

T
s ) + (I+ ese

T
s )L(s)

]
f(s, t)

K[f ](s, t) :=

∫ 1/2

−1/2

[(
I

|R0|
+

R0R
T
0

|R0|3

)
f(s′, t)− I+ es(s)es(s)

T

|s− s′|
f(s, t)

]
ds′,

where L(s) = log
(2(1/4−s2)+2

√
(1/4−s2)2+4ε2r2(s)

ε2r2(s)

)
. Note that we define L in this way to

avoid singularities at the fiber endpoints; thus this L differs slightly from the expression
given by [11] or the expression in [27].

In the closed loop setting, Λ and K are given by

Λ[f ](s, t) :=
[
(I− 3ese

T
s )− 2(I+ ese

T
s ) log(πε/4)

]
f(s, t)

K[f ](s, t) :=

∫

T

[(
I

|R0|
+

R0R
T
0

|R0|3

)
f(s′, t)− I+ es(s)es(s)

T

| sin(π(s− s′))/π|
f(s, t)

]
ds′.

However, a spectral analysis of the Keller-Rubinow operator −(Λ+K) in the case of
simple fiber geometries (see Götz [11] for the straight centerline and Shelley and Ueda
[24] for the circular centerline) shows that the Keller-Rubinow expression is not suitable
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for inversion. In particular, the operator −(Λ +K) has a vanishing or nearly vanishing
eigenvalue at some wavenumber k ∼ 1/ε. This high wavenumber instability limits the level
to which the fiber can be discretized for numerics. It seems likely that more complicated
centerline geometries also lead to a similar conclusion. Therefore in order to use the
Keller-Rubinow expression for numerical simulations, the kernel of the operator K must
be regularized. For example, in [24, 27], the denominators in the kernel of K are replaced

by
√
|R0|2 + δ2 and

√
sin2(π(s− s′))/π2 + δ2, where δ = δ(ε) is chosen according to the

fiber radius to maintain the same asymptotic accuracy as the Keller-Rubinow expression.
This regularization, however, lacks a physical justification and clear connection to the
expression (3).

Another common technique for describing the motion of the fiber centerline is to instead
use the method of regularized Stokeslets (see [3, 6, 7]) to obtain an alternate version of
(3). In this method, the Stokeslet is approximated by the (smooth) solution to

−µ∆u+∇p = fφδ(x), divu = 0

where φδ is a smooth, radially symmetric function with
∫
R3 φδ = 1. The parameter δ

determines the spread of φδ and, in the case of slender body theory, is usually chosen
such that δ ∼ ε. The slender body approximation is then constructed as in (3), but
now the resulting expression is not singular at x = X(s), and the velocity of the slender
body itself may be approximated by simply evaluating the regularized expression along the
fiber centerline. The method of regularized Stokeslets can be used to construct regularized
versions of the Lighthill and Keller-Rubinow expressions [7]. However, from the outset,
the method of regularized Stokeslets approximates a slightly different problem from (3),
and it is not entirely clear that these solutions should be close for any δ. The choice of
regularization parameter δ greatly affects the resulting dynamics; however, a systematic
justification for this parameter choice is lacking.
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Abstract. The Norwegian coast presents complex bathymetry due to the deep and
wide fjords. The complexity includes significant water depth variation, deep water con-
dition and irregular coastlines. Despite that phase-averaged spectral wave models are
still widely used in coastal engineering, phase-resolved models are needed to represent
more wave transformation phenomena such as diffraction and to provide time domain
information. Computational fluid dynamics (CFD) wave models are seen to be able to
provide accurate phase-resolving simulations for a wide variety of wave hydrodynamic
phenomena. However, coastal wave propagation is typically a large-scale phenomenon
and CFD is too computationally demanding for such simulations. Many numerical mod-
els based on shallow water wave theories are more computationally efficient, but the usage
of such models are limited by the deep water conditions at the Norwegian fjords. Poten-
tial flow models have been proven to be effective for large-scale long duration sea state
simulation, however, the inclusion of irregular solid boundaries has been a challenging
task. In this paper, the authors present an efficient phase-resolving fully nonlinear po-
tential flow model with efficient and flexible boundary treatments to meet the challenge
of large-scale wave modelling over complex bathymetry. The model is developed as part
of the high-performance open-source hydrodynamics program REEF3D. The high-order
discretisation schemes and parallel computation support in REEF3D are directly inher-
ited by the new potential flow model. The complex bathymetry is efficiently represented
using the bottom-following σ-coordinate system. The coastlines are detected based on
the bed elevation and water depth. The model is validated with wave propagation over
a submerged bar in 2D. Then a large-scale 3D simulation over the natural topography at
Sulafjord is presented.
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provide accurate phase-resolving simulations for a wide variety of wave hydrodynamic
phenomena. However, coastal wave propagation is typically a large-scale phenomenon
and CFD is too computationally demanding for such simulations. Many numerical mod-
els based on shallow water wave theories are more computationally efficient, but the usage
of such models are limited by the deep water conditions at the Norwegian fjords. Poten-
tial flow models have been proven to be effective for large-scale long duration sea state
simulation, however, the inclusion of irregular solid boundaries has been a challenging
task. In this paper, the authors present an efficient phase-resolving fully nonlinear po-
tential flow model with efficient and flexible boundary treatments to meet the challenge
of large-scale wave modelling over complex bathymetry. The model is developed as part
of the high-performance open-source hydrodynamics program REEF3D. The high-order
discretisation schemes and parallel computation support in REEF3D are directly inher-
ited by the new potential flow model. The complex bathymetry is efficiently represented
using the bottom-following σ-coordinate system. The coastlines are detected based on
the bed elevation and water depth. The model is validated with wave propagation over
a submerged bar in 2D. Then a large-scale 3D simulation over the natural topography at
Sulafjord is presented.
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1 INTRODUCTION

As part of the National Transport Plan (NTP), the coastal highway project E39 aimes
to build a continuous ferry-free road connection between Kristiansand and Trondheim
along the west coast of Norway. The route covers around 1100 km with seven major
fjord crossings [10]. With the fjords connected by bridges, the traveling time between
Kristiansand and Trondheim is estimated to be reduced by half. However, the broad and
deep fjords challenge the traditional long-span bridge design and therefore floating bridges
are proposed for several fjord crossings. Consequently, the knowledge of wave behaviours
inside the fjords is more critical. A computationally efficient numerical wave model will
contribute to the safe and cost-efficient bridge designs and adaptive engineering solutions
for future scenarios in a changing climate.

The commonly used coastal wave models are in general within three categories, the
spectral wave model, the shallower wave model and the potential flow model. The third-
generation spectral wave model SWAN [6] is an efficient wave model solving the energy
action balance equations for the wave field. However, it only provides phase-averaged
solution in frequency domain and fails where strong diffraction takes place [23, 22]. Two
dimensional phase-resolving wave models based on shallow water assumptions, such as
the various Boussineq-type models [15, 18], are seen to be effective tools for the wave
simulation at shallow water condition with mild changes of bathymetry. However, Nor-
wegian coasts usually have deepwater condition inside the fjords. For example, the wave
length of a typical swell at the entrance of Sulafjord is estimated to be about 450 m, while
the deepest water depth also reaches 450 m, creating a typical deepwater wave scenario.
With such water condition, the shallow water models cannot be applied at a typical Nor-
wegian coast. With the goal of simulation large-scale wave propagation, turbulence and
viscosity are not as significant as they are for local phenomena such as breaking wave
and wave-structure interactions. In this case, wave models based on potential flow theory
proves to be an ideal alternative since they are usually computationally efficient and the
application is not limited by wave depth. The high-order spectrum (HOS) model such as
HOS-NWT [8] and HOS-Ocean [9] and the fully nonlinear potential flow model such as
OceanWave3D [11] are the representative models of the kind. However, the Fast Fourier
Transform (FFT) based HOS models are not flexible enough for significant water depth
changes and the curvilinear grid used in OceanWave3D demands extra efforts for the
grid generation at complex coastlines. An efficient boundary treatment algorithm and an
effective grid generation method are needed to enable a potential flow solver for efficient
wave modelling at the Norwegian coastal water.

In this presented manuscript, the authors propose a new fully-nonlinear potential flow
(FNPF) model that provides both computational efficiency and effective treatments for
the complex coastal boundaries. The proposed FNPF model solves the Laplace equation
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on a σ-grid with a finite difference method. The σ-grid follows the bottom topography
as well as the free surface elevation, offering a robust and flexible solution for varying
bathymetry. The irregular coastal topography is represented with an effective coast-
line algorithm based on the local water depth and seabed elevation. Relaxation zones are
arranged along the coastlines so that the reflection properties at the coastlines can be cus-
tomised based on site-specific scenarios. The combination of the σ-grid and the wetting-
drying scheme allows for effective grid generation for complex coastal topographies. The
model is developed as part of the open-source wave hydrostatic model REEF3D. The
code uses high-order discretisation schemes in space and time and provides fully paral-
lel computation using Message Passing Interface (MPI). The code has been widely used
for various hydrodynamic studies, for example, wave interactions with surface piercing
cylinders [7, 14], extreme wave generation [4], free falling objects into water [13], local
scour around a pipeline [1] and new developments of a non-hydrostatic Navier-Sokes solver
[3]. The proposed potential flow model REEF3D::FNPF inherits the high-order schemes
and parallel computation capacity from the REEF3D framework. In comparison to the
CFD solvers, the presented model is much more computationally efficient and ideal for
large-scale time domain analyses of wave propagation in the fjords. The flexibility and
efficiency of the model are described in detail by [5].

2 NUMERICAL MODEL

2.1 Governing equations

The governing equation for the proposed fully nonlinear potential flow model is the
Laplace equation:

∂2Φ

∂x2
+
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∂y2
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∂z2
= 0. (1)

Boundary conditions at the free surface and the bottom are required in order to solve
the governing equation for the velocity potential Φ. At the free surface, the fluid particles
remain at the surface at all times and the pressure in the fluid is equal to the atmospheric
pressure. These conditions form the kinematic and dynamic boundary conditions at the
free surface respectively:
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where η is the free surface elevation, Φ̃ = Φ(x, η, t) is the velocity potential at the free
surface, x = (x, y) represents the location at the horizontal plane and w̃ is the vertical
velocity at the free surface.

At the bottom, the vertical water velocity perpendicular to the boundary is zero as
the fluid particle cannot penetrate the solid boundary. This gives the bottom boundary
condition:
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= 0, z = −h. (4)

where h = h(x) is the water depth measured from the still water level to the seabed.

The Laplace equation, together with the boundary conditions are solved with a finite
difference method on a σ-grid. The σ-grid follows the water depth changes and therefore is
very adaptive to irregular boundaries. A Cartesian grid is transformed to a σ-coordinate
based on the following formulation:

σ =
z + h (x)

η(x, t) + h(x)
. (5)

Once the velocity potential Φ is obtained in the σ-coordinate system, the velocities can
then be calculated:
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The irregular coastlines are detected based on local bed elevation and water depth. In
comparison to the curvilinear approach, the method is straightforward and there is no
demand for complex grid generation in the horizontal plane. In order to customise the
reflection property of the coastlines, relaxation zones are applied along the solid boundary.
In this way, the model offers the flexibility to represent different types of coastlines.

The model offers different wave generation algorithms. In this study, a Neumann
boundary condition is used for wave generation at the inlet condition, where the velocity
potential at the boundary is calculated using the desired analytical horizontal velocity:

ϕi−1 = −u(x, z, t)�x+ ϕi. (9)
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where u(x, z, t) is the analytical horizontal velocity.

At the numerical beach, a relaxation method [16] is used to reduce the wave properties
to hydrostatic values following the relaxation function proposed by [16]:

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1]. (10)

where x̃ is a dimensionless length scaled to the length of the relaxation zone.

The Laplace equation is discretised using second-order central differences . It is then
solved using a parallelised geometric multi-grid preconditioned conjugated gradient solver
provided by Hypre [24]. High-order schemes are used for spatial and temporal discretisa-
tion. The convection terms at the free-surface boundary conditions are discretised with
the 5-order Hamilton-Jacobi version of the weighted essentially non-oscillatory (WENO)
scheme [12]. For the time treatment, a third-order TVD Runge-Kutta scheme [20] is used.
Adaptive time stepping is used by controlling a constant CFL number. The model sup-
ports parallel computation following the domain decomposition strategy. Ghost cells are
used to exchange information between adjacent domains. These ghost cells are updated
with the values from the neighbouring processors via Message Passing Interface (MPI).

The model is able to generate different types of regular and irregular waves. In
this study, a multi-directional irregular wave field is generated at Sulafjord. The JON-
SWAP spectrum suggested by DNV-GL and the Pierson-Neumann-James (PNJ) direc-
tional spreading function [19] are used to form the directional spectrum. The formulations
for the two spectra are shown in Eqn. 11 and Eqn. 14:
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Aγ = 1− 0.287ln(γ). (12)
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{
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(13)

where Hs is the significant wave height, ωp is the peak angular frequency, N is the
number of wave components, peak enhancement factor γ is typically chosen to be 3.3.

G(βj) =
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(14)
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where β is the principal direction and βj is the direction of each incident wave com-
ponent measured counterclockwise from the principal direction. The shape parameter n
determines the strength of the directional spreading. In the current study n = 20 is used
to represent a narrow spreading sea state.

Breaking waves are detected following certain breaking wave criteria. In deep water,
wave breaking criterion associated with wave steepness is used:

∂η

∂x
≥ β (15)

In shallow water domain, the depth-induced wave breaking is detected following this
criterion:

∂η

∂t
≥ α

√
gh. (16)

3 Numerical results

3.1 Wave propagation over a submerged bar

At first, the proposed model is validated with wave propagation over a submerged bar
[2]. The 2D numerical wave tank is 35 m long, the water depth at the input boundary
is 0.4 m. A Neumann boundary condition is arranged at the inlet boundary to gener-
ate waves. A numerical beach of two wavelengths 8.73 m is located at the outlet. The
submerged bar begins at x = 6 m and elevates following a slope of 1 : 20 until the top
platform at x = 12 m, with a height of 0.3 m. The top platform remains 2 m before
it starts a downwards slope of 1 : 10 and reaches the bottom at x = 17 m. Nine wave
gauges are located at x = 4.0 m, 10.5 m, 12.5 m, 13.5 m, 14.5 m, 15.7 m, 17.3 m, 19.0 m
and 21.0 m. The incident wave height is H = 0.02 m and the wavelength is L = 3.73 m.
The configurations of the numerical wave tank are shown in Fig. 1.

The simulation time is 35 s, the CFL number is kept at 1.0 and 10 σ-grid is used in
the vertical direction. The grid convergence study in the horizontal direction is shown in
Fig. 2, where 170 grid per wavelength is able to reach grid convergence and capture the
high-frequency wave components. With the chosen grid resolution, 16000 grids are used in
total. The time series at the nine wave gauges are shown in Fig. 3. It is seen that the wave
elevations in the numerical wave tank agree with the experimental measurements at all
the wave gauges during the entire wave transformation process. The wave shoaling effect
with increasing wave heights is clearly observed at the windwards side of the submerged
bar. The wave then decomposes into several higher frequency components at the lee
side of the submerged bar. Those high-frequency short waves are also well represented
in the numerical wave tank. In comparison, a CFD simulation requires 1322000 grids
to resolve the high-frequency wave components. With 4 cores on a Mac Book Pro, the
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Figure 1: Numerical wave tank setup of the wave propagation over a submerged bar. The
locations of the wave elevation gauges are marked with short vertical line segments from
1 to 9. The grey-shaded object is the submerged bar. A wave generation zone of 3.73
m and a numerical beach of 7.46 m are located at the left end and right end of the tank
respectively.

FNPF simulation takes 138 s, while the CFD simulation takes about 17 hours using 12
cores on a Mac Pro.

Experiment
L/dx=340
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L/dx=43

η[
m

]

−0.01

0

0.01

0.02

t [s]
30 31 32

Figure 2: Grid convergence study at wave gauge 8.

3.2 Wave propagation over natural bathymetry near Norwegian coast

With the capacity of modelling wave propagation over varying bathymetry and high
computational efficiency, the model is used to simulate large-scale wave propagation over
natural topography in Sulafjord. The bathymetry data is obtained from the Norwegian
Mapping Authority Kartverket. Fig. 4 shows the geographical domain of Sulafjord and
the proposed options of the fjord-crossing and the crossing locations [21]. The chosen
simulated area is shown as a black box in Fig. 4. The most dangerous wave direction for
the fjord is shown as a red arrow in Fig. 4 [17]. In this paper, narrow spreading multi-
directional irregular waves are simulated with the principal direction aligned with the
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respectively.

FNPF simulation takes 138 s, while the CFD simulation takes about 17 hours using 12
cores on a Mac Pro.
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Figure 2: Grid convergence study at wave gauge 8.

3.2 Wave propagation over natural bathymetry near Norwegian coast

With the capacity of modelling wave propagation over varying bathymetry and high
computational efficiency, the model is used to simulate large-scale wave propagation over
natural topography in Sulafjord. The bathymetry data is obtained from the Norwegian
Mapping Authority Kartverket. Fig. 4 shows the geographical domain of Sulafjord and
the proposed options of the fjord-crossing and the crossing locations [21]. The chosen
simulated area is shown as a black box in Fig. 4. The most dangerous wave direction for
the fjord is shown as a red arrow in Fig. 4 [17]. In this paper, narrow spreading multi-
directional irregular waves are simulated with the principal direction aligned with the
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Figure 3: Surface elevations of the wave transformation over a submerged bar. (a)-(i)
time series of the surface elevations at different wave gauges with 170 grids in one wave
length and CFL = 1.0.
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most dangerous wave direction. Therefore, the chosen domain is rotated in the numerical
wave tank (NWT) so that the inlet boundary is perpendicular to the most dangerous wave
direction. The resulting NWT has a Cartesian coordinate system with the x-axis ranging
from 0 to 10000 m and y-axis ranging from 0 to 9000 m.The ongoing field measurements
are conducted at three locations D, A and B, as shown in Fig.4. The coordinates of the
three wave gauges in UTM 33 coordinate system and in the coordinate system of the
numerical wave tank are listed in Table 1.

DA
B

Suspension Bridge

Floating Tunnel
Floating Bridge

I

(a) (b)

Figure 4: Illustration of the coastal area at Sulafjord, (a) locations of the wave gauges in
Sulafjord and the simulated domain shown as the black box. The red arrow indicates the
most dangerous wave direction for the fjord [17], (b) proposed fjord crossing options

Table 1: The wave height probes at Sulafjord

Probe denotation x (UTM) y (UTM) x (NWT) y (NWT)
I 31600.00 6957000.00 - -
D 33109.42 6956082.14 81.5 2050.7
A 38596.05 6953729.83 5155.4 5195.8
B 40026.88 6950883.83 8307.4 4735.5

The simulated input wave has a significant wave height 2.67 m and a peak period
16.86 s. The dimension of the numerical tank is 10000 m long and 9000 m wide and the
maximum water depth is 457 m. The wave generation boundary is shown as a black box
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Figure 3: Surface elevations of the wave transformation over a submerged bar. (a)-(i)
time series of the surface elevations at different wave gauges with 170 grids in one wave
length and CFL = 1.0.
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most dangerous wave direction. Therefore, the chosen domain is rotated in the numerical
wave tank (NWT) so that the inlet boundary is perpendicular to the most dangerous wave
direction. The resulting NWT has a Cartesian coordinate system with the x-axis ranging
from 0 to 10000 m and y-axis ranging from 0 to 9000 m.The ongoing field measurements
are conducted at three locations D, A and B, as shown in Fig.4. The coordinates of the
three wave gauges in UTM 33 coordinate system and in the coordinate system of the
numerical wave tank are listed in Table 1.
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Sulafjord and the simulated domain shown as the black box. The red arrow indicates the
most dangerous wave direction for the fjord [17], (b) proposed fjord crossing options

Table 1: The wave height probes at Sulafjord

Probe denotation x (UTM) y (UTM) x (NWT) y (NWT)
I 31600.00 6957000.00 - -
D 33109.42 6956082.14 81.5 2050.7
A 38596.05 6953729.83 5155.4 5195.8
B 40026.88 6950883.83 8307.4 4735.5

The simulated input wave has a significant wave height 2.67 m and a peak period
16.86 s. The dimension of the numerical tank is 10000 m long and 9000 m wide and the
maximum water depth is 457 m. The wave generation boundary is shown as a black box
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and the numerical beaches are shown as yellow boxes in Fig. 5. A grid size of 20 m is
used in the simulation ensuring 20 to 40 grids per wave length for the wave components
in the irregular wave field. 10 vertical grids are used, resulting in 2.475 million grids in
total, and the CFL is kept 1.0 during the simulation.

X

X

B

D

A

Figure 5: Bathymetry and numerical tank setup of the Sulafjord simulation. The black
box is the wave generation boundary, the yellow boxes are the numerical beaches.

A 11500 s simulation is performed with 64 processors on the supercomputer Vilje, en-
suring 3-hour time series at all three wave gauges. The computation time is 6.3 hours,
only twice the length of the simulated time. The model demonstrates a high computa-
tional efficiency and a relatively low demand for computational infrastructure, making it
appealing for industrial applications. The horizontal velocity field in the simulation is
shown in Figure. 6:
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Figure 6: Horizontal velocities in the wave field in the Sulafjord simulation.

It is seen that the multi-directional irregular wave field is well represented and the wave
diffraction and refraction phenomena can be clearly observed near the coastlines. With
the complex wave transformation and wave-wave interaction, the statistical properties
inside the fjord vary from location to location. To demonstrate this spatial variaiton, the
simulated wave height Hs, peak period Tp and wave steepness ε calculated using Hs and
Tp at the three wave gauges D, A and B are normalised by the input wave parameters
and compared in Figure. 7. Since D is located near the wave generation boundary, the
wave properties are close to the input wave. However, the waves are higher, shorter
and steeper at location A with the simulated sea state, indicating a more severe wave
condition. The phenomenon is assumed to be a result of a combination of the shoaling
process and wave reflection at location A. Further into the fjord towards location B, the
wave condition becomes milder again in comparison to location A. Generally, the wave
condition is possible to become more severe at some regions inside the fjord in comparison
to the input waves at the entrance of the fjord. This a phenomenon worth of attention in
the bridge design. However, in order to systematically study the wave behaviour inside
the fjord, more sea states need to be tested and the measured waves on site will provide
more realistic input wave condition.
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Tp at the three wave gauges D, A and B are normalised by the input wave parameters
and compared in Figure. 7. Since D is located near the wave generation boundary, the
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and steeper at location A with the simulated sea state, indicating a more severe wave
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process and wave reflection at location A. Further into the fjord towards location B, the
wave condition becomes milder again in comparison to location A. Generally, the wave
condition is possible to become more severe at some regions inside the fjord in comparison
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more realistic input wave condition.

11



378

W. Wang, C. Pakozdi , A. Kamath and H. Bihs

D A B

Figure 7: Variations of the normalised significant wave height Hs, peak period Tp and
wave steepness ε at the three wave gauges in the Sulafjord simulation. The horizontal
dashed line indicate the input wave properties.

4 CONCLUSIONS

A fully nonlinear potential flow model REEF3D::FNPF is described in the paper to
provide an efficient tool for the numerical simulation of wave propagation with com-
plex bathymetry and coastline in a large-scale domain. The model is validated against
experimental data of wave propagation over a submerged bar. The shoaling and wave
decomposition process are well represented and the time series at the designated wave
gauges agree with the experimental measurements. The numerical model is then used to
simulate waves in Sulafjord with complex bathymetry and coastline. A 3-hour simulation
with 2.475 million grids is finished within 6.3 hours using 64 cores on the supercomputer
Vilje. It marks a significant computational efficiency improvement and enables long dura-
tion wave simulation at large-scale domain. The complex wave transformation inside the
fjord is well represented. The comparison of the wave conditions at three locations inside
fjord shows that some locations might experience more severe wave condition than the
incoming waves due to the local wave transformation and interaction. Further investiga-
tions of inhomogeneity and cross-spectrum analyses can be performed with a specifically
arranged wave gauge array following the same methodology presented in the paper. The
computational efficiency enables more systematic studies and full-scale validations against
the wave measurements in the future.
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Abstract.  In the present study, an open-source multi-dimensional Eulerian two-phase 
flow solver, SedFoam (based on OpenFOAM) is used to investigate the scour process 
beneath piggyback pipelines near the seabed. In the present model, the fluid Reynolds 
stress is solved using a two-phase k-ε model and the particle stress are modeled by kinetic 
theory for granular flow. The influences of different gap ratios between the small and 
large pipelines of the piggyback on the scour depth, sediment profiles as well as the 
surrounding flow field are studied. 
 
 

1 INTRODUCTION 

Over the last decades, scour beneath a piggyback pipeline has been studied extensively 
by both experiments and numerical simulations. A piggyback pipeline consists of one 
large pipeline and a small one which is rigidly installed above the large one. It is found 
(Zhao & Cheng 2008; Zhao et al., 2015; Zhang et al., 2016 and 2017) that the scour depth 
beneath the piggyback is larger compared with that beneath a single pipeline. Furthermore, 
the scour depth increases with decreasing gap ratio between the two pipelines (Zhao & 
Cheng 2008). Two kinds of numerical methods have been devoted to the investigations 
of the sediment transport around the seabed. One of them is the single-phase model 
(Hoffmans & Pilarczyk 1995; Liu & Garcia 2008). In this model, semi-empirical 
formulations are used to resolve the bed-load transport rate and suspended-load flux 
boundary condition. Recently, the two-phase model has been developed to resolve more 
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Abstract.  In the present study, an open-source multi-dimensional Eulerian two-phase 
flow solver, SedFoam (based on OpenFOAM) is used to investigate the scour process 
beneath piggyback pipelines near the seabed. In the present model, the fluid Reynolds 
stress is solved using a two-phase k-ε model and the particle stress are modeled by kinetic 
theory for granular flow. The influences of different gap ratios between the small and 
large pipelines of the piggyback on the scour depth, sediment profiles as well as the 
surrounding flow field are studied. 
 
 

1 INTRODUCTION 

Over the last decades, scour beneath a piggyback pipeline has been studied extensively 
by both experiments and numerical simulations. A piggyback pipeline consists of one 
large pipeline and a small one which is rigidly installed above the large one. It is found 
(Zhao & Cheng 2008; Zhao et al., 2015; Zhang et al., 2016 and 2017) that the scour depth 
beneath the piggyback is larger compared with that beneath a single pipeline. Furthermore, 
the scour depth increases with decreasing gap ratio between the two pipelines (Zhao & 
Cheng 2008). Two kinds of numerical methods have been devoted to the investigations 
of the sediment transport around the seabed. One of them is the single-phase model 
(Hoffmans & Pilarczyk 1995; Liu & Garcia 2008). In this model, semi-empirical 
formulations are used to resolve the bed-load transport rate and suspended-load flux 
boundary condition. Recently, the two-phase model has been developed to resolve more 
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complex physical phenomena in the process of sediment transport (Hsu & Liu 2004; Dong 
& Zhang 2002; Lee et al., 2016; Rusche 2003; Weller 2002). In the two-phase model, 
both the fluid phase and particle phase are assumed to be continuums governed by mass 
and momentum conservation equations. In the present study, an open-source multi-
dimensional Eulerian two-phase solver, SedFoam, based on OpenFOAM (Cheng et al., 
2017; Chauchat et al., 2017) is used to investigate the local scour beneath a piggyback 
pipeline. Two-dimensional (2D) simulations are carried out. The k −  model is used to 
resolve the turbulence stress and the kinetic theory is adopted to model the particle stress. 
The paper is organized as follows. Section 2 gives a brief introduction on the model in 
the present study. The results of the scour beneath the piggyback pipelines with different 
gap ratios between the large pipeline and the small pipeline are presented in Section 3. 
Finally, the conclusion is made in Section 4. 

2 MATHEMATICAL FORMULATION 

In the two-phase flow model (Cheng et al., 2017), the continuum assumption is applied 
for both particle and fluid phases. The mass conservation equations for the two phases are  
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where    denotes the sediment volumetric concentration, f
iu  are the mean fluid 

velocities. s
iu  are the mean sediment velocities. ix  are the Cartesian coordinates and  

1,2i =  are horizontal, vertical directions, respectively. The momentum equations for the 

two phases are 
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where f and s are the densities of the fluid and sediment respectively. 29.8m/sg =
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is the gravitational acceleration. fp is the fluid pressure and f
ij is the fluid stress, which 

is expressed by 

 ft fvf
ij ij ijR R = +  (5) 

The fluid stress comprises of two parts. One of them is the viscous stress 
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( f is the fluid kinematic viscosity) and the other is the turbulent Reynolds stress  
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( ft  is the eddy viscosity and fk  is the turbulent kinetic energy) which requires further 

closure by the turbulence model. In the present study, the k −  model is used, and the 
eddy viscosity is obtained as 
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with the empirical parameter 0.09C = .   

The fluid turbulent kinetic energy and the turbulent dissipation are obtained through 
their transport equations. Only the equation of fluid turbulent kinetic energy is presented 
here as  
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Two additional terms appear in (9) compared with that of single-phase flows. The 
fourth term in the right hand denotes drag dissipation and the last term represents density 

stratification effects. The drag parameter   is associated with the sediment concentration 

as 
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where d  denotes the sediment diameter and the drag coefficient dC  is defined as  
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In the formula, (1 ) /f s f
pRe d = − −u u is the particle Reynolds number. The transport 

equation of the fluid turbulence dissipation f can be derived by analogy in a similar 

way to the fk  equation. 

The particle stress s
ij  and the particle pressure sp  both consist of a collisional 

part and a frictional part 
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For the collisional part, the kinetic theory of granular flow (Lun & Savage 1987) is 

employed where the collisional normal stress scp  and the collisional shear stress sc
ij  

are associated with the granular temperature   as 
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The granular temperature   , which quantify the intensity of the particle velocity 
fluctuation, is obtained through a balance equation. This can be seen in Cheng et al. (2017) 
and is not presented in detailed here. 

The frictional normal stress scp  due to the enduring contact when the sediment 

concentration is above a certain threshold value is determined by  
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where 0.57f = , max 0.635 =  and the empirical parameters are 0.05F = , 3m = , 5n = . 

The frictional shear stress is given by 
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where sf is the frictional viscosity calculated by 
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In the expression, s
ijS  is the sediment shear rate and f  is the angle of repose, which is 

set to be the value of 32  for the sediment in the present study. 

Finally, the interphase momentum transfer is given by  
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The first two terms are associated with the drag force through the drag parameter  . 

The first term is the mean drag force resulted from the mean velocity difference between 
the two phases and the second term is the fluid suspension term. The third term is the 
interphase pressure correlation term. 
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The boundary conditions for the numerical simulations are set as follows 
⚫ No-slip boundary condition is applied for the fluid and the particle velocities on the 

surface of the two pipelines and the bottom boundary, which is assumed to be far 
enough below the fluid-sediment interface. The sediment concentration is set as zero 
gradient on the surface of pipelines and the rigid bed. Wall-function boundary 

conditions are imposed on the surface of pipelines for fk  and f .  

⚫ At the top boundary, the velocities of the two phases as well as the sediment 
concentration are assumed to be zero gradient. 

⚫ At the inlet, a one-dimensional (1D) simulation is carried out to obtain the profiles 

of the velocities f
iu  , s

iu  , the sediment concentration    and fk  , f   for the 2D 

simulations. Zero gradient boundary condition is applied for the pressure. 
⚫ At the outlet, zero gradient boundary condition is used for the velocities of the two 

phases where the flow goes out of the domain. The velocities of the two phases are 
set to be the mean velocity value where the flow goes inside the domain. The 

sediment concentration    is set as zero gradient and the hydrostatic pressure 

f fp gy=  is imposed for the pressure. 

Figure 1 shows the computational domain of the present simulation with a piggyback 
pipeline configuration. The diameter of the large pipeline is D  and the diameter of the 

small pipeline is 0.2D . The mean grain size diameter is 450 3.6 10 md −=  . The density of 

the sediment is 3 32.6 10 kg/ms =  . The density of the fluid is 3 31.0 10 kg/mf =  . The 

Shields parameter 50/ [ ( ) ]s fg d   = − , obtained from the 1D simulation at the inlet is 

0.3285 =  close to the undisturbed Shields parameter of 0.33 =  in Lee et al. (2016). 
The computational domain is 45D   long and 1.5h D+   height ( 0.23mh =  , the same 
height as Lee et al., 2016). The distance between the center of the large pipeline and the 
inlet is 15D  and the distance between the center of the large pipeline and the outlet is 
30D . The initial sediment layer is set to be 1.5D  high. The effects of gap ratio between 
the two pipelines are studied. Simulations are carried out for the gap ratios of / 0.25G D = ,
0.0625 , 0 . 
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Figure 1. Computational domain 

 

3 RESULTS AND DISCUSSION 

Figure 2 shows time histories of the scour depth with different /G D . For the three gap 
ratios considered in the present study, the scour depth increases with decreasing /G D , 
and the scour depths of piggyback pipelines are larger than that of the single pipeline, 
which is 0.8 ~1D .   

 

Figure 2. Time histories of the scour depth. Solid: / 0.25G D =  ; Dash: / 0.0625G D =  ; 
Dash-dotted: / 0G D =   

Figure 3 shows sediment profiles, which are denoted by 0.5 = , of the piggyback 
pipelines at five time steps of 4st = ,11s ,18s , 25s ,30s . It is obvious that the difference 
between the sediment profiles in the front of the pipelines is small while behind the 
pipelines, there is large difference in the sediment profiles between different cases. 
Furthermore, the sand dune behind the pipelines for / 0G D =  moves faster than other 
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ratios considered in the present study, the scour depth increases with decreasing /G D , 
and the scour depths of piggyback pipelines are larger than that of the single pipeline, 
which is 0.8 ~1D .   

 

Figure 2. Time histories of the scour depth. Solid: / 0.25G D =  ; Dash: / 0.0625G D =  ; 
Dash-dotted: / 0G D =   

Figure 3 shows sediment profiles, which are denoted by 0.5 = , of the piggyback 
pipelines at five time steps of 4st = ,11s ,18s , 25s ,30s . It is obvious that the difference 
between the sediment profiles in the front of the pipelines is small while behind the 
pipelines, there is large difference in the sediment profiles between different cases. 
Furthermore, the sand dune behind the pipelines for / 0G D =  moves faster than other 
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Figure 3. Sediment bed profiles at five time instants (a) 4st =  (b) 11st =  (c) 18st =  (d)
25st =   (e) 30st =  . Solid: / 0.25G D =  ; Dash: / 0.0625G D =  ; Dash-dotted: / 0G D =  (the 

dashed small pipeline is located with / 0.25G D =  is shown as an example) 

Figure 4 presents the horizontal velocity contours and the streamlines of the fluid 
phase at 25st = . Four high-speed regions are observed in the flow fields. The first one 
is observed above the sand dune behind the piggyback pipelines, which moves the sand 
dune behind the pipelines downstream. There is a large recirculation behind the sand 
dune that washes away the sediment from the sand dune (Lee et al., 2016). The second 
one is formed above the small pipelines and the third one is formed in the gaps between 
the two pipelines. The high-speed region above the small pipelines becomes weaker with 
decreasing /G D . The fourth high-speed region is formed below the large pipeline and 
is getting stronger with decreasing /G D , indicating that the sediment transport in the 
scour hole is getting more active. It is also shown that weak flow exists within the 
sediment bed because the present two-phase model can capture the motions of water 
within the sediment. At the same time step, for large gap ratio of / 0.25G D = , the two 
recirculation zones behind the two pipelines are weakly connected. When the small 
pipeline is getting closer to the large one, the high-speed jet-like flow through the gap is 
becoming stronger and the wake zone behind the large pipeline tends to be suppressed 
by that behind the small pipeline. Finally, when / 0G D = , the two wake zones almost 
merge together and two large recirculation motions are formed, which is similar to those 
behind a single pipeline.  
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Figure 4. Fluid phase flow streamlines and the horizontal velocity contours of the fluid 
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Further comparison is made for the turbulent kinetic energy of the fluid phase at 
25st = , as shown in Figure 5. High level of turbulent motions is formed in front of the 

piggyback pipelines. For the large gap ratio / 0.25G D = , there is strong turbulent kinetic 
energy around the gap between the two pipelines. When the gap ratio becomes smaller, 
high level of turbulent kinetic energy tends to move to the fringe of the wake zone behind 
the piggyback pipelines and the turbulent kinetic energy is getting stronger in the scour 
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hole, which induces stronger sediment transport beneath the piggyback pipelines and 
causes deeper scour depth as shown in Figure 2. 

 

 

 

 
Figure 5. Fluid phase turbulent kinetic energy at 25st =  : (a) / 0.25G D =  ; (b)

/ 0.0625G D = ; (c) / 0G D =  

4 CONCLUSIONS 

The present study presents the application of the two-phase solver, SedFoam on the 
scour process below piggyback pipelines with different gap ratios between the two 
pipelines. 2D simulations are carried out combined with the k −  turbulence model and 
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the kinetic theory of the granular flow. The main conclusions can be outlined as follows: 
⚫ The piggyback configurations in the present study increase the scour depth compared 

with that of a single pipeline. The scour depth increases with decreasing /G D and 
the piggyback pipeline with / 0G D =  causes the largest scour depth. 

⚫ With decreasing /G D , the wake zone of the large pipeline tends to be suppressed 
by the wake zone of the small pipeline. For / 0G D = , the wake zone appears to be 
similar to that behind a single pipeline but with the larger diameter 1.2D . 

⚫ Strong turbulent kinetic energy is observed in front of the piggyback pipelines. With 
decreasing /G D  , high turbulent energy becomes distributed in the fringe of the 
wake zone and there is stronger turbulent kinetic energy beneath the piggyback 
pipeline, which causes active sediment transport and larger scour depth. 
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Abstract. High Reynolds number particle-laden turbulence simulations are deficient
in earlier studies, especially for non-spherical particles, contrary to the extensiveness of
these flows in reality. A turbulent channel flow laden with spheroidal particles is explored
in present study at a relatively higher Reynolds number comparing to most turbulent
channel flow simulations with non-spherical particles. The flow is obtained by Direct nu-
merical simulation (DNS), together with a one-way coupled Lagrangian particle tracking
(LPT) method to capture the motion of point-like particles. A power law of particle
enstrophy versus wall-normal location is discovered away from the wall, a region that
does not exist in low Reynolds number simulations. This indicates that many underlying
phenomena of particle-laden flows remain to be explored in turbulent channel flows at
high Reynolds numbers. The power law is prominent and arises from a similar power law
of fluid enstrophy while scarcely related to the shape and inertia of particles.

1 Introduction

Particle-laden flows are universal in both natural phenomena and daily lives of human
beings. For example, pollen or sand suspended in the lower atmosphere, plankton in
oceanic flows and fibers in paper-making pulp are all particles, usually of irregular shapes,
in fluid flows [1, 2, 3]. The Reynolds numbers involved in these problems are usually
quite high. For instance, friction Reynolds number of a turbulent flow in a desert can
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easily reach a magnitude of 106 or even larger [2]. Therefore, it is of great significance
to perform numerical simulations of turbulent flows suspended with particles at high
enough Reynolds number. While the Reynolds numbers of turbulent flow simulations
are unfortunately limited due to computer capacity. Thanks to the rapid development
of computer performance in recent decades, the Reynolds number and computational
domain of simulations increase enormously [4, 5].

Figure 1 shows the development of DNS of turbulent channel flows and those with par-
ticles through comparing their friction Reynolds numbers Reτ versus time. The first DNS
of turbulent channel flow was performed by Kim et al. in 1987 [6]. Then the Reynolds
number booms in recent years owing to rapid development of computer hardware. In
1989, McLaughlin first performed a DNS of a turbulent channel flow suspended with
spherical particles [7] while the first DNS of turbulent channel with non-spherical parti-
cles was accomplished by Zhang et al. in 2001, more than a decade later [8]. On the other
hand, the friction Reynolds number of turbulent channel flow has reached Reτ ≈ 5200
in 2015 by Lee & Moser [5]. As for particle-laden turbulent channel flow, Bernardini [9]
performed simulations up to Reτ = 1000, including spheres with Stokes numbers in the
range St = 1 − 1000, in order to study the Reynolds number scaling of concentration
profiles and deposition for spherical particles. Most recently, Ouchene et al. [10] carried
out a simulation at Reτ = 1440 with prolate spheroidal particles and investigated acceler-
ation statistics. As shown in Figure 1, it takes nearly ten more years for Reτ of turbulent
channel flows with particles to reach the same magnitude as those without particles.

However, most simulations of non-spherical particle-laden channel flows were confined
to relatively low Reynolds numbers about 200, including studies of tracers [11], inertial
prolate particles [12, 13] and oblate ones [14]. Therefore, a vast potential of growth
exists for simulations of non-spherical particle-laden turbulent flows, where significant
phenomena and mechanisms of particle-laden flows may hide.

Since there are rare simulations of turbulent channel flows suspended with non-spherical
particles, a DNS of turbulent channel flow at Reτ = 600 with non-spherical particles
was performed in the present study. In the present investigation, a simple sort of non-
spherical particle, spheroidal particle, is adopted. We aim to explore rotational behavior
of spheroidal particles in the region away from the walls, which is not present in low
Reynolds number turbulence, instead of regions in the vicinity of the walls.

2 Methods

The turbulent channel flow is obtained through DNS, together with a Lagrangian
particle tracking method to track each individual particle. In the present simulation, the
size of particle is smaller than Kolmogorov scale, the smallest scale in turbulent flows. In
addition, the mass fraction of particle in the channel flow is also small enough so that a
one-way coupling method could be employed, namely the interaction between particles
and the reacting force from particle to the fluid are neglected. To describe the movement
of spheroidal particles, two sets of reference frames are distinguished, the inertial frame
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Figure 1: Friction Reynolds numbers of DNS versus time. Open squares: turbulent
channel flows; solid circles: turbulent channel flows with spherical particles; open triangles:
turbulent channel flows with non-spherical particles. (The figure is original and the data
points are collected from more than thirty publications.)

xi = {x1, x2, x3} = {x, y, z} and the particle frame x′
i = {x′

1, x
′
2, x

′
3} = {x′, y′, z′}. The

origin of the particle frame is fixed at the particle mass center and the coordinate axis z′

is aligned with the symmetry axis of the spheroid.

2.1 Eulerian fluid phase

The fluid is incompressible Newtonian fluid, with density ρ and kinematic viscosity ν.
The Navier-Stokes equations:

∂ui

∂xi

= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

(2)

are solved in conjunction with periodic boundary conditions in the streamwise (x) and
spanwise (y) direction and no-slip boundary condition at both walls in the wall-normal
(z) direction. A second-order finite-difference scheme is used in the wall-normal direction
while in the streamwise and spanwise direction, a pseudo-spectral method is employed.
Moreover, a second-order Adams-Bashforth scheme is adopted for time evolution. The
DNS solver was adopted in several previous studies. [15, 12, 14, 16]

Hereinafter, xi denotes coordinates of the inertial reference frame in three different
directions, p stands for pressure and ui represents instantaneous velocity. Since only one-
way coupling of particle-laden flow is considered, there is no reacting force of particles
on fluid. In addition, the gravity force is neglected. Based on half-channel height h and
friction velocity uτ , the friction Reynolds number of this turbulent channel flow is defined
as Reτ = uτh/ν = 600. Viscous scales, such as viscous length scale δν = ν/uτ and time
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directions, p stands for pressure and ui represents instantaneous velocity. Since only one-
way coupling of particle-laden flow is considered, there is no reacting force of particles
on fluid. In addition, the gravity force is neglected. Based on half-channel height h and
friction velocity uτ , the friction Reynolds number of this turbulent channel flow is defined
as Reτ = uτh/ν = 600. Viscous scales, such as viscous length scale δν = ν/uτ and time
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Reτ Lx × Ly × Lz Nz ∆x+ ∆y+ ∆z+c ∆z+1
590 [17] 2πh× πh× 2h 257 9.7 4.8 7.2 0.044
550 [5] 8πh× 3πh× 2h 384 8.9 5.0 4.5 0.003
600 6h× 3h× 2h 384 9.375 4.6875 5.2876 0.143

Table 1: Simulation parameters of the present study (Reτ = 600) and the previous studies
at similar Reynolds numbers [17, 5].
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Table 2: Analytical expressions for resistance tensor components

scale τν = ν/u2
τ , are adopted to normalize physical variables, denoted by a superscript +

after normalization. The size of the channel is 6h×3h×2h in the streamwise, spanwise and
wall-normal direction, respectively. 3843 grid points are used and grid spacings are uniform
in the streamwise and the spanwise direction, namely ∆x+ = 9.375 and ∆y+ = 4.6875
respectively. Grids in the wall-normal direction are refined in the vicinity of the walls so
the spacings vary from ∆z1

+ = 0.143 to ∆zc
+ = 5.2876. The time step of the present

DNS is ∆t+ = 0.018.
To compare the grid resolution between the present simulation and the previous studies

at similar Reynolds numbers [17, 5], Table 1 is provided to show the parameters of the
three simulations. The grid spacing in the streamwise and the spanwise directions are
approximately the same. The grid spacing ∆z+c in the channel center is fine enough as
shown in the table. The near-wall grid spacing in the wall-normal direction ∆z+1 in the
present study is larger than those in the previous studies, while statistics of fluid flow are
not affected. The mean streamwise velocity and the root-mean-squares of vorticity fluctu-
ations are shown in Figure 2(a) and (b), respectively. The triangles represent results from
Moser et al. [17], while the circles stand for those from Lee & Moser [5]. The circles, the
triangles and the corresponding line, denoting results in the present study, are coincident,
showing that the profiles of mean streamwise velocity and rms of vorticity fluctuations
are almost the same. This suggests that the resolution of the present simulation is fine
enough to obtain reliable flow field.
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Figure 2: (a) Mean streamwise velocity versus wall-normal distance; (b) Root-mean-
squares of vorticitiy fluctuations versus wall-normal distance.
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Table 3: Analytical expressions for shape factors

2.2 Lagrangian particle phase

A Lagrangian tracking method was utilized to simulate the translation of particles. And
the torque acting on spheroidal particles is considered to compute rotation of particles.
First of all, the shape of a spheroid is described by an aspect ratio λ = c/a, where
c is the distance from center to pole along the symmetry axis and a is the equatorial
radius of the spheroid. Therefore, λ > 1 stands for prolate particles while λ < 1 denotes
oblate ones. An orthogonal transformation matrix Aij is adopted, which describes linear
transformation between the two reference frames xi = Aijx

′
j. Hereinafter, the superscript

′ denotes variables in the particle frame. In present study, since the particle Reynolds
number is small (Rep = |v − u| a/ν << 1), only the Stokes force is considered. The
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scale τν = ν/u2
τ , are adopted to normalize physical variables, denoted by a superscript +

after normalization. The size of the channel is 6h×3h×2h in the streamwise, spanwise and
wall-normal direction, respectively. 3843 grid points are used and grid spacings are uniform
in the streamwise and the spanwise direction, namely ∆x+ = 9.375 and ∆y+ = 4.6875
respectively. Grids in the wall-normal direction are refined in the vicinity of the walls so
the spacings vary from ∆z1

+ = 0.143 to ∆zc
+ = 5.2876. The time step of the present

DNS is ∆t+ = 0.018.
To compare the grid resolution between the present simulation and the previous studies

at similar Reynolds numbers [17, 5], Table 1 is provided to show the parameters of the
three simulations. The grid spacing in the streamwise and the spanwise directions are
approximately the same. The grid spacing ∆z+c in the channel center is fine enough as
shown in the table. The near-wall grid spacing in the wall-normal direction ∆z+1 in the
present study is larger than those in the previous studies, while statistics of fluid flow are
not affected. The mean streamwise velocity and the root-mean-squares of vorticity fluctu-
ations are shown in Figure 2(a) and (b), respectively. The triangles represent results from
Moser et al. [17], while the circles stand for those from Lee & Moser [5]. The circles, the
triangles and the corresponding line, denoting results in the present study, are coincident,
showing that the profiles of mean streamwise velocity and rms of vorticity fluctuations
are almost the same. This suggests that the resolution of the present simulation is fine
enough to obtain reliable flow field.
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squares of vorticitiy fluctuations versus wall-normal distance.
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Table 3: Analytical expressions for shape factors

2.2 Lagrangian particle phase

A Lagrangian tracking method was utilized to simulate the translation of particles. And
the torque acting on spheroidal particles is considered to compute rotation of particles.
First of all, the shape of a spheroid is described by an aspect ratio λ = c/a, where
c is the distance from center to pole along the symmetry axis and a is the equatorial
radius of the spheroid. Therefore, λ > 1 stands for prolate particles while λ < 1 denotes
oblate ones. An orthogonal transformation matrix Aij is adopted, which describes linear
transformation between the two reference frames xi = Aijx

′
j. Hereinafter, the superscript

′ denotes variables in the particle frame. In present study, since the particle Reynolds
number is small (Rep = |v − u| a/ν << 1), only the Stokes force is considered. The
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translation and rotation of a particle is governed by:

m
dvi
dt

= Fi = πµaKij (uj − vj) (3)

I ′ij
dω′

j

dt
+ εijkω

′
jI

′
klω

′
l = N ′

i (4)

m =
4

3
πa3λρp. (5)

In equations (3) and (4), vi represents particle velocity while ω′
i stands for angular velocity

of spheroids in the particle frame. m is the mass of a single particle (ρp is the density of
particles) and I ′ij is its moment of inertia. The resistance tensor Kij in the inertial frame
can be obtained by equation (6), where K ′

ij denotes the resistance tensor in the particle
frame [18]:

Kij = AT
ikK

′
klAlj. (6)

The analytical expressions for the resistance tensor components are listed in Table 2.
The torque N ′

i in equation (4) was first derived by Jeffery [19] for an ellipsoidal particle
in creeping flow. It is related to the shape of the spheroid, fluid strain rate tensor S ′

ij and
rotation vector of fluid Ω′

i in the particle frame:

N ′
x =

16πµa3λ

3 (β0 + λ2γ0)

[(
1− λ2

)
S ′

yz +
(
1 + λ2

)
(Ω′

x − ω′
x)
]

(7)

N ′
y =

16πµa3λ

3 (α0 + λ2γ0)

[(
λ2 − 1

)
S ′

xz +
(
1 + λ2

)
(Ω′

y − ω′
y)
]

(8)

N ′
z =

32πµa3λ

3 (α0 + β0)
(Ω′

z − ω′
z) . (9)

The shape parameters α0, β0, γ0 are functions of aspect ratio (see Table 3)
To evaluate the influence of inertia, a Stokes number is defined based on the particle

response time τp and fluid viscous time scale τν . As derived by Shapiro and Goldenberg
[20] and Challabotla et al. [14], expressions for particle response time of prolate and
oblate spheroids are:

τp,prolate =
2

9

ρpa
2

ρν

λ ln
(
λ+

√
λ2 − 1

)
√
λ2 − 1

(10)

τp,oblate =
2

9

ρpa
2

ρν

[
π − 2tan−1

(
λ(1− λ2)

−1/2
)]

2(1− λ2)1/2
. (11)

Both the translation and rotation equations of particles are solved by using an explicit
second-order Adams-Bashforth scheme. The fluid flow variables at the particle position
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Figure 3: Orientations of non-spherical particles (λ = 10, St = 1) in a streamwise–wall-
normal plane. Size of particle is enlarged for visualization purpose.

were obtained by using a quadratic interpolation scheme. Fifteen sorts of spheroidal
particles are inserted into the fully developed flow. The number of particles is Np = 6×105

for each sort, which is sufficiently large enough to make statistics smooth. Aspect ratios
and Stokes numbers are λ = 10, 3, 1.001, 0.33, 0.1 and St = 1, 5, 30, respectively. The
time-window for statistics of particles ranges from t+ = 2610 to t+ = 3492. Although
particles are drifting towards the walls due to turbophoresis, the orientation and rotation
statistics are unaffected during the sampling period.

3 Results

In the first place, the orientations of spheroidal particles suspended in the channel flows
are shown in Figure 3. The background color represents the magnitude of fluid stream-
wise velocity while the black ellipsoids stand for particles, orienting towards different
directions, as reflected by the projection of the spheroid into the (x, z)-plane. Orientation
and rotation of particles are greatly influenced by the wall, or shear in the vicinity of wall,
according to previous investigations [21, 12, 14, 22, 16]. But there are rare studies which
concentrate on behaviors of particles away from the wall in a turbulent channel flow.
Bernardini [9] have studied the Reynolds number scaling of spherical particles concentra-
tion profiles and deposition at Reτ up to 1000. In the present research, we concentrate on
the behaviors of spheroidal particles away from the walls, mainly the rotational motion
of particles.

The degree of particle’s rotation is described by the magnitude of particle enstro-
phy, which is defined as

〈
ω̃+
i ω̃

+
i

〉
=

〈
ω̃+
x ω̃

+
x + ω̃+

y ω̃
+
y + ω̃+

z ω̃
+
z

〉
. The tilde sign ˜ denotes

fluctuation of a physical variable hereafter. Enstrophy of three sorts of spherical par-
ticles with different Stokes numbers is calculated and shown in Figure 4. The Stokes
numbers of particles are 1, 5, 30, which have a quite small influence on the curves of
particle enstrophy. However, all these curves seem to be linear from about z+ = 100
to z+ = 400 in the double-logarithmic coordinates, which reveals that a power law of
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can be obtained by equation (6), where K ′

ij denotes the resistance tensor in the particle
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The shape parameters α0, β0, γ0 are functions of aspect ratio (see Table 3)
To evaluate the influence of inertia, a Stokes number is defined based on the particle

response time τp and fluid viscous time scale τν . As derived by Shapiro and Goldenberg
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second-order Adams-Bashforth scheme. The fluid flow variables at the particle position
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Figure 3: Orientations of non-spherical particles (λ = 10, St = 1) in a streamwise–wall-
normal plane. Size of particle is enlarged for visualization purpose.

were obtained by using a quadratic interpolation scheme. Fifteen sorts of spheroidal
particles are inserted into the fully developed flow. The number of particles is Np = 6×105

for each sort, which is sufficiently large enough to make statistics smooth. Aspect ratios
and Stokes numbers are λ = 10, 3, 1.001, 0.33, 0.1 and St = 1, 5, 30, respectively. The
time-window for statistics of particles ranges from t+ = 2610 to t+ = 3492. Although
particles are drifting towards the walls due to turbophoresis, the orientation and rotation
statistics are unaffected during the sampling period.

3 Results

In the first place, the orientations of spheroidal particles suspended in the channel flows
are shown in Figure 3. The background color represents the magnitude of fluid stream-
wise velocity while the black ellipsoids stand for particles, orienting towards different
directions, as reflected by the projection of the spheroid into the (x, z)-plane. Orientation
and rotation of particles are greatly influenced by the wall, or shear in the vicinity of wall,
according to previous investigations [21, 12, 14, 22, 16]. But there are rare studies which
concentrate on behaviors of particles away from the wall in a turbulent channel flow.
Bernardini [9] have studied the Reynolds number scaling of spherical particles concentra-
tion profiles and deposition at Reτ up to 1000. In the present research, we concentrate on
the behaviors of spheroidal particles away from the walls, mainly the rotational motion
of particles.

The degree of particle’s rotation is described by the magnitude of particle enstro-
phy, which is defined as
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fluctuation of a physical variable hereafter. Enstrophy of three sorts of spherical par-
ticles with different Stokes numbers is calculated and shown in Figure 4. The Stokes
numbers of particles are 1, 5, 30, which have a quite small influence on the curves of
particle enstrophy. However, all these curves seem to be linear from about z+ = 100
to z+ = 400 in the double-logarithmic coordinates, which reveals that a power law of
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Figure 4: (a) and (b) Mean enstrophy of spherical particles with St = 1, 5, 30 and a

quarter of fluid enstrophy (
〈
Ω̃+

i Ω̃
+
i

〉
) versus wall-normal location z+. The dotted fitting

curve of
〈
Ω̃+

i Ω̃
+
i

〉
in (b) indicating the power law of enstrophy.

enstrophy versus z+ exists. The size of these particles are all smaller than the Kol-
mogorov scale and the rotational motion of small-scale fluid eddies have a great influence
on rotation motion of particles. Therefore, the power law of particle enstrophy could
arise from similar property of fluid. The power law is assumed to be related to fluid
vorticity enstrophy, which is displayed in Figure 4. The fluid enstrophy is defined as〈
(2Ω̃+

i )(2Ω̃
+
i )
〉
= 4

〈
Ω̃+

i Ω̃
+
i

〉
= 4(

〈
Ω̃+

x Ω̃
+
x

〉
+
〈
Ω̃+

y Ω̃
+
y

〉
+
〈
Ω̃+

z Ω̃
+
z

〉
), where Ω+

i stands for

rotation vector of fluid, namely one half of the corresponding fluid vorticity. A similar
power law of fluid enstrophy is present as expected (see Figure 4). In addition, the dotted
line is obtained by linear fitting of fluid enstrophy at a range of z+ = 100 ∼ 350. The
exponent of the power law is about −1.3118 and the correlation coefficient between fluid
enstrophy and wall-normal location is −0.9997, quite approaching to unity, where the
minus sign represents negative correlation. Hence, it is reasonable that the power law of
fluid enstrophy gives rise to the power law of particle enstrophy.

In addition, the effect of particle shape is considered. Enstrophy of different spheroidal
particles are presented in Figure 5. There is only a little discrepancy between enstrophy
of different spheroids with the same Stokes number. And the discrepancy is near zero
when wall-normal location z+ > 100. (Note the double-logarithmic plot.) It indicates
that the aspect ratio has negligible effects on particle enstrophy away from the wall.
Moreover, there is also a prominent power law of particle enstrophy versus wall-normal
location. Therefore, we can concluded that the power law of particle enstrophy exists
for all aspect ratios and Stokes numbers involved. It is assumed that the power law of
enstrophy versus z+ obeys

〈
ω̃+
i ω̃

+
i

〉
∼ (z+)

k
, namely, ln

〈
ω̃+
i ω̃

+
i

〉
∼ k ln z+, where k is

the exponent. The power law is most prominent between about z+ = 100 till z+ = 350,
the two vertical dashed lines in the figures. Hence, the range of wall-normal location
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Figure 5: Enstrophy of spheroidal particles. (a) St = 1; (b) St = 5; (c) St = 30.

from z+ = 100 to z+ = 350 is chosen to further analyze the exponent of the power law.
The fitted exponents k for each sort of particle are calculated and displayed in Figure
6(a), while the correlation coefficients between enstrophy and wall-normal location are
presented in Figure 6(b), where the minus sign represents negative correlation. Correlation
coefficients in Figure 6(b) are quite approximate to unity, revealing a strong correlation.
As indicated by Figure 6(a), the exponents approximate about −1.3, quite similar to
that of fluid enstrophy (−1.3118). This supports that the power law of fluid enstrophy
directly induces the power law of particle enstrophy. Both Figure 6(a) and 6(b) suggest
that inertia have a greater influence on the power law than aspect ratio of particles. It is
conjectured that the power law would extend to a larger range of wall-normal locations
if the Reynolds number increases.

We assume that the rotation of particles in this region (z+ = 100 ∼ 350) is more
similar to that in the center of the channel than that in the vicinity of the walls. It is
revealed by Zhao et al. [16] that the total particle enstrophy varies slightly versus aspect
ratio λ in the channel-center. However, the preference for either spinning or tumbling
is strongly shape-dependent. The enstrophy decreases when particle inertia increases,
suggesting that the preferential orientation of inertial spheroidal particles changes with
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enstrophy versus z+ exists. The size of these particles are all smaller than the Kol-
mogorov scale and the rotational motion of small-scale fluid eddies have a great influence
on rotation motion of particles. Therefore, the power law of particle enstrophy could
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rotation vector of fluid, namely one half of the corresponding fluid vorticity. A similar
power law of fluid enstrophy is present as expected (see Figure 4). In addition, the dotted
line is obtained by linear fitting of fluid enstrophy at a range of z+ = 100 ∼ 350. The
exponent of the power law is about −1.3118 and the correlation coefficient between fluid
enstrophy and wall-normal location is −0.9997, quite approaching to unity, where the
minus sign represents negative correlation. Hence, it is reasonable that the power law of
fluid enstrophy gives rise to the power law of particle enstrophy.

In addition, the effect of particle shape is considered. Enstrophy of different spheroidal
particles are presented in Figure 5. There is only a little discrepancy between enstrophy
of different spheroids with the same Stokes number. And the discrepancy is near zero
when wall-normal location z+ > 100. (Note the double-logarithmic plot.) It indicates
that the aspect ratio has negligible effects on particle enstrophy away from the wall.
Moreover, there is also a prominent power law of particle enstrophy versus wall-normal
location. Therefore, we can concluded that the power law of particle enstrophy exists
for all aspect ratios and Stokes numbers involved. It is assumed that the power law of
enstrophy versus z+ obeys
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ω̃+
i ω̃

+
i

〉
∼ (z+)

k
, namely, ln

〈
ω̃+
i ω̃

+
i

〉
∼ k ln z+, where k is

the exponent. The power law is most prominent between about z+ = 100 till z+ = 350,
the two vertical dashed lines in the figures. Hence, the range of wall-normal location
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Figure 5: Enstrophy of spheroidal particles. (a) St = 1; (b) St = 5; (c) St = 30.

from z+ = 100 to z+ = 350 is chosen to further analyze the exponent of the power law.
The fitted exponents k for each sort of particle are calculated and displayed in Figure
6(a), while the correlation coefficients between enstrophy and wall-normal location are
presented in Figure 6(b), where the minus sign represents negative correlation. Correlation
coefficients in Figure 6(b) are quite approximate to unity, revealing a strong correlation.
As indicated by Figure 6(a), the exponents approximate about −1.3, quite similar to
that of fluid enstrophy (−1.3118). This supports that the power law of fluid enstrophy
directly induces the power law of particle enstrophy. Both Figure 6(a) and 6(b) suggest
that inertia have a greater influence on the power law than aspect ratio of particles. It is
conjectured that the power law would extend to a larger range of wall-normal locations
if the Reynolds number increases.

We assume that the rotation of particles in this region (z+ = 100 ∼ 350) is more
similar to that in the center of the channel than that in the vicinity of the walls. It is
revealed by Zhao et al. [16] that the total particle enstrophy varies slightly versus aspect
ratio λ in the channel-center. However, the preference for either spinning or tumbling
is strongly shape-dependent. The enstrophy decreases when particle inertia increases,
suggesting that the preferential orientation of inertial spheroidal particles changes with
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Figure 6: (a) Power law exponent k; (b) The correlation coefficients between the particle
enstrophy and the wall-normal distance z+ (the minus sign represents negative correla-
tion).

Stokes number. Different Stokes number results in different preferential orientation versus
fluid vorticity, as a consequence, affecting rotation rate of particles. Therefore, the Stokes
number effect is dominant comparing to aspect ratio effect in Figure 6.

4 Conclusions

A particle-laden turbulent channel flow at a relatively high Reynolds number Reτ = 600
was simulated by DNS coupled with Lagrangian point particle methods, using a one-way
coupling approach. Fifteen types of spheroidal particles are examined, including three
Stokes numbers St = 1, 5, 30 and five aspect ratios λ = 10, 3, 1.001, 0.33, 0.1. It is revealed
in Figure 1 that most particle-laden channel flow simulations are confined to relatively
low Reynolds numbers, especially those with non-spherical particles (about Reτ < 200).
Instead of concentrating on particle behaviors in the vicinity of wall, we focus on motion of
particles away from the walls. Ths enstrophy of inertial spheroidal particles is calculated
and presented in Figure 4 and 5, where a power law of enstrophy versus wall-normal
location emerges at about z+ = 100 ∼ 350. Aspect ratios and Stokes numbers have minor
influences on the power law and the exponents are about −1.3. Correlation coefficients
are quite close to unity, indicating that the power law is outstanding in the actual region.
A similar power law of fluid enstrophy is present and results in the power law of particle
enstrophy, since shape and inertia only show slight influences on particle enstrophy in this
region.

Many undiscovered phenomena and mechanisms of spheroidal particles may arise when
the Reynolds number is high enough. For instance, large scale coherent structures in high
Reynolds number turbulence could affect the translation and rotation of particles, which
remains to be further explored. These investigations make an increasing request for high
Reynolds number particle-laden turbulence simulations.
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Abstract. To preliminarily investigate the inertial particle distribution in the unsteady
flow around a circular cylinder, we perform three-dimensional numerical simulations of
particle-laden cylinder wake flow at ReD = 100, defined based on cylinder diameter
and uniform incoming flow velocity. A one-way coupling approach is utilized in the
dilute suspensions. A strong correlation between local vortex structures and particle
concentration is observed. Particle concentration presents different patterns at different
Stokes numbers. Particles at very small Stokes numbers are distributed uniformly across
the whole vortex cores. Particles at intermediate Stokes numbers aggregate mainly on the
outer borders of vortex core regions and leave the vortex core a void region. The particles
at large Stokes numbers are swept less away from the high vorticity region and even
form a passage through the outer range of vorticity in the near wake. It is also observed
that the detached particle bow shock appears when Sk is 3 and above. Moreover, some
heavy particles are trapped inside the vortex cores close to the downstream border while
particles align smoothly along the upstream border.
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flow around a circular cylinder, we perform three-dimensional numerical simulations of
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dilute suspensions. A strong correlation between local vortex structures and particle
concentration is observed. Particle concentration presents different patterns at different
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1 INTRODUCTION

The transportation and concentration of inertial particles in laminar and turbulent
flows play an important role in many engineering and natural situations, i.e. sediments
in rivers and scour around offshore wind-turbine foundations etc. Unlike tracer particles,
inertial particles follow their own dynamics resulting from the interaction with local vor-
tex structures, known as preferential concentration. Previous numerical work in different
particle-laden flows has been well-established by using direct numerical simulation (DNS)
for homogeneous isotropic turbulence [1] [2] and channel flows [3]. Many statistical mea-
sures, such as particle distribution PDF, correlation dimension [4] and Voronöı diagrams
[5] etc., are employed to investigate the relationship between particle concentration and
local flow structures. However, there is still a lack of research on particle-laden wake flow
although pioneering work has been done for plane wake [4] and cylinder wakes [6] [7]. Most
numerical and experimental results provided visualization results of particle distribution
from light to heavy particles in wakes and showed a clear inertia-dependency of concen-
tration. Some mechanisms have been proposed to account for particle concentration, such
as centrifugal mechanism and the sweep-stick property for zero-acceleration points in the
flow [1]. The underlying mechanism, unfortunately, is still not fully understood, especially
not for the wake flow due to the lack of quantitative analysis.

The particle concentration pattern not only depends on particle inertia, but also vor-
tex structures in the wake. The vortex shedding at different Reynolds numbers is com-
prehensively described in Williamson’s review [8]. Considering the computational cost
of tracking millions of particles, most previous direct numerical simulations stayed at
low Reynolds numbers. In order to introduce turbulence in the particle-laden cylinder
wake flow, the Reynolds-Averaged-Navier-Stokes (RANS) method is commonly utilized
to study the particle concentration at high Reynolds numbers [9]. However, the signifi-
cant streamwise vortices in a turbulent wake flow are wiped out in steady RANS, while
unsteady RANS is still unable to properly account for turbulent fluctuations which makes
the transient solution doubtful.

We aim at investigating particle concentration by DNS at higher Reynolds number. The
particle library implemented in MGLET has been validated in homogeneous isotropic tur-
bulence by Gobert [10] [11]. We consider two-dimensional unsteady laminar flow around
a straight circular cylinder at ReD = 100 in this paper as a preliminary study. The com-
putational details of the flow configuration is given in section 2. The visualization results
of particle distributions at different Stokes numbers are given in section 3. Finally, we
conclude the observed concentration patterns in section 4.

2 COMPUTATIONAL DETAILS

2.1 Flow configuration

We set a straight circular cylinder with diameter D and length 5.12D in an incom-
pressible flow of a Newtonian fluid. The flow configuration is illustrated in figure 1, which
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is a box with lengths of Lx, Ly and Lz. We define the streamwise direction as x-direction,
crossflow direction as y-direction and spanwise direction as z-direction. The Reynolds
number ReD = U0D/ν is given by the free-stream velocity U0 and the cylinder diameter
D (ν is kinematic viscosity of the incompressible fluid). Other quantities in our simulation
are all measured by U0 and D.

Figure 1: Three-dimensional computational domain for the flow around a straight circular
cylinder. Note that the domain is not to scale.

As a preliminary test of inertial particle dispersion in the cylinder wake flow, we only
choose a relatively short domain to avoid unnecessary computational cost. Figure 2 per-
ceptually shows the domain size in our case compared with an experimental visualization
from Zdravkovich [12], both at ReD = 100. The lower plot in figure 2 is a snapshot of
the vorticity field in spanwise direction in a fully developed flow obtained from our sim-
ulation. As depicted in figure 2, the computational domain only approximately includes
three pairs of vortices in the near wake region. The flow around a circular cylinder at
ReD = 100 is often taken as a benchmark to validate a CFD solver, in which the wake flow
stays two-dimensional but unsteady [8]. The boundary conditions used in the simulations
are summarised below:

- Inlet: uniform free stream, ui = (U0, 0, 0).

- Outlet: Neumann boundary conditions for the velocity components (∂u/∂x =
∂v/∂x = ∂w/∂x = 0) and zero pressure (p = 0).

- Two vertical sides normal to Z-direction: periodic condition.

- Two horizontal sides normal to Y-direction: free-slip boundary condition, i.e. v = 0
and ∂u/∂y = ∂w/∂y = 0 .
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As a preliminary test of inertial particle dispersion in the cylinder wake flow, we only
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- Inlet: uniform free stream, ui = (U0, 0, 0).

- Outlet: Neumann boundary conditions for the velocity components (∂u/∂x =
∂v/∂x = ∂w/∂x = 0) and zero pressure (p = 0).
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and ∂u/∂y = ∂w/∂y = 0 .
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- The surface of the cylinder is treated as a no-slip and impermeable wall.

Figure 2: Sketch of the comparison of the domain sizes at ReD = 100 between an experiment
by Zdravkovich [12] and the simulation in this paper.

2.2 Numerical methods

In order to directly solve the incompressible three-dimensional transient flow around a
cylinder, we utilize a second-order finite volume method to discretize the Navier-Stokes
equation

∂ui

∂xi

= 0, (1)

∂ui

∂t︸︷︷︸
time change rate

+ uj
∂ui

∂xj︸ ︷︷ ︸
convection

= − 1

ρf

∂p

∂xi︸ ︷︷ ︸
pressure force

+ ν
∂2ui

∂xj∂xj︸ ︷︷ ︸
viscous diffusion

(2)

The simulations are performed by the well-verified DNS/LES solver MGLET [13]. Fluid
velocity and pressure information are stored in discretized 3D staggered equidistant Carte-
sian grids [14]. In equation (2), the viscous diffusion term is approximated by a central-
difference scheme, and eq(2) is time advanced by an explicit low-storage third-order
Runge-Kutta scheme. Meanwhile, a Poisson equation is iteratively solved by the combi-
nation of successive-over-relaxation (SOR) and Stone’s strongly implicit procedure (SIP),
and also is corrected to fulfill mass conservation equation. In order to handle the boundary
condition of particle-wall interaction, the cut-cell finite-volume approach is implemented
in MGLET to extract the normal vector, which is crucial when particles impinge the wall.
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The cuboid Cartesian cells are intersected by the curved wall, and the cell shape is exactly
computed from the intersection. This results in the formation of the finite volume with
polyhedron shape. This process is enforced by employing the direct-forcing Immersed
Boundary Method (IBM). A Ghost-cell methodology of IBM is enforced in the standard
MGLET [15], while a cut-cell IBM approach implemented as a new feature in MGLET,
for the first time, is applied in this study [16].

When the flow is statistically periodic, particles are seeded from the inlet boundary
with uniform velocity U0 and distributed randomly into the flow field. Considering the
heavy computation of resolving the flow around finite-size particles, point-particles are
the most commonly used model to track particles in an Euler-Lagrangian framework.
The particles are assumed to be small, spherical and inertial (ρp/ρf = 1000, ρp, ρf are
the particle and the surrounding fluid density). We also assume particle suspension here
is dilute with volume fraction below 10−6, so that particle collisions rarely occur, and
particles are one-way coupled to the statistically periodic wake flow. The Maxey-Riley
equation which describes the particle motion reduces to eq(3) with only Stokes drag force
acting on particles:

dup,i

dt
=

CDRep
24τp

(uf@p,i − up,i) (3)

where up,i is particle velocity component updated by an adaptive fourth-order Rosen-
brockWanner scheme with third-order error estimator, u@p,i(t) = u(t, xp,i(t)) is the fluid
velocity component seen by the particle at position xp,i obtained by linear interpolation.

An explicit Euler scheme is used to update particle position. τp = ρpd2

18ρfν
is particle re-

laxation time (d is particle diameter), and we define Stokes number Sk = τp/τf as a
non-dimensional parameter to measure the particle inertia (τf = D/U0). The Stokes drag
coefficient CD is a function of particle Reynolds number ReP = d ‖ up − uf@p ‖ /ν, and
we use a piecewise model to include five different ReP -dependent Stokes drags referenced
from Clift et al [17]:

CD =




3/16 + 24/ReP Rep < 0.01,

24/Rep(1 + 0.15Re0.687P ) + 0.42/(1 + 4.25× 104Re−1.16
P ) ReP < 3× 105,

29.78− 5.3× log10 ReP 3.5× 105 < ReP

< 4× 105,

0.1 log10 ReP − 0.49 4× 105 < ReP < 106,

0.19− 8× 104/ReP 106 < ReP .

(4)
We set particles into three groups by Stokes number Sk ranging from light to heavy

ones, and each group includes three different Sk cases with the corresponding Sk shown
in table 1. The total number of particles in each group is around 410000. Particles in
one grid are assigned to one CPU to proceed the parallelization. For the simplicity of the
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problem, the interaction between a particle and the cylinder wall is taken as fully elastic
bouncing.

Table 1: Particle conditions of simulation runs.

Group Light Medium Heavy
Sk 5.6e-5 1.7e-3 5.6e-3 0.1 0.55 1.0 3.0 6.5 10.0

Npart 413685 411755 419009

2.3 Computational mesh

The computational domain is discretized by a multi-level structured Cartesian mesh,
where the grids are constructed by cubic boxes with different grid spacings in an unstruc-
tured arrangement. Figure 3 gives an impression of four-level grids, where N × N × N
cells are uniformly filled in each grid box, regardless of the grid size. The region close
to the cylinder needs the finest grid, and we define the minimum grid spacing as spatial
resolution. The grid size increases by a factor of 2, i.e. the size of level-4 grid in figure 3
is 0.02D while 0.16D for level-1 grid.

In order to examine the sufficiency of the mesh for case ReD = 100, we generate two
additional meshes(case 2 and 3). Table 2 provides the details of the time-averaged drag-
coefficient CD, the root-mean-square of the lift force coefficient CL−rms and the spanwise
force CZ calculated from all three cases. The difference of theses quantities between all
cases is very modest while the Strouhal numbers St = fD/U0 are slightly higher than the
reference value 0.16, which could be caused by insufficient time windows. We also note
that CD and CL−rms are higher than the commonly recognized approximate numbers 1.3
and 0.22 respectively. This is known to arise from the lack of crossflow domain size in our
simulations. To ensure the accuracy of the interpolation to obtain particle velocity and a
physical vorticity field, we prefer the finer mesh with 2.09million cells. Figure 4 presents
three normalized forces around the cylinder including drag coefficient CD, lift coefficient
CL and spanwise force coefficient CZ . The regular waves of CD and CL indicate a fully
developed unsteady laminar flow. Since the cylinder is almost independent of the spanwise
force with CZ being 10−6, the flow can be trusted as two dimensional flow. The Strouhal
number in case 1 can be approximately obtained as 0.176 from the average of 34 time
periods of the lift coefficient.

3 PARTICLE CONCENTRATION

The occurrence of a Kármán vortex-street is the typical characteristic of flow around a
circular cylinder in the laminar vortex shedding regime 49 < ReD < 194 [8], as figures 5
and 6 present. These large-scale vortical structures in the wake have a significant effect on
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Figure 3: Sketch of the multigrids (4-level shown here). A slice of the multi-level grid box
distribution in the (X,Y)- plane is shown. Each square represents a 3D grid box and contains
the amount of N ×N ×N grid cells. Grid resolution increases as the square size gets smaller.

Table 2: Grid independence study for ReD = 100. Ngrid and Ncell represent the total number
of grid boxes and cells, respectively.

Case Resolution CD CL−rms CZ St Ngrid Ncell
1 0.02D 1.932 0.483 -1.527e-6 0.176 64 2.09million
2 0.04D 1.965 0.507 -1.327e-6 0.177 32 1.05million
3 0.08D 2.061 0.542 8.509e-13 0.178 16 0.52million

the dispersion of inertial particle, known as preferentially concentration. Here we observe
the particle distribution at various Stokes number Sk from 0.0056 to 10. Since the flow
is two-dimentional at ReD = 100, we only present the particle distribution and vorticity
in an (X,Y)-plane.

For the very low-Sk particles shown in figure 5(a), they can be regarded as tracers
following the flow evolution and thus uniformly scattered in the flow field. No accumula-
tion is visually identifiable. In figure 5(b), however, periodic void regions appear in the
vortex cores for both positive and negative vorticity. The particles are swept away from
vortex cores indicating a slight effect of inertia. The void regions become larger with the
shedding vortex growing along the streamwise direction, as marked in figure 5(b) with
white curves.

Figure 6 presents instantaneous snapshots of particle distribution for medium and
heavy particles. In the left panels, we observe the inertial particles of Sk=0.55 and 1 also
cannot follow the fluid as particles of Sk=0.1, and continue to run away from the vortex
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Figure 4: The drag coefficient CD, lift coefficient CL and normalized force CZ in spanwise
direction at ReD = 100. Case 1 with spatial resolution 0.02D.

cores due to the centrifugal force. The edges of these void regions reach closer to the outer
range of vorticity braids as particle inertia plays a more significant role in the distribution
pattern. As we can compare in figure 6(a)∼(c), the void regions are getting wider and
longer as Sk increases. However, figures 6(d) ∼(f) show quite opposite patterns when
Sk continues increasing from 3 to 10, in which the length of void regions is decreasing.
It is observed that particles get less and less driven to the outer border, and the heavy
particles behave more like bullets. They tend to pass through the vortex center and form
a connected passage in the near wake instead of the individual void regions shown in
figure 6(a)∼(c).

Comparing the particle distribution at Sk=1.0 and 10 in figure 7(a), we observe that
the particles accumulate along the upstream border which makes the border smooth. In
contrast, a small portion of particles stay inside the vortex core near the downstream,
and more particles are trapped inside the vortex core as Sk increases. The velocity of
the particles located upstream is slightly smaller than the ones at downstream shown
in figure 7(b). The observations in figure 5 and 6 indicate a strong Sk-dependency of
particle concentration in the wake flow. Similar pattern of the particle distribution can
also be found in Tang’s experiments and DNS results in plane wake [4], and the numerical
simulation work for cylinder wakes in [6] [7] at higher Re numbers with three-dimensional
effect. The most interesting phenomenon for heavy particles is that a detached particle
bow shock is clearly observed in front of the cylinder with a distance due to the fully
elastic collision model. The shock angle is getting wider as Sk increases, and the shock
wave is hardly influenced by the wake as Sk=6.5 and 10.
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Figure 5: Instantaneous snapshots of particle distribution and Z-direction vorticity in the
light particle simulations: (a) Sk=0.005 and (b) Sk=0.1.

Figure 6: Instantaneous snapshots of particle distribution and Z-direction vorticity at
different Sk. The left panel corresponds to the medium particles: (a)∼(c) Sk=0.1, 0.55, 1.0

and the right panel corresponds to the heavy particles: (b)∼(f) Sk=3.0, 6.5, 10.
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Figure 4: The drag coefficient CD, lift coefficient CL and normalized force CZ in spanwise
direction at ReD = 100. Case 1 with spatial resolution 0.02D.
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Figure 7: (a) Comparison of the instantaneous particle distribution in the same vortex pair
at Sk=1.0 and 10. (b) Superimposed particle velocity distribution at Sk=3, 6.5, 10 in the l

vortex pair.

4 CONCLUSIONS

In this preliminary study, we performed numerical simulation for particle-laden flow
around a circular cylinder at ReD = 100. We aim at studying the inertial particle distri-
bution at different Stokes numbers Sk ranging from 0.0056 to 10. The Lagrangian method
was used to track the trajectories of point particles with one-way coupling.

It is found that the particle distribution presents various patterns between light, in-
termediate and heavy particles. The particle concentration is strongly correlated to the
vortex structure. The particles at extremely small Stokes numbers completely follow the
fluid motion and disperse across the vortex cores without preferential concentration. The
particles at intermediate Stokes numbers show different degrees of preferentially concen-
tration at Sk=0.1, 0.55, 1. The common tendency is that particles concentrate on the
outer boundaries of vortices due to the centrifugal force, and thus separate void zones
appear. The empty regions expand larger as Stokes number increases but remain below
1. For the heavy particles, the void regions appear as a passage especially at Sk=10,
which indicates that bullet-like particles get across the outer boundaries of vorticity and
maintain their own motions. Also we find that particles would flow back towards the
vortex core region but still pass smoothly around the front edge. Based on all simulation
results, we clearly can see an inertial effect on the pattern of particle concentration.
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