
International Center
for Numerical Methods in Engineering

Computational Mechanics

MekIT’17
Ninth national conference on

Trondheim 11-12 May 2017

Editors: Bjørn Skallerud and Helge I. Andersson

Innovations and Creativ i ty

E
di

to
rs

: B
jø

rn
 S

ka
ll

er
ud

 
an

d 
H

el
ge

 I.
 A

nd
er

ss
on

M
ek

IT
’1

7 
Co

m
pu

ta
ti

on
al

 M
ec

ha
ni

cs





I

MekIT’17
Ninth national conference on

Computational Mechanics
Trondheim 11-12 May 2017

Editors: Bjørn Skallerud and Helge I. Andersson

Innovations and Creativ i ty



International Center for Numerical 
Methods in Engineering (CIMNE)
Gran Capitán s/n, 08034 Barcelona, Spain
www.cimne.com

Printed by: Artes Gráficas Torres S.L., Huelva 9, 08940 Cornellà de Llobregat, Spain

Deposito legal: B-16544-2016

ISBN: 978-84-947311-1-2



III

Preface

The present volume contains 29 of the 37 papers presented at the 9th National Conference on 
Computational Mechanics - MekIT’17 held at The Norwegian University of Science and Technology 
(NTNU) in Trondheim (Norway) May 11th and May 12th, 2017. 

The series of national conferences on Computational Mechanics dates back to MekIT’01, 
which was arranged at NTNU in Trondheim early May 2001. The motivation of the first MekIT 
conference was to bring together those involved in Computational Mechanics in Norway, both in 
industry and academia, to share their experiences and report on their research in an informal and 
friendly setting. An arena where those involved with rather different applications of Computational 
Mechanics, as well as scientists developing new computational methods of more generic nature, 
could meet was non-existing in Norway at that time. 

The conferences have from the very beginning aimed to cover all sub-areas of 
Computational Mechanics and not only computational solid mechanics and fluid dynamics. In 
spite of distinctions in approach and methodology the difficulties faced by the researchers are 
often of similar nature and problems can perhaps be remedied in the same way irrespective of the 
actual application. It has all the time been our hope that the conference series will demonstrate that 
computational mechanics is a viable research tool by which both human curiosity and industrial 
needs can be satisfied by scrutinizing the laws of classical mechanics, provided that adequate 
numerical methods are implemented in reliable software, and efficient computers are available. 

A particular mission has been to offer a stimulating environment in which doctoral students 
and other young researchers can present results of their own project work, perhaps for the first time, 
and at the same time get an impression of the multifaceted research which takes place in other 
research groups and at other institutions in Norway. The biennial conferences have now evolved 
into a tradition and every odd numbered year, about when the snow melts and the trees turn green in 
central Norway, a new MekIT-conference takes place. 
	 This year several talks reflected the widespread usage of CFD in marine milieus with 
applications either in offshore or coastal engineering. This is probably a consequence of the increasing 
complexity of relevant problems in marine technologies and therefore reflects the need for more 
realistic mathematical models including both viscous and turbulent effects. Potential flow models, 
which traditionally have been the preferred modeling choice, do not account for such effects and 
are therefore unable to provide physical insight in and reliable results for most of the flow problems 
considered. Besides the complex geometries often encountered in marine CFD, effects of viscosity 
and turbulence are paramount to compute, for instance, boundary layers, separated flow phenomena, 
and/or vortical flow. These effects are represented from 1st principles, i.e. without any semi-empirical 
modeling in direct numerical simulations (DNS). However, the Reynolds number (Re) is so high for 
many real-world applications that DNS is not feasible. One therefore resort to large-eddy simulations 
(LES) in which the unresolved flow-scales are modeled, or to the approached based on the Reynolds-
averaged Navier-Stokes (RANS) equations for which all scales of the turbulent flow field require 
modeling. RANS-modeling is formally valid at any Re, but the realism of the RANS-approach relies 
on the physical realism of the additional modeling of the so-called Reynolds stresses, as well as 
on an adequate numerical treatment. The national state-of-the-art of marine CFD is demonstrated 
by the contributions from the NTNU departments of Marine Technology and Civil and Transport 
Engineering included in these Proceedings.  

In addition to the contributed talks, three keynote lectures are delivered by carefully 
selected scientists, normally recruited from the other Scandinavian countries to give an impression 
of state-of-the art in Computational Mechanics. This year we were delighted that Professor Ray 
Ogden (School of Mathematics and Statistics, University of Glasgow), Professor Johan Revstedt 
(Department of Energy Sciences, Lund University) and Professor Ole Sigmund (Department of 
Mechanical Engineering, Technical University of Denmark) all shared their vast expertise with us in 
their fascinating presentations.

The regular contributions have primarily been written by PhD students and other young 
researchers together with their supervisor(s) or project leader(s) and always in English. The 
manuscripts were submitted before the start of the conference. Each manuscript has been subjected 
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to reviewing by at least one member of the Scientific Committee and in most cases also by a peer 
outside of the Scientific Committee. The authors were thereafter asked to revise their manuscripts in 
accordance with the comments and suggestions made by the reviewers. The majority of the authors 
accepted our invitation to prepare a carefully revised version of their manuscript, which now is 
included in the printed conference proceedings. Following the three papers by the invited lecturers, 
the 26 contributed papers appear alphabetically according to the family name of the first author and 
are listed in the Table of Contents. All authors and co-authors of the contributed papers are included 
in the Author Index. 

Earlier proceedings have been published by Tapir Academic Press and Akademika 
Publishing just prior to the conference. The proceedings were published by CIMNE for the first 
time in 2015 and not until a couple of months after the conference. This new scheme enables a more 
thorough reviewing process and hopefully contribute to the quality of this collection of 29 papers.   

The conference MekIT’17 was hosted by NTNU’s Faculty of Engineering and arranged 
jointly by Department of Energy and Process Engineering and Department of Structural Engineering. 
The Editors appreciate the willingness of the authors to stick to the time schedule for paper submission 
and revision. We are particularly thankful to the members of the Scientific Committee and their 
peers for reviewing the submitted papers and thereby assure the quality of these Proceedings. The 
administrative assistance of Ms Ingrid Wiggen is gratefully acknowledged. 
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Professor Hans Petter Langtangen (03.01.1962-10.10.2016)

It was with great sadness we received the news that Hans Petter passed away last fall. He 
had struggled with severe illness for more than two years. For everyone that met Hans 
Petter, he made a lasting impression with his enormous enthusiasm and deep knowledge 
of computational mechanics and numerical methods. He was always open to new research 
areas and inter-disciplinary collaboration. Of the many achievements, he has authored 
ten (!) books. The last two books were written during his time of illness. Many of the 
books addressed numerical methods and implementation for solution of partial differential 
equations using C++ (DiffPack) or Python. He was editor-in-chief of SIAM Journal of 
Scientific Computing (2011-2015) and director of Center of excellence (SFF)  Biomedical 
Computing from 2007 to 2015. 
Hans Petter will always have a special place in the Norwegian computational mechan-
ics community, and he was very central in establishing our National Conference on 
Computational Mechanics (Mekit). Around year 2000 Helge and Bjørn started throwing 
ideas about showing current activities in computational mechanics in Norway and finding 
a meeting place for this. We started thinking about a conference and exchanged ideas with 
Hans Petter. With many activities on computational mechanics and scientific computing in 
Oslo (UiO and Simula), it was very important to raise interest there. Hans Petter found the 
idea of Mekit to be very good, and with his help, we arranged a very successful Mekit’01 
in 2001. For the years to come, as member of the scientific board, Hans Petter played a 
major role in arranging Mekit. This year (Mekit’17) will be special, with a good colleague 
and friend missing, but we believe that Hans Petter would have been very satisfied with 
the spirit and scope of this year’s conference.

Bjørn Skallerud and Helge I Andersson

Hans Petter Langtangen
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ON THE ELASTICITY OF DISPERSED FIBERS IN SOFT
BIOLOGICAL TISSUES

RAY W. OGDEN1 AND GERHARD A. HOLZAPFEL2,3

1School of Mathematics and Statistics
University of Glasgow

University Place, Glasgow G12 8SQ, UK
e-mail: raymond.ogden@glasgow.ac.uk

2Institute of Biomechanics
Graz University of Technology

Stremayrgasse 16-II, Graz 8010, Austria
e-mail: holzapfel@tugraz.at

3Faculty of Engineering Science and Technology
Norwegian University of Science and Technology (NTNU)

7491 Trondheim, Norway

Key words: Fibrous Biological Tissues, Soft Tissue Elasticity, Fiber Dispersion Model,
Generalized Structure Tensor, Angular Integration Model

Abstract. In this study the predictions of two models of the elastic properties of fibrous
soft biological tissues with dispersed fibers are compared. In particular, it is shown that
the predictions of the angular integration model and the model based on a generalized
structure tensor are essentially identical, contrary to certain claims in the literature.
It is also noted that either model framework is able to accommodate exclusion of the
contribution of compressed fibers to the material response.

1 INTRODUCTION

In this extended abstract we compare two models that are used to describe the elastic
properties of fiber-reinforced materials with dispersed fibers, with particular reference to
soft biological tissues such as artery walls. One model, due to Lanir [1], is based on the
method of angular integration (AI), and the other, due to Gasser et al. [2] is based on
a generalized structure tensor (GST), so that the associated constitutive frameworks are
quite different. It has been shown by Holzapfel and Ogden [3, 4] that the predictions of
the two models are virtually identical for a significant range of large deformations, and
this has been illustrated for both simple tension and simple shear deformations. This is
in sharp contrast to ‘results’ in the literature which are based on flawed analysis; see, for

1
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example, [5, 6, 7]. Another aspect of the two models is that they are both able to exclude
compressed fibers from contributing to the stress response of the materials. Details of the
theory and implementation of this for the AI model are provided in [8, 9, 10], while [3]
contains a theoretical approach that accommodates exclusion of compressed fibers in the
GST model. An alternative approach for the GST model is described in [11].

2 ILLUSTRATIONS

Here we provide two illustrations of the above discussion. First, a comparison of the
predictions of the two models for simple shear in the (1, 2) plane without exclusion of
compressed fibers is shown in Figure 1. The shear stress is denoted σ̂12 and plotted
in dimensionless form σ̂12/µ against the amount of shear γ for a mean fiber angle at
an orientation of 60◦ relative to the 1 direction, where µ is the shear modulus of the
isotropic matrix material in which the fibers are embedded. The figure includes plots for
three different values of the dispersion parameter κ, namely κ = 0.026, 0.15, 0.26, which
correspond to the values 10, 1.5, 0.1, respectively, of the concentration parameter in the
von Mises distribution that is used to describe the dispersion. The same number (two) of
material parameters associated with the fibers is used for each model, and it is clear that
the predictions of the two models are essentially identical. Details of the parameter values
adopted are contained in [4], from where Figure 1 is adapted, and further illustrations of
the comparisons of the predictions of the two models are contained in [3] and [4].
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Figure 1: Plots of the dimensionless shear stress σ̂12/µ against the amount of shear γ. Comparison
of the GST model (dashed curves) and the AI model (solid curves) predictions for (1) κ = 0.026, (2)
κ = 0.15, and (3) κ = 0.26.

The second illustration relates to exclusion of compressed fibers in the GST model
based on the discussion in [3]. Again for simple shear, with the representative value
κ = 0.277 of the dispersion parameter (corresponding to concentration parameter 1.0),

2



5

Ray W. Ogden and Gerhard A. Holzapfel

Figure 2 shows the shear stress σ̂12 plotted against the amount of shear γ for four different
orientations of the mean fiber angle, denoted ΘM, namely 0◦, 45◦, 90◦, 135◦ relative to the
1 direction. Depending on the mean fiber direction either the excluded fiber model or
the all fiber model give the stiffest response. This is in contrast to the case of simple
tension with the mean fiber direction in the direction of extension described in [3] for
which the excluded fiber model yields the stiffest response for each value of the dispersion
parameter.
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Figure 6: Shear stress σ̂12 versus amount of shear γ for both the extended fiber model (contin-

uous curves) and the ‘all fiber’ model (dashed curves) for ΘM = 0, π/4, π/2, 3π/4: (a) b = 0.1

(κ = 0.475); (b) b = 1 (κ = 0.277); (c) b = 10 (κ = 0.026). For each case k1/µ = 5 and

k2 = 0.01.
22

Figure 2: Plots of the shear stress σ̂12 against the amount of shear γ for the GST model, with all fibers
included (dashed curves) and compressed fibers excluded (solid curves) with κ = 0.277 and four different
mean fiber angles ΘM.

3 CONCLUSION

The GST model of the elasticity of fibrous soft tissues, which allows for the dispersion
of the fibers, in general predicts quite different material response from models which do
not allow for dispersion. It has also been shown that the predictions of the GST and AI
dispersion models are essentially indistinguishable when appropriate values of the material
and structural parameters are used [3, 4]. Both the GST and AI models are able to exclude
the contributions of compressed fibers from the material response, as shown in [8, 9, 10]
for the AI model and [3] and [11] for the GST model.
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DYNAMIC RESPONSE AND WAKE STRUCTURES OF
CANTILEVERS WITH SQUARE CROSS-SECTION

JOHAN REVSTEDT1 AND JOHAN LORENTZON2

1 Department of Energy Sciences
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221 00 Lund, Sweden
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2Department of Theoretical Chemistry
Lund University
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e-mail: johan.lorentzon@teokem.lu.se, Web page: http://www.teokem.lu.se

Key words: FSI, LES, deforming cantilever

Abstract. The dynamic response of cantilevers to a hydrodynamic load has been studied
numerically. The Reynolds number of the flow was fixed at 5000 and the variation in re-
duced velocity was achieved by varying the Young’s modulus of the cantilever. Cantilevers
with aspect ratios of 5 and 10 were considered for reduced velocities in the range 2 to
30. The simulations were performed using a strongly coupled FSI tool based in the open
source projects DEAL.II and OpenFOAM. The results show that as the eigenfrequency
of the cantilever coincides with the vortex shedding frequency, the amplitude of the os-
cillation substantially increases, as expected. However, no desynchronization is observed
for higher values of reduced velocity. Instead the amplitude remains fairly constant for
the shorter cantilever and continously increase for the longer one.

1 INTRODUCTION

In recent years the combination of flow simulations and structural analysis has become
increasingly popular in solving engineering problems that contain hydro- or aerodynamical
loading on solid structures. Flow around non-deforming cantilevers of circular cross-
section has been studied experimentally by Park and Lee [9] as well as numerically by
Afgan et al [1]. Both these studies note the strong three-dimensionality of the wake
which is mainly caused by the counter-rotating vortices generated at the free end. This
also causes the wake flow to be much more complex than for a cylinder of infinite length.
Fujarra et al [6] performed an experimental investigation of vortex-induced vibrations of an
elastic cantilever. They found a similar response as for elastically mounted non-deforming

1
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cylinders although the flexible cantilever showed larger amplitudes in the synchronization
range. The onset of the initial branch was found at a reduced velocity, UR = U

fND
,

(where U is the bulk velocity upstream of the cylinder, fN is the eigenfrequency and D

is the cylinder diameter) of about 3 and thereafter a rapid increase in amplitude with a
maximum amplitude of around 1D at UR = 6. Concerning the frequency, the cantilever
was reported to oscillate with the shedding frequency of a stiff cantilever up to UR ≈ 6
and thereafter with a frequency related to the eigenfrequency of the structure. Similar
findings can be seen in the numerical work by Yamamoto et al. [10].

The purpose of this work is to study the deformation of elastic cantilevers due to hy-
drodynamic forces by coupled fluid-structure interaction simulations. Also, to investigate
the effects on the wake structure by the cantilever vibration.

2 METHOD

The equations governing isothermal, incompressible flow of a Newtonian fluid can in
non-dimensional form be written as

∂ui

∂xi

= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj

= −
∂p

∂xi

+
1

Re

∂

∂xj

∂ui

∂xj

(2)

where ui is the velocity vector, p is the pressure, t is non-dimensional time and xi is the
non-dimensional spatial coordinate.

The equation of motion for solids takes the following expression,

ρsüi + ηu̇i −∇ · σ = ρsbi, (3)

where u is the displacement with respect to the current configuration x and a reference
configuration X, u = x − X, ρs is the solid density, η is the damping coefficient, σ is
the Cauchy stress and b is the body force. The total Lagrangian description is adopted
in this study, where the constitutive relations are formulated with respect the reference
configuration to which a second Piola-Kirchoff stress tensor Sij can be defined as,

Sij = DijklEkl, (4)

where Dijkl is the Saint Venant-Kirchoff matrix and Ekl the finite strain tensor,

Eij =
1

2
(
∂ui

∂Xj

+
∂uj

∂Xi

+
∂uk

∂Xi

∂uk

∂Xj

), (5)

where Xj is the material point coordinate in the reference configuration. The relation
between second Piola-Kirchoff stress tensor and the Cauchy tensor is as follows,

σij =
1

J

∂xi

∂Xk

∂xj

∂Xl

Skl, (6)

2
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where J = det( ∂xi

∂Xj
). Using isotropic material assumption, Dijkl can be defined as,

Dijkl = λδijδkl + µ(δikδjl + δilδjk), (7)

where the Lamé parameters are related to Young’s modulus and the Poisson ratio as

λ =
Eν

(1 + ν) (1− 2ν)
, (8)

µ =
E

2 (1 + ν)
. (9)

The eigenfrequency of the first bending mode is determined from:

fN =
k

2πL2

√

EI

ρsA
, (10)

where L is the beam length and k is a constant dependent on the load case. For the
case considered here, i.e. a full moment connection, the value of k is 3.52. The reduced
velocity, which can be regarded as a time-scale ratio between the flow and the structural
response, is frequently used as a parameter in flow-induced vibration studies. It is defined
as

UR =
U0

fND
. (11)

Here the reduced velocity is based on the in vacuo eigenfrequency, fN , and the cross-
sectional size of the cantilever, D.

2.1 Solution Method

The solid solver is a standard procedure originated from Bathe et al [3], implemented
in DEAL.II framework [2] which provides a tool set for Finite Element Method (FEM).
The kinematic description for the solid is the Total Lagrangian using the Finite Strain
approximation (Green-Cauchy) with the Piola-Kirchoff Stress tensor [4]. As time march-
ing method an energy conservative settings is applied using the Newmark scheme. The
fluid solver applied is the pimpleDyMFoam from OpenFOAM package, a Finite Volume
Method package. The discretization schemes are defined by input and chosen for the fluid
as follows: TVD scheme blended with upwind scheme (0.1) for divergence term, central
difference for gradients with limiter, temporal discretization scheme is backward. The tur-
bulence is modelled by LES using dynamic one-equation eddy approximation [11]. The
FSI coupling is implicit stabilized by blending (0.5) over the traction and using IQN-ILS
[5] as post correction. To exclude the compression waves and ambient motion, a low-pass
blackman filtering is applied, at a cut off 12 Hz on the traction in the AMI interface step
in the transfer step from fluid to solid coupling scheme [7]

3
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Figure 1: Computational meshes in the solid and fluid

3 COMPUTATIONAL SET-UP

In the flow configuration considered in this study the Reynolds number, based on the
bulk velocity and the hydraulic diameter of the cantilever, is kept constant at 5000. Hence,
the reduced velocity is varied by varying the Young’s modulus. The reduced velocity UR

is varied in the range 2 to 30, i.e. covering both the pre-synchronization range as well as
lock-in and the post-synchronization range. Two aspect ratios of the cantilever, 5 and 10,
are considered. The density ratio is set to 20. Figure 1 depicts a typical computational
domain and mesh. The size of the domain is 36D× 17D in the streamwise and crosswise
directions respectively. In the direction along the cantilever the domain extends to 13D
for the shorter cntilever and to 18D for the longer one. In the fluid domain a tetrahedral
unstructured mesh is used. The mesh is refined in the vicinity of the cantilever and in
the wake. The number of cells is about 675000 for the short cantilever case and about
1250000 for the long cantilever. In the solid domain a hexahedral structured mesh with
4 cells over the cantilever width is used.

The mesh sensitivity was tested for the long cantilever at Re=5000 using a finer mesh
with about 2400000 cells. This is denoted as ‘Fine’ in Figure 2, which depicts the average
streamwise velocity and the turbulent kinetic energy at three positions downstream of
the cantilever, i.e. x=2D, 4D and 6D, for anon-deforming cantilever. Comparing the
average streamwise velocity in Figure 2 one observes only minor differences between the
two meshes at all three locations. For the turbulent kinetic energy some differences are
visible especially at x=2D at the upper half of the cantilever. The difference is, however,
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substantially decreased further downstream. This leads to the reasonable conclusion that
to capture the proximal part of the wake accurately one would need to use the finer mesh.
Considering a deforming cantilever the wake flow exhibits a similar grid dependence.
However, the motion of the cantilever is less affected. For example, is the frequency
difference only about 5%, which is an indication of how the added mass is accounted for.
In the following the coarser mesh is therefore used since the main purpose of this study
is to investigate the response of the cantilever.

Figure 2: Mean streamwise velocity (left) and turbulent kinetic energy (right) for the coarse and fine
meshes.

4 RESULTS

Earlier studies, e.g. [6], of elastic cantilevers indicate that the response to the flow field
is similar to that of elastically mounted non-deforming cylinders. In the latter case one
observes a large increase in amplitude as the frequency of the vortex shedding (and hence
also the lift force) coincides with the eigenfrequency of the spring mounted cylinder. This
phenomenon is usually called lock-in and is characterized by the oscillation frequency of
the cylinder being locked to the eigenfrequency of the system. Usually this phenomenon
persists at reduced velocities beyond the one where the shedding and eigenfrequencies
coincide. As the reduced velocity is increases the motion is eventually desynchronized.
Hence, the response is usually divided into three distinct regions: The pre-synchronization
range, where the motion is governed by the shedding frequency of the flow and the am-
plitude increases with increasing reduced velocity. The synchronization range, where the
motion is locked to the eigenfrequency and the post synchronization range in which the
the motion again is related to the shedding frequency and the amplitude decreases.

In the following all amplitudes and deflections have been normalized with the cross-
sectional size of the cantilever,D, and the frequencies are normalized using D and the

5
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Figure 3: Instantaneous velocity field around a cantilever with L = 10D at UR = 20. Side view through
the center(left) and top view at mid-height (right).

Figure 4: Visualization of the vortex structures in the wake of the cantilever with L = 10D using the
Q-criterion. Left: non-deforming. Right: deforming with UR = 20.

inflow velocity U0, i.e.

f ∗ =
U0f

D
(12)

The instantaneous flow around the longer cantilever at UR = 20 is depicted in Figure 3.
The flow will of course separate at the upstream corners (as for any square cylinder) and
also from the free end of the cantilever. This will create a fairly complex three dimen-
sional vortex shedding downstream of the cantilever. First consider the non-deforming
cantilever. Figure 4 depicts a visualization of the vortex structure around the longer
cantilever using the q-criterion. At the lower part of the cantilever the vortex shedding
resembles that of an infinitely long rod but further away from the wall the shedding from
the end surface will have a significant influence on the wake structures. Close to the tip
the shedding from the end surface will cause the vortices shed from the sides to move to-
wards the wall similar to what would be the case for any finite length cylinder. However,
at about 5D the initial shedding structures will break down and vortices will instead be
oriented parallel to the wall. Now comparing this to a strongly deforming cantilever at
UR = 20 some differences can be noticed. Firstly, the separation seems to be stabilized
in the sense that vortices are shed further downstream. Secondly, the vortices become
parallel to the wall somewhat faster, hence the part with “normal” shedding is much
shorter.

6
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Figure 5: Normalized averaged tip deflection, δ∗, as a function of reduced velocity, UR, for both cantilever
lengths. The solid line is a curve fit to the results for the L = 5D case.

As the cantilever is subjected to a flow it will deform due to the hydrodynamic loading.
The pressure difference between the upstream stagnation and the downstream wake will
cause the cantilever to bend in the streamwise direction. The deflection should of course
increase proportional to U2

R for obvious reasons. This is confirmed in Figure 5 which shows
the average deflection in the streamwise direction of the cantilever tip. One may also note
that the deflection is almost independent of cantilever length, which is consistent with
and an effect of how the study is set-up.

As was mentioned above the flow separates both from the sides and from the tip
of the cantilever. However, opposed to what is observed for a circular cantilever the
shedding frequency is the same on the side of the cantilever and on the end surface. The
Strouhal number of the shedding is around 0.1 in this case, based on the bulk velocity
and the hydraulic diameter of the cantilever. With this in mind, one should expect
the synchronization to begin at a reduced velocity of about 10 since the added mass
effects can be considered small at the density ratio considered here. Considering the
left graph of Figure 6 this is indeed the case. As the reduced velocity is increased the
amplitude in the lateral direction increases exponentially until the reduced velocity reaches
10. Thereafter the amplitude is fairly constant all the way to UR = 30, i.e. there is no
evidence of the desynchronization observed for elastically mounted cylinders here. Further
evidence of this is seen in the right graph of Figure 6, depicting the frequency of motion
of the tip normalized with the eigenfrequency. Below UR = 10 the motion is governed
by the the shedding frequency. From UR = 10 the frequency instead coincides with the
eigenfrequency of the cantilever’s first bending mode. The slight deviation from unity is
due do the effect of added mass, which slightly lowers the eigenfrequency as is discussed
above.

7



14

Johan Revstedt and Johan Lorentzon

Figure 6: Normalized amplitude (left) and frequency relative to the eigenfrequency (right) as a function
of reduced velocity for both cantilever lengths. The dashed line represents the in vacuo eigenfrequency
and the dot-dashed line is the vortex shedding frequency.

Figure 7: Drag (left) and lift (right) coefficients for both cantilevers as a function of reduced velocity.

The average drag coefficient and rms of the lift coefficient, are depicted in Figure 7.
Concerning the drag one can observe a slight increase with increasing reduced velocity up
to the onset of resonance, whereafter it remains almost constant up to UR = 30. Both
cantilever sizes follow the same trend. It should here be noted that the variations in
drag are quite small and the difference to the value for a non-deforming cantilever does
not exceed 5%. For the lift the development differs slightly. As for the drag there is a
noticeable increase in lift at UR = 10. Beyond that point the development of the lift
closely follows the amplitude of the lateral motion, i.e. the lift is increased for the longer
cantilever but for the shorter one sees a slight decrease and then a regain.

Turning our attention to how the wake is affected by the cantilever motion, the average
streamwise velocity and the turbulent kinetic energy at three positions, at 2D, 4D and 6D
downstream of the cantilever are considered. Figure 8 shows this for the longer cantilever

8
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at three values of reduced velocity, 6 10 and 30, i.e. one value from each regime. At the
upstream position the wake extends to about 1.1 times the cantilever length for all cases.
Considering the non-deforming case the recirculation extends to a height of about 85% of
the cantilever length. Following the wake development for the non deforming case one sees
a fairly uniform distribution of both U an k up to just above the cantilever half-height and
that this position is gradually moved towards the wall as the wake develops. The turbulent
kinetic energy has its maximum in the upper part of the cantilever at the closest position,
while further downstream the maximum is found in the lower part. The clear distinction
in distribution of kinetic energy between x = 2D and x = 4D is noteworthy. It is a clear
indication of the change in wake character occurring between these two positions, which
was pointed out already in the discussion on Figure 4. Hence, close to the cantilever one
observes two distinct wake patterns due to that the shedding from the tip only influences
the upper half of the wake. Furthermore, there are two distinctly different wake patterns
near and far from the cantilever.

For the deforming cases one observes only minor differences at UR = 6 compared to
the non-deforming case, which is to be expected since the amplitude of motion is very
small as is seen in Figure 6. Increasing to UR = 10 differences in k can be observed
already at x = 2D and at x = 4D the differences in U are also clearly noticeable. At
x = 2D the peak in k is much stronger than in the non-deforming case and located closer
to the surface. This would indicate that the influence of the tip shedding is stronger in
this case but already at x = 6D this effect has totally vanished and the distribution of k
is indistinguishable from the lower reduced velocity and non-deforming cases. The mean
velocity on the other hand shows that the recirculation is shorter and that the velocity is
more evenly distributed over the height. Further increasing the reduced velocity will make
these effects even more pronounced as can be seen for the case UR = 30. Now considering
the shorter cantilever one would suspect that the tip effects to be more dominating.
However, no conclusive evidence of that can be found in this study.

In Figure 9 average velocity and turbulent kinetic energy are depicted at the same
reduced velocities and at the same positions as for the longer cantilever case. Overall
the differences in U are smaller in this case although the trends are the same, i.e. at the
onset of synchronization the recirculation gets shorter and the wake velocity increases.
However the general shape of the velocity distribution seems almost unaffected. Also, note
the there is a clearly noticeable difference between the non-deforming case and the lowest
reduced velocity case, which was not present for the longer cantilever. For the turbulent
kinetic energy the trend is similar in as much as the differences are overall smaller close
to the cantilever and the distinct peak at UR = 10 is not present here. The turbulent
kinetic energy is increased downstream, as for the longer cantilever, but even at x = 6D
the distribution differs between the cases although the levels are similar.

In a previous study [8] the wake structures of other cantilever shapes were studied. It
is of interest to also consider the shape effect for deforming cantilevers. Here we consider
a square cantilever, L = 5D, twisted 90 degrees around its axis at UR = 10. Some data

9
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Figure 8: Mean streamwise velocity (left) and turbulent kinetic energy (right) at 2D, 4D and 6D
downstream of the cantilever for L/D=10.

for the two cases is summarized in Table 1. Twisting does of course not change the
eigenfrequency of the cantilever. Hence, the reduced frequency of the lateral motion is
0.098, i.e. close to the value found for the the straight cantilever. The amplitude, on
the other hand, A∗ = 0.073, is about a factor 4 lower than for the straight case. This
is of course due to the differences in shedding behavior, i.e. the twisting will disrupt
the shedding of coherent vortices along the whole length of the cantilever thereby to
some extent inhibiting the resonance. As a consequence, the rms of the lift coefficient is
also lower. Note that since the twisted geometry breaks the symmetry of the flow there
will be a non-zero average lift coefficient as well. Looking at the wake flow, depicted in
Figure 10, it seems that the average velocity will more closely resemble the straight non-
deforming case apart from some instances where it would resemble the straight UR = 10
case. Likewise the turbulent kinetic energy is lower in the twisted case, which is due to
the disruption of large coherent structures by the cantilever shape.

Table 1: Comparison of a straight and a twisted cantilever with L = 5D at UR = 10

Case δ∗ A∗ CD

√

C2
L f ∗

Straight 0.031 0.265 1.47 0.268 0.094
Twisted 0.111 0.073 1.32 0.047 0.098

5 CONCLUSIONS

As an elastic cantilever is immersed in a flow it will deform in the streamwise direction.
Since this deformation is dominated by the first bending mode of the cantilever one
observes a quadratic dependence of the deflection on the reduced velocity. This also

10
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Figure 9: Mean streamwise velocity (left) and turbulent kinetic energy (right) at 2D, 4D and 6D
downstream of the cantilever for L/D=5.

leads to that there is no influence of the cantilever length on the streamwise deflection.
In the lateral direction on the other hand the situation is somewhat different. At low
reduced velocities the cantilever will oscillate with the frequency of the vortex shedding
and the amplitude is quite low . However as the shedding frequency coincides with the
eigenfrequency of the cantilever the amplitude substantially increases which is a sign of
resonance. Further increasing the reduced velocity, i.e. reducing the eigenfrequency, leads
to that the cantilever continues to oscillate with a frequency close to the eigenfrequency.
The small discrepancy can be attribute to the added mass due to the cylinder motion.
Concerning the amplitude, the behaviour differs between the short and long cantilevers.
For the shorter one the amplitude is almost constant but for the longer one a continuous
increase is observed. Hence, we do not observe the desynchronization obtained in several
other studies. The reasons for this might be several. One could be the very low material
damping used in this study. In any case further investigation into this phenomenon is
needed.

Concerning the influence of the cantilever motion on the wake flow one can conclude
that the small amplitudes observed at low reduced velocities does nor affect the wake
significantly. In the cases with a large oscillation amplitude the recirculation is shorter
and the fluctuations larger in the near wake. It is here interesting to note that already at
a distance of 6D the effects of the oscillation on the fluctuations has almost disappeared.
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Figure 10: Mean streamwise velocity (left) and turbulent kinetic energy (right) at 2D, 4D and 6D
downstream of the cantilever for straight and twisted cantilevers at L/D=5.
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Abstract. The original approach to topology optimization by Bendsøe and Kikuchi
(1988) was based on homogenization and multiscale approaches. However, this technique
has largely been replaced by simpler density or level-set approaches. Lately, resolutions
for density approaches have reached giga-scale which gives unprecedented levels of details
for optimization solutions. However, such resolutions also require extreme computational
power. The paper discusses recent activities that revive old homogenization approaches
with the aim of achieving giga-resolution at low computational cost.

1 INTRODUCTION

The original homogenization approach to topology optimization introduced by Bendsøe
and Kikuchi almost three decades ago1 paved the way for topology optimization but was
largely abandoned in practical use due to computational challenges and complexity of
solutions.2 Instead the approach was substituted by simpler density approaches which
later were supplemented by level-set approaches. Presently, density approaches are the
main drivers in industrial software solutions and resolutions are approaching giga-scale.3

The cost of running very high resolution studies are high and may limit applications in
really large constructions (e.g. airplanes, bridges and high risers) and certainly prevents
interactive design processes as e.g. the TopOpt Apps.4

To pave the way for future high-resolution topology optimization studies we revisit
the original homogenization approaches and extend them with improved projection and
post-processing steps. For the simple 2D studies considered so far, we achieve speed
up factors of more than 50 in Matlab implementations. The projection approach takes
homogenization results obtained on a very coarse mesh and projects them onto either very
fine meshes or simplified frame structures that can be further post-processed or optimized
at low computational cost. The former approach has been described in detail5 and the
latter approach is still under development.

1
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2 EXAMPLE

The approach is illustrated in Figure 1. The standard homogenization approach to
topology optimization results in two angular fields for optimal laminate directions ei(x)
as well as lamination parameters ai. To obtain a smooth angular field description we in-
troduce the scalar fields ϕi, which minimize the least squares errors ||∇ϕi(x)−ei(x)||. For
the density projection approach (Figure 1, bottom left), a mapping based on cos(Pϕi(x))
and the lamination parameters ai directly results in a fine scale density distribution which,
when cleaned up for small details results in a close to optimal high resolution solution.

The second approach (Figure 1, bottom right) is also based on the ϕi fields, however,
this time a frame mesh is obtained from direct use of the contour curves of the ϕi fields as
well as the lamination parameter ai information. The generated frame ground structure
resembles a Michell structure but is rather crude and most be post-optimized for shape
and connectivity to reach a satisfactory solution.

3 CONCLUSIONS

The proposed density projection approach saves a factor of 50 compared to a standard
high resolution topology optimization approach with little if any decrease in performance.
The approach mapping to a frame structure is presently slightly slower but may be sped
up based on code improvements and switch to lower level programming languages than
Matlab.

This extended abstract has given a small taste of a new projection approach for multi-
scale topology optimization. Further details can be found in Groen and Sigmund5 and a
paper soon to be submitted.
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Figure 1: Steps of the projection approach. Top: traditional homogenization based topology optimiza-
tion for MBB test case. Below: Smoothed mapping functions ϕi. Bottom left: pure mapping to fine scale
density distribution. Bottom right: mapping to frame structure and subsequent shape optimization.

5 J.P. Groen and O. Sigmund. Homogenization-based topology optimization for high-
resolution manufacturable micro-structures. Internatinal Journal of Numerical methods
in engineering, 2017. online.
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Abstract. The real sea state is composed of the focused and steep irregular waves which
makes their study very important in the design of offshore wind turbines. Computational
Fluid Dynamics (CFD) can be used as an effective tool to study steep waves. In the present
paper, the wave reconstruction method in which the numerical wave free surface elevation
is reconstructed by using the Fast Fourier Transformation (FFT) is validated using the
open-source CFD based model REEF3D. The validation is performed for the deep water
steep irregular waves and the focused waves. The numerical results are compared in time-
domain for both cases (focused and irregular waves) with the experiments. The wave
peaks and the wave phases are captured well in the numerical model.

1 INTRODUCTION

The study of the wave hydrodynamics is crucial for the design of offshore wind turbines.
The real sea state is very complex, multi-directional and highly irregular. It is composed
of multi-chromatic irregular waves. When irregular waves coincide at one point in time
and space during the nonlinear wave-wave interaction, they can produce focused waves
with large wave heights. Therefore, it is important to study both focused and irregular
waves while designing the offshore structures.
Many experimental and field investigations have been performed to study the irregular
and focused waves. Holthuijsen et al. [1] performed a study for the whitecapping in
the open sea and they reported that the probability of a wave group having at least one
breaker was higher for longer wave groups. Hajime et al. [2] investigated irregular wave
transformation over sloping sea bed and developed a hybrid model to predict the trans-
formations of irregular waves. They used the Pierson-Moskowitz spectrum for the wave

1
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generation. Pákozdi et al. [3] performed laboratory experiments with breaking irregular
waves using the Toresthuagen spectrum to measure the global impact loads on the bot-
tom fixed offshore structures. Baldlock et al. [4] performed an experimental study with
focused waves and reported that the physical process close to the focusing point is highly
nonlinear due to the complex wave-wave interaction. Ning et al. [5] performed some
experimental investigations on the evolution of the focused groups and the underlying
kinematics.
Numerical modelling can also be used to study the waves. A good validation of the numer-
ical model in time-domain is required to accurately model the breaking and non-breaking
waves for real life applications. The potential theory is unable to capture the whole wave
breaking process [6]. Computational fluid dynamics (CFD) can simulate the complete
wave breaking process without defining any empirical breaking criterion explicitly. Com-
putational Fluid Dynamics (CFD) has been used previously by many researchers to model
different types of waves [7][8][9]. The irregular wave train is composed of many regular
wave components with different heights, periods and phases. In order to validate the
numerical irregular wave surface elevation with the experimental free surface elevation
in time domain, the correct phases of the generated numerical irregular waves is to be
computed. The wave phases, amplitudes and angular frequencies for the individual waves
are computed for the experimental free surface elevation measured close to the wave gen-
eration, which are used for the reconstruction of numerical irregular waves. Bredmose et
al. [10] and Paulsen et al. [11] investigated irregular and focused waves on monopiles
with CFD. They compared the numerical and experimental free surface in time-domain
by using the linear reconstruction of waves. Their numerical model showed some dis-
agreements in simulating the peaks and phases in the irregular wave surface. The aim
of present paper is to study and validate the free surface reconstruction technique for
irregular and focused wave groups. The present study is conducted using the open-source
CFD software REEF3D [12]. The numerical results for the irregular waves are compared
with the experiments performed by Pákozdi et al. [3] and the numerical results for the
focused waves are compared with the experiments performed by Ning et al. [5]

2 NUMERICAL MODEL

The present numerical model is based on the governing equations of fluid dynamics:
continuity equation and the Reynolds Averaged Navier-Stokes equations (RANS) with
the assumption of an incompressible fluid given as:

∂ui

∂xi

= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

[
(ν + νt)

(
∂ui

∂xj

+
∂uj

∂xi

)]
+ gi (2)

where, u is the velocity averaged over time t, ρ is the fluid density, p is the pressure, ν
is the kinematic viscosity, νt is the eddy viscosity, i and j denote the indices in x and y
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direction, respectively and gi is the acceleration due to gravity.

The numerical model uses a fifth-order finite difference Weighted Essentially Non-
Oscillatory (WENO) scheme in multi-space dimensions for the spatial discretization [13].
The third-order TVD Runge Kutta scheme is used for the time discretization [14]. An
adaptive time stepping scheme is used in the numerical model [15]. The present study uses
the k− ω model [16] along with the Reynolds Averaged Navier Stokes (RANS) equation.
The level set method is used to capture the free surface [17]. The relaxation method
[18] for the focused wave case and the Dirichlet method for the irregular wave case, are
used in the present study for the wave generation and absorption. Detailed information
about the numerical model can be obtained in Bihs et al. [12]. REEF3D has been used in
the past for a wide range of marine applications, such as wave-structure interaction [19],
breaking wave forces [20], floating body dynamics [21] and sediment transport [22]. For
the reconstruction of irregular waves, the Fast Fourier Transformation (FFT) algorithm
is used. The wave amplitudes (Ak), angular frequencies (ωk) and the phase angles (ϵk)
are computed for the target irregular wave train at the wave generation using FFT. A
time series of the free surface elevations can be written as a summation of the Fourier
components [23]:

η(t) =
N∑
k=1

Cke
ikωt (3)

where, Ck denotes the Fourier coefficients.

The computed wave amplitudes (Ak), angular frequencies (ωk) and the phase angles
(ϵk) are given as an input to the numerical model. The first-order irregular waves are
generated by the super-positioning of the linear regular waves components [24][25]. The
focused waves are generated by numerically coinciding the irregular waves at one point in
time and space [26] .

3 RECONSTRUCTION OF THE FOCUSED WAVES

3.1 Computational setup

The numerical model is tested and validated by comparing the numerically recon-
structed and the experimental wave free surface elevation [5]. The experimental wave
flume was 69 m long and 3 m wide with a water depth (d) = 0.5 m and the focus point
location was 11.4 m away from the wave paddle. The tests were performed for the fo-
cused waves with amplitude (AF ) = 0.0313 m and period (T ) = 1.2 s. The numerical
simulations are performed in a two-dimensional numerical wave tank (NWT) without any
structures. A 15 m long and 1 m high NWT with a water depth (d) of 0.5 m is used
in the simulations as shown in Fig. 1. Two wave gauges were placed along the NWT
at x = 0.0 m (W1) and 7.5 m (W2). The wave amplitudes (Ak), angular frequencies
(ωk) and the phase angles (ϵk) are computed for the experimental wave surface elevation
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Figure 1: Setup of the numerical wave tank for the generation of focused waves similar
to experiments [5].

measured close the wave generation zone (W1), which are given as the input values to the
numerical model. The numerical simulations are performed for three different grid sizes
(dx) = 0.10 m, 0.05 m and 0.025 m for the grid refinement study. The experimental free
surface elevation is reconstructed numerically and the numerical focus point is chose to be
at 7.5 m (at W2) from the wave inlet which is far enough to represent the computational
efficiency of the numerical model to simulate the focused waves.

3.2 Results

Fig. 2 presents the comparison of the experimental and numerically reconstructed free
surface elevation at the focused point (xF ) for this case with different grid sizes (dx) =
0.10 m, 0.05 m and 0.025 m. It is observed that value of the numerical peak for the
focused wave is 29 % lower and shifted by 0.25 s in comparison with the experimental
values for dx = 0.10 m. When a more refined dx = 0.05 m is used, some improvements
in the numerical results are observed. The difference between the value of numerical and
experimental peaks for the focused wave crest is reduced to 9.3 % and is shifted by only
0.09 s. For dx = 0.025 m, the peak crest values and the peak crest location for the focused
waves are in a good agreement with the experimental results. There is almost no difference
between the location of the peak wave crest between the both, and the difference between
the value of numerical and experimental peaks for the focused wave crest is reduced to
4 %. Fig. 3 presents the simulated free surface changes with velocity magnitude (m/s)
variation for the focused wave at xF . A scaled up view of the wave free surface elevation is
also shown. The increased velocities and higher wave crest can be observed at the focused
point due to the superimposition of individual wave components in space and time at xF .

4 RECONSTRUCTION OF THE IRREGULAR WAVES

4.1 Computational setup

The numerical tests are conducted in a two-dimensional numerical wave tank (NWT)
without any structures. The numerical model is validated by comparing the numerical
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Figure 2: Comparison of the experimental [5] and numerically reconstructed free surface
elevation at the focused point (xF ) with different grid sizes (dx) = 0.10 m, 0.05 m and
0.025 m.

Figure 3: Simulated free surface changes with velocity magnitude (m/s) variation for the
focused waves (scaled up view)

results with the experimental data [3]. The wave amplitudes (Ak), angular frequencies
(ωk) and the phase angles (ϵk) are computed for the experimental wave surface elevation
measured close the wave generation zone (W1), which are given as the input values to
the numerical model. The steep irregular waves in experiments were generated using the
Torsethaugen spectrum. A 40 m long and 15 m high NWT with a water depth of 10 m is
used in the numerical simulations as shown in Fig. 4. The wave gauges in the NWT are
placed at x = 1.4 m (W1) and 15.0 m (W2).

4.2 Results

The numerical simulations are performed for the significant wave height (Hs) = 0.345 m
and period (Tp) = 2.6 s. Fig. 5 presents the comparison of the numerical and experimental
wave free surface elevation (η) over time (t) at two wave gauge locations with three
different grid sizes (dx) = 0.10 m, 0.05 m and 0.01 m for the grid refinement study . It
is observed that for the wave gauge located next to the wavemaker (W1), some phase
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Figure 4: Setup of the numerical wave tank for the generation of steep irregular waves
similar to experiments [3].
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Figure 5: Comparison of the numerical and experimental [3] wave free surface elevation
(m) for the shorter time-series with three different grid sizes at (a) W1 (b) W2

differences are observed between the numerical and experimental results with dx = 0.10
m (Fig. 5(a)). These phase differences are slightly reduced for the grid size dx = 0.05
m and they are reduced to almost zero for the grid size dx = 0.01 m. For the wave
gauge located at x = 1.4 m (W1), the error between the numerical and the experimental
wave crests for all grid sizes for the wave gauge located next to the wave maker (W1) lies
between 1 % to 6.6 %. The error for the wave phases between both lies between 1 % to 5
%. For the wave gauge located at x = 15.0 m (W2), it is observed that the values of the
wave crests are lower than the experimentally measured values and some phase difference
is also observed for dx = 0.10 m. The results are slightly improved for the finer grid size
dx = 0.05 m, but still some phase difference can be observed. For the grid size dx =
0.01 m, the numerical and experimental wave crests show a error of up to 8 % and the
numerical and experimental wave phases show a error of 13 % (Fig. 5(b)). Fig. 6 presents
the comparison of the numerical and experimental wave free surface elevation (η) for the
longer time-series at two wave gauge locations with dx = 0.01 m.

Fig. 7 presents the simulated free surface changes with velocity magnitude (m/s)
variation during the propagation of irregular steep waves in the numerical wave tank
(NWT) at different time-steps. At t = 78.34 s, the steep wave with very a high velocity
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Figure 6: Comparison of the numerical and experimental [3] wave free surface elevation
(m) for the longer time-series with grid size (dx)= 0.01 m at (a) W1 (b) W2
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Figure 7: Simulated free surface changes with velocity magnitude (m/s) variation for the
irregular waves (Zoomed around the steep wave event)

and large wave crest height is observed (Fig. 7(a)). In the next time step at t = 78. 67
s as shown in Fig. 7(b), after the wave crest reaches it maximum height and attain the
maximum crest velocity, the velocities and the wave heights decrease again.

5 CONCLUSIONS

The numerical model REEF3D is used to validate the wave reconstruction method
for focused and irregular waves. The waves are reconstructed using the Fast Fourier
Transformation (FFT). First, the numerical simulations are performed for the focused
waves. The numerical results are compared with the experimentally measured free surface
elevation. The wave crest height is correctly reconstructed at the focal point in the
numerical model for dx= 0.025 m. Next, a complex case of deep water steep irregular
waves is investigated. The free surface elevations computed at two different locations
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along the wave tank are compared with the experimental results. The experimental
and numerical results at the wave gauge located next to the wave generation (W1) are
compared to validate the correct inlet wave. The numerical wave amplitudes and wave
phases during the wave propagation along the wave tank are well represented as measured
by the wave gauge located at x = 15.0 m (W2). However, a further improvement in the
numerical results is required in order to simulate the experiments with a better accuracy.
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Abstract. A model for inclined planar film boiling using the lubrication approximation
is derived. A dimensionless form of this model is presented, and it is shown that for a given
plane orientation, the dynamics of the film thickness are governed by two dimensionless
parameters: The Bond number and the evaporation number. The resulting scalar thin
film equation is parabolic, fourth order, and highly nonlinear. A semi-implicit finite-
volume method is derived in order to avoid having to satisfy the time step limitations
required by explicit methods for the fourth order diffusion term. It is demonstrated how
this model can be used to study transient vapor film growth, and the travelling wave
instabilities which may occur under certain conditions.

1 INTRODUCTION

When a liquid comes in contact with an isothermal solid surface that is hotter than the
liquid’s saturation temperature, a vapor phase will start nucleating at the surface, and
the liquid will start to boil. This process has an associated flux of heat being conducted
from the solid. The relationship between the surface superheat and the heat flux is
called the boiling curve [1]. The boiling curve shows the intuitive behavior of increasing
heat flux with increasing temperature, up to the critical heat flux. This represents the
transition from nucleate boiling to film boiling and is seen as a sudden drop in heat flux
with increasing surface temperature.

The drop is due to the formation of a continuous vapor film between the solid and the
liquid, which has an insulating effect on the heat transfer. In some practical situations
film boiling is desirable, and in some it is not. In either case it is of interest to predict
the dynamics of the vapor film, its heat flux, and under which conditions it may become
unstable and break down (vapor film collapse [1]).

1
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The vapor film is very thin, of the order of 100μm [1, 2], and thus likely much thinner
than the length of the solid surface. This makes thin film flow theory applicable for the
analysis of the film dynamics. A common way of approaching thin film flow is by use of
the lubrication approximation [3, Sec. 8.3]. This is a standard approach, using the large
difference in length scales to simplify the Navier–Stokes equations. When combined with
the mass-conservation principle, this will reduce the full set of governing equations and
boundary conditions to a single highly nonlinear scalar PDE [4].

The dynamics of thin liquid films on solid surfaces, including analysis by the lubrication
approximation, has been extensively reviewed in the past by Oron, Davis, and Bankoff [5],
Myers [4] and Craster and Matar [6]. Some work has also been performed on lubrication
analysis of vapor films (film boiling), such as Panzarella, Davis, and Bankoff [7], Tomar
et al. [8] and Kim, Lee, and Kim [9]. However, these are all in the case of horizontal
planes, where there is no net flow in one direction, and the models are normally reduced
to linearized stability analysis in order to study the Rayleigh–Taylor type instability.
Models for film boiling with other orientations, mainly vertical, have also been developed,
which only considered steady states [10, 11].

The novelty of this work includes:

– A derivation of a thin film equation for planar film boiling of arbitrary inclination.

– Dimensionless scaling with a single length scale, the typical film thickness, based on
an analytical steady state solution. This is in contrast to the usual usage of wall
length as a length scale, and this demonstrates dynamic similarity in a new form.

– Showing in detail how a semi-implicit numerical method can be implemented in order
to deal with the fourth-order diffusion term, including incorporating appropriate
boundary conditions for film boiling.

– Demonstrating the possibility of suddenly developing instabilities a certain distance
into an initially stable film, in the form of growing travelling waves, and revealing
some of their predictable features.

The equation studied in this work can in general be written as

∂h

∂t
+

∂

∂x

[
h3

(
a+ b

∂h

∂x
+ c

∂3h

∂x3

)]
=

E

h
, (1)

where h, x and t are the dimensionless film thickness, distance and time, respectively.
The remaining symbols are constants, to be explained. This is an autonomous fourth-
order nonlinear parabolic equation with a source term. Such thin film equations have
been studied previously by e.g. Myers [4], though commonly in the context of thin liquid
films, not film boiling. Due to the stiffness introduced by the discretization of the high
order derivatives, it is almost impossible to solve Eq. (1) stably with explicit numerical
methods. In this work, a semi-implicit method is derived, which treats the high order
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derivative approximations implicitly, while keeping the resulting equation system linear.
While the method is inspired by Moriarty, Schwartz, and Tuck [12], this work includes
an additional flux term due to not being restricted to the vertical configuration, and has
different requirements for boundary conditions.

When Eq. (1) describes film boiling, the constants a and c are always positive, while
b may have either sign. In the case where b > 0, we essentially have negative second
order diffusion, which is a destabilizing influence, and it is partially counteracted by the
stabilizing fourth order diffusion (c-term). This situation arises in the liquid-above-vapor
configurations, and is essentially a Rayleigh–Taylor-type instability. However, since the
orientation is not completely horizontal (a > 0) the buoyancy-driven advection term will
give running wave instabilities, as opposed to just stationary rising bubbles. Similar
running waves have been observed by e.g. Bui and Dhir [13]. Such instabilities predicted
by the present model are investigated in a preliminary fashion in this work.

In this paper, Section 2 shows the derivation of the model from physical principles,
including a final dimensionless form. A numerical method is derived and tested in Sec-
tions 3 and 4, respectively. Using this model, a few test cases are calculated in Section 5,
before overall conclusions are drawn in Section 6.

2 MODEL

An illustration of the problem is shown in Fig. 1. The thin vapor film is surrounded
by a flat solid wall on one side side and a liquid on the other side. The liquid is assumed
to stay at its saturation temperature. The wall has a higher temperature than the liquid,
and thus it conducts heat through the vapor film which in turn causes evaporation at
the liquid–vapor interface. Buoyancy then drives vapor flow up along the film. The film
coordinate system has its origin at the wall surface, with x̂ pointing tangentially along the
wall, and ẑ pointing perpendicularly into the vapor film. The purpose of the model is to
predict the spatiotemporal behavior of the liquid–vapor interface, as described by the film
thickness function δ(X, τ). The symbols X, Z and τ represent the dimensional space-time
coordinates, while x, z and t will later be used in the dimensionless formulation.

In order to derive an approximate model for the vapor film dynamics, we make the
following assumptions:

– Thickness of the film is much smaller than its length scale.

– Vapor density is constant.

– Vapor viscosity is constant.

– Surface tension is constant.

– Negligible liquid dynamics: Pressure is equal to hydrostatic pressure.

– Pressure jump across liquid–vapor interface is given by surface tension alone.

3
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Figure 1: Illustration of the planar film boiling problem. A wall at angle α supplies heat
to a boiling liquid, which feeds vapor into the vapor film in between. Buoyancy then
drives vapor flow along the wall.

2.1 Lubrication approximation

In the case of thin film flow of an incompressible fluid, we may apply the classical
lubrication approximation [3, Sec. 8.3]. This method uses the large difference in the film’s
tangential and perpendicular length scales to neglect several terms in the Navier–Stokes
equations. The equations reduce to

∂p

∂X
= ρvgx + μv

∂2u

∂Z2
, (2)

and

∂p

∂Z
= ρvgz. (3)

Here p is the pressure, u is the x-directed velocity, μv is the vapor viscosity, ρv is the vapor
density, and gx, gz is the gravitational acceleration projected along the x and z-direction,
respectively. According to the definition of the inclination angle α in Fig. 1, we have that

gx = −g sinα, (4)

gz = g cosα, (5)

where g is the gravitational acceleration. Under the assumption that ∂p/∂X is indepen-
dent of Z, which will be justified in Section 2.2, we find from Eq. (2) that the second
derivative of u with respect to Z is constant at a given X, and can be written as

∂2u

∂Z2
= − 1

μv

D(X), (6)
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where we have defined the driving force D(X),

D(X) ≡ ρvgx − ∂p

∂X
. (7)

When using the no-slip boundary condition u = 0 at both the wall and the liquid-vapor
interface, a choice motivated in appendix A, we see that the solution to Eq. (6) yields the
velocity profile,

u(X,Z) =
δ2

2μv

D(X)

[
Z

δ
−
(
Z

δ

)2
]
. (8)

This is a parabolic (Poiseuille flow) profile arising from a balance between the driving
force and viscous resistance.

2.2 Pressure

In order to go further with Eq. (8), we need to find the driving force, defined in
Eq. (7). This requires a model for the pressure in the film. With the boundary condition
p(Z = δ) = pv,i, the solution to Eq. (3) is

p = pv,i − ρvgz (δ − Z) , (9)

where pv,i is the pressure at the vapor side of the liquid-vapor interface. Since neither pv,i
nor δ are functions of Z, we see that ∂p/∂X will be independent of Z, as assumed earlier.
The pressure jump at the interface is given by the surface tension contribution,

pl,i − pv,i = σκ, (10)

where pl,i is the interface pressure on the liquid side, σ is the surface tension, and κ is
the interface curvature. The sign of the curvature is chosen so that a positive curvature
gives a decreased pressure in the vapor film. The liquid pressure at the interface is given
by the hydrostatic contribution corresponding to the vertical position of the interface,

pl,i = p0 − ρlgζ, (11)

where p0 is a reference pressure, ρl is the liquid density, and ζ = ζ0 − δ cos(α) is the
vertical position of the interface. The latter depends on X as

∂ζ

∂X
= sin(α)− cos(α)

∂δ

∂X
. (12)

If we combine Eqs. (9) to (12), we find that

∂p

∂X
= −ρlg sin(α) + Δρg cos(α)

∂δ

∂X
− σ

∂κ
∂X

, (13)
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where Δρ ≡ ρl − ρv. The driving force is thus given by

D(X) = Δρg

[
sinα− cosα

∂δ

∂X

]
+ σ

∂κ
∂X

. (14)

Here it is seen that all gravitational driving forces disappear if the densities become equal,
as must be the case.

2.3 Heat transfer

By using the same principles as when reducing the Navier-Stokes equations to Eqs. (2)
and (3), and by assuming relatively small normal velocities at the interface compared to
the tangential velocities, we can show that the energy equation for incompressible flow in
the thin film will reduce to

∂2T

∂Z2
≈ 0, (15)

where T is the temperature. This means that there will be a linear temperature profile
across the film. If we assume that all the heat conducted into the liquid–vapor interface
is spent on evaporation, and that the film is not so thin that the wall will be cooled by
the liquid, the vaporization mass flux can be modelled as

me(X) =
Q

δ(X)
, (16)

where Q is a constant given by case conditions and choice of evaporation model. The
simplest possible model would be

Q =
kvΔT

L
, (17)

where kv is the vapor conductivity, ΔT is the difference between wall temperature and
liquid saturation temperature, and L is the heat of vaporization.

2.4 Mass conservation

We will now consider vapor mass conservation in a control volume centered at X with
a central thickness δ, length ΔX, and depth W . Mass is exchanged by flow along the
film, and by evaporation at the liquid–vapor interface. The volume can be found from a
Taylor expansion of δ(X) around its central value,

V = W

∫ ΔX/2

−ΔX/2

δ(X)dX

= WδΔX +O (
δXXΔX3

)
, (18)
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where δXX is a shorthand for ∂2δ/∂X2. The mass flow rate along the film can be found
by integrating Eq. (8),

M ≡
∫ δ(X)

0

ρvu(X,Z)WdZ,

= W
ρvδ

3(X)

12μv

D(X). (19)

The mass flow rate entering by evaporation can be found by integrating Eq. (16) while
Taylor expanding δ(X) around its central value,

Me = W

∫ ΔX/2

−ΔX/2

me(X)dX,

= WΔX
Q

δ
+O (

δ2X(ΔX/δ)3
)
+O (

δXX(ΔX)3/δ2
)
. (20)

We see that the evaporation rate can simply be found from the central film thickness as
long as ΔX � δ. The mass conservation principle for the control volume can now be
stated as

∂ (ρvV )

∂τ
+M(XR)−M(XL) = Me(X), (21)

where XR = X +ΔX/2 and XL = X −ΔX/2. By using Eqs. (18) to (20) in the limit of
small ΔX, we get

∂δ

∂τ
+

1

12μvΔX

[
δ3(XR)D(XR)− δ3(XL)D(XL)

]
=

Q

ρvδ
. (22)

The above is the control volume form. If we let ΔX → 0, we get the PDE,

∂δ

∂τ
+

1

12μv

∂

∂X

[
δ3(X)D(X)

]
=

Q

ρvδ
. (23)

2.5 Dimensionless form

In order to construct a dimensionless form of Eq. (23), we use a typical film thickness
δ0 as a length scale for both dimensions. The film thickness is a model prediction, not
a case parameter, so we need to relate it to a given case parameter, such as the length
of the solid wall, X0. In the special case of a vertical wall and negligible surface-tension
(D = Δρg), we may find the analytical steady-state solution of Eq. (23) for the initial
condition δ(0) = 0, and evaluate this at X = X0. This gives the film-thickness scale

δ0 =

(
16μvQ

ρvΔρg
X0

)1/4

, (24)
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and a film aspect ratio of

� ≡ δ0
X0

=

(
16μvQ

ρvΔρgX3
0

)1/4

. (25)

Based on the length scale, we may define a tangential velocity scale as the average velocity
according to Eq. (8) in the special case of vertical wall and negligible surface-tension,

u0 =
Δρgδ20
12μv

. (26)

The interface normal velocity scale is given by the evaporation rate,

w0 =
Q

ρvδ0
. (27)

Using the length scale and tangential velocity scale, we set a time scale as

τ0 =
δ0
u0

=
12μv

Δρgδ0
. (28)

With the dimensionless film thickness h = δ/δ0, the dimensionless space-time coordinates
x = X/δ0 and t = τ/τ0, and the dimensionless curvature κ = κδ0, the PDE becomes

∂h

∂t
+

∂

∂x

[
h3

(
sin(α)− cos(α)

∂h

∂x
+

1

Bo

∂κ

∂x

)]
=

E

h
, (29)

We see that for a given wall orientation α, the dynamics of the vapor film is governed by
two dimensionless groups. These are the Bond number,

Bo =
Δρgδ20

σ
, (30)

which is the ratio of buoyant forces to surface tension forces, and what we will call the
evaporation number,

E =
w0

u0

=
12μvQ

ρvΔρgδ30
=

3

4
�, (31)

which is the ratio of normal to tangential velocity scales. Note also how the evaporation
number is basically equal to the film aspect ratio.

2.6 Steady-state solution

With negligible surface tension (Bo → ∞), the steady-state solution hss of Eq. (29) for
any inclination α is

hss(x) =

(
h4(0) +

�

sin(α)
x

)1/4

, (32)

where h(0) is the initial film thickness at x = 0. We see that for a vertical plane starting
from zero thickness, hss(1/�) = 1, as was intended by the scaling.
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2.7 Comments on the model

The dimensionless curvature of the curve h(x) is given by the standard result from
differential geometry,

κ =
∂2h
∂x2(

1 +
(
∂h
∂x

)2)3/2
≈ ∂2h

∂x2
, (33)

with the final approximation being applicable in the case where hx � 1. This approxi-
mation will be used in the remainder of this work. Eq. (29) can then be written as,

∂h

∂t
+

∂

∂x

[
h3

(
sin(α)− cos(α)

∂h

∂x
+

1

Bo

∂3h

∂x3

)]
=

E

h
. (34)

which is an autonomous fourth-order nonlinear parabolic equation.
Besides a different non-dimensionalization, Eq. (34) matches the equation studied by

Myers [4] for a liquid film on an inclined plane, when neglecting the Marangoni effect and
van der Waals force. The angles are defined differently, but the signs end up the same
due to this work having a buoyant vapor film as opposed to a falling liquid film.

In order to represent a real case of film boiling on a submerged heated solid, some
boundary conditions need to be set. Physically, the film thickness would have to start
from zero somewhere, and this would be at the leading (bottom) edge of the sample. In
terms of the model generality, we will apply a set value h(x = 0) = hB at the inflow
boundary of the domain, with the ability to set it to zero. When solving the equation in
practice, one must also implement an artificial outflow boundary in order to have a finite
domain.

A novel feature of Eq. (34) is that it involves a fourth order diffusion term. Such
terms are superficially similar to the regular second order diffusion terms, in the way
that they will generally serve to smooth out the function. In more precise terms, they
have monotonously decreasing “energy”. However, they lack a property that all second
order diffusion equations have, which is the principle of increasing entropy (maximum
principle). This means that new extrema may evolve that were not present in the initial
conditions [14].

3 NUMERICAL METHOD

3.1 Finite-volume method

We aim to solve Eq. (34) numerically with a finite-volume method, in order to strictly
conserve mass. In the finite-volume formulation, we evolve the cell average or center
value of h by estimating a flux function at the cell faces, as illustrated in Fig. 2. The
semi-discretized finite-volume form of Eq. (34) is

dhi

dt
= − 1

Δx

[
Fi+1/2 − Fi−1/2

]
+

E

hi

, (35)
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and the flux function is evaluated at the cell face,

Fi+1/2 = h3
i+1/2

�
a+ b (hx)i+1/2 + c (hxxx)i+1/2

�
. (36)

where a = sin(α), b = − cos(α), c = 1/Bo. The left face flux Fi−1/2 is defined equivalently.
We estimate this flux by staggered finite difference operators which operate on the cell

center values,

Fi+1/2 ≈
�
hi+1 + hi

2

�3

� �� �
Hhi+1/2

⎡
⎢⎢⎢⎣a+ b

�
hi+1 − hi

Δx

�

� �� �
Q1hi+1/2

+c

�
(hxx)i+1 − (hxx)i

Δx

�

� �� �
Q3hi+1/2

⎤
⎥⎥⎥⎦ . (37)

If we use the standard centered second order finite difference method to represent the cell
centered second derivatives, (hxx)i, we get that the Q3 operator is given by

Q3hi+1/2 =
1

Δx3
(hi+2 − 3hi+1 + 3hi − hi−1) . (38)

By using Taylor expansions of h(x) centered at the cell face, it can be verified that
Q3hi+1/2, Q1hi+1/2 and Hhi+1/2 are all consistent second order representations of hxxx,
hx, and h3 at the (i+ 1/2) cell face, respectively.

The next question is how to perform the time integration in Eq. (35), i.e. how to evolve
from a current time level n to the next n + 1. As will be demonstrated in Section 3.2,
this is not necessarily straightforward, due to the fourth-order diffusion term.

x = 0 x = xm

Δx

hi hi+1 hi+2hi−1hi−2

Fi+ 1
2

Fi− 1
2

Figure 2: Illustration of the numerical grid. In order to evolve the cell center value hi

in time, we must estimate the flux function on both faces of that cell. This requires the
indicated five-point stencil of cell-center values.

3.2 Time step constraints in explicit methods

In order to perform numerical analysis, we derive a simpler linearized version of Eq. (34).
This is done by discarding the source term, inserting a solution that is the sum of a uni-
form steady solution and a small perturbation, h = h̃ + u, and discarding higher order
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terms in the perturbation. The result is

∂u

∂t
+ ã

∂u

∂x
+ b̃

∂2u

∂x2
+ c̃

∂4u

∂x4
= 0, (39)

where ã = 3ah̃2, b̃ = bh̃3 and c̃ = ch̃3. Using standard von Neumann stability analysis
with a 2nd order centered finite difference scheme, we can show that the stability condition
of an explicit method for the advection term is

Δtadv ≤ si
Δx

ã
, (40)

where si is the extent of the time integrator’s stability domain along the imaginary axis.
However, for the fourth-order diffusion term, a similar analysis yields

Δt4diff ≤ sr
16

Δx4

c̃
, (41)

where sr is the absolute value of the extent of the time integrator’s stability domain along
the negative real axis. We see that reducing Δx to obtain a converged solution will require
an unreasonably small time step, and thus the simple explicit methods will be impractical.
A different approach will be presented in Section 3.3.

3.3 A semi-implicit method

A fully implicit method would require solving a non-linear system of equations every
time step. In order to avoid this, we implement a semi-implicit method, where all the
nonlinear factors (h3 and 1/h) are based on values from the current time level, while the
derivatives are based on values from the next time step. If we use the explicit/implicit
Euler methods, this becomes

hn+1
i = hn

i −
Δt

Δx

[
F n+1
i+1/2 − F n+1

i−1/2

]
+Δt

E

hn
i

, (42)

with the fluxes given by

F n+1
i+1/2 = Hhn

i+1/2

[
a+ bQ1h

n+1
i+1/2 + cQ3h

n+1
i+1/2

]
, (43)

F n+1
i−1/2 = Hhn

i−1/2

[
a+ bQ1h

n+1
i−1/2 + cQ3h

n+1
i−1/2

]
. (44)
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Note how the cubic pre-factor is evaluated at time n, not n+1. The above yields a linear
pentadiagonal system of equations to solve for the cell values at the next time level,

hn+1
i−2

[
KHn

i−1/2

]

+ hn+1
i−1

[
RHn

i−1/2 −K
(
Hn

i+1/2 + 3Hn
i−1/2

)]

+ hn+1
i

[
1 + (3K −R)

(
Hn

i+1/2 +Hn
i−1/2

)]

+ hn+1
i+1

[
RHn

i+1/2 −K
(
3Hn

i+1/2 +Hn
i−1/2

)]

+ hn+1
i+2

[
KHn

i+1/2

]

= hn
i +Δt

E

hn
i

− C
(
Hn

i+1/2 −Hn
i−1/2

)
, (45)

where we have used the shorthands

C =
aΔt

Δx
, R =

bΔt

Δx2
, K =

cΔt

Δx4
, (46)

Hn
i+1/2 =

(
hn
i+1 + hn

i

2

)3

, Hn
i−1/2 =

(
hn
i + hn

i−1

2

)3

. (47)

Since the advection term is effectively treated explicitly, the time step should satisfy
the CFL condition Eq. (40), with si = 1. Since this is vastly larger than what is required
by the fourth order diffusion term, Eq. (41), the semi-implicit treatment is still beneficial.
Using Eq. (40) requires the input of a linearized advection speed ã = 3h̃2. When starting
from very thin films, there is a danger of very large time steps. Therefore, h̃ used to
determine ã in Eq. (40) is set as the largest of the current maximum h and the maximum
of the steady state solution according to Eq. (32). Finally, in order to reduce the error
and make stability more certain, the time step is reduced by a safety factor of 0.5 relative
to the above stability requirement. This is analogous to the CFL-number common in
computational fluid dynamics.

3.4 Boundary conditions

In order to study some basic behavior of the PDE, one may set the source term to zero
(E = 0), and apply periodic boundary conditions. In this case, the implementation of
boundary conditions with Eq. (45) is trivial. However, if we want to include the effects
of evaporation, a periodic domain is impossible without causing boundless film thickness
growth. In this case we want to set a given film thickness at the inflow boundary, and
implement an artificial outflow boundary. Specifically, we will use the following boundary
conditions:

– Left boundary (x = 0): h(0) = hB and hxxx(0) = 0.

– Right boundary (x = xm): hxxx(xm) = 0 and hxxxx(xm) = 0.
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Due to the five-point stencil of Eq. (45), there are essentially two missing cell values on
each side of the domain. These values are solved for by applying numerical version of
the above boundary conditions. When we insert these into Eq. (45), it leads to modified
equation systems for the two cells on each side closest to the boundaries. The details of
this are shown in appendix B.

For orientations where the liquid is above the vapor, i.e. for α > π/2, this outflow
boundary is not necessarily stable. This is because the factor b in Eq. (36) becomes
positive, causing physical instabilities related to the Rayleigh–Taylor instability. If the
Bond number is large enough, this will cause relatively large waves to impact the outflow
boundary, causing instabilities and even a sudden change to inflow conditions.

In order to alleviate this, we implement a buffer layer approach. This entails extending
the computational domain beyond the domain of interest, and then damping the value
of b (which is normally constant) towards zero before approaching the computational
boundary. When doing this, the hope is that the solution in the upstream domain of
interest is mostly unaffected by the damping procedure, while keeping the computation
stable. Specifically, the value of magnitude of b is damped from its physical value to zero
by a cosine function in the last half of the buffer layer. A verification of this is presented
in Section 4.

4 NUMERICAL TESTS

4.1 Convergence

Convergence of the numerical solution with respect to grid refinement was tested on a
case with physical parameters Bo = 10, E = 0.05, α = 3π/4 and hB = 0. The test was
run until t = 1, starting from a very thin film. The convergence in the domain x ∈ [0, 3]
was checked by comparing the solution at corresponding cell centers at each level of grid
refinement to a reference solution. The coarsest grid was at Δx = 0.1, and Δx was
repeatedly reduced by a factor 1/3 in order to obtain cells with overlapping centers. The
reference solution was calculated with a grid spacing of Δx ≈ 10−4. When reducing Δx
beyond this, the solutions started showing signs of significant round-off error. This is
likely due to K rapidly diverging compared to the other factors in the system, causing
the problem to become ill-conditioned.

Recall that the time step Δt is reduced linearly with Δx, according to the rules de-
scribed in Section 3.3. Since the time-integration methods are the implicit and explicit
Euler methods, which are first order in time, we can expect no better than first order
convergence. The results are shown in Fig. 3, which indicates slow but sure convergence,
approaching first order behavior. Note that this convergence test is imperfect, since the
reference solution is subject to numerical error itself. It does, however, confirm conver-
gence to a single solution.
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Figure 3: The results from a convergence test, showing the average absolute deviation
(AAD error) at different grid spacings, compared to a reference case. The dashed line
shows the slope expected of first order convergence.

4.2 Buffer layer

In order to test the validity of the buffer layer outflow boundary, a numerical test was
performed. The physical parameters of the test were Bo = 5, E = 0.05 α = 3π/4 and
hB = 0. Note that in order to promote the troublesome travelling wave instabilities that
the buffer layer was designed to handle, α is set larger than π/2 and Bo is set larger than
one.

The case to be tested had a domain of interest x ∈ [0, 30], and the computational
domain was padded with an equally long buffer layer in order to get a stable solution.
This solution was then compared to a reference case with the same physical parameters,
but with a three times larger computational domain. If the solution in the domain of
interest is sufficiently close to the reference case, we can then say that the presence of the
buffer layer has not significantly polluted the results. Both cases were run with a grid
spacing of Δx = 0.01, until the time t = 25. The results are presented in Fig. 4. It is
seen that in the domain of interest, the buffer layer solution is indistinguishable from the
reference solution. Such a large buffer layer as long as the domain of interest is used for
the remainder of this work, in order to ensure no effect on the domain of interest.

5 NUMERICAL RESULTS

In order to test the model and its numerical implementation, a series of film-establishing
cases were run. These cases are run from an initial state of a very thin film until reaching
a steady state solution (or lack thereof), while keeping the leftmost face film thickness at
hB = 0. Note that since the first cell center is located at x = Δx/2, no cell will get a
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Figure 4: Results from the buffer layer test. The black solid line shows the solution using
the buffer layer, and the red dashed line shows the reference solution. The blue dashed
line shows the damping of the b-factor, from b = − cos(α) at x = 45 to b = 0 at x = 60.

diverging E/h source term. Instead, the effect is simply that the left face flux of the first
cell will reduce to zero.

The functional form of the initial state was according to Eq. (32), but reduced to
represebt a much thinner film than the actual steady state. Specifically, this reduction
was made by inserting 10−6� in place of the actual �. This factor was chosen somewhat
arbitrarily, but it needed to be small.

Table 1: Overview of numerical test cases.

Case Bo E α

1 1.0 0.05 π/4
2 1.0 0.05 3π/4
3 5.0 0.05 3π/4

An overview of the physical parameters of the test cases is shown in Tab. 1. All cases
have an evaporation number of E = 0.05, which corresponds to a film aspect ratio of
� = 1/15, i.e. the film will reach a thickness of h ≈ 1 at x ≈ 15. Cases 1 and 2 have
identical parameters besides wall orientation, with liquid-below-vapor and liquid-above-
vapor configurations, respectively. Case 3 keeps the orientation of case 2, while increasing
the Bond number in order to provoke instabilities and lack of a steady state.
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The results for cases 1 and 2 are shown in Fig. 5. It is seen that both these cases
reach a steady state, similar to the one predicted by Eq. (32). The fact that they are not
identical is expected, as Eq. (32) was derived under the assumption of no surface tension.
However, their similarity serves to verify that the numerical results are reasonable. In the
simulations, steady state was declared when |∂h/∂t| < 10−6 in the entire domain, and for
these cases it occurred around t ≈ 30.

x̂
ẑ

(a)

x̂ ẑ

(b)

0 5 10 15 20
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

h

(c)

0 5 10 15 20
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

h

(d)

Figure 5: Simulations of an establishing vapor film, from an initial very thin film, to
steady state. Both cases have Bo = 1 and E = 0.05. The left side case, (a) and (c), has
α = π/4 (Case 1) and the right side case, (b) and (d), has α = 3π/4 (Case 2). The top
shows the final steady state in its real orientation and aspect ratio. The bottom shows
the corresponding transient from the initial state. The solid lines are separated by a
dimensionless time difference of one. The dashed red line shows the analytical (no surface
tension) steady state solution, according to Eq. (32).

Case 3 did not reach a proper steady state, but rather a repeating wave shedding state.
The result is shown in Fig. 6. It is seen that the vapor film is stable up to a certain point
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Figure 6: The instabilities occurring with Case 3. The solid black line shows the solution
at t = 30, while the dashed red line shows the analytical steady state solution according
to Eq. (32). The critical point (xcrit, hcrit) is the approximate point where the steady film
turns unstable, and starts shedding waves. The dashed green lines show the extent of the
growing waves. The bottom dashed line is horizontal, and placed at the average wave
trough height. The top dashed line is a linear fit of the wave crests, passing through the
critical point.
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that we may call the critical point. Beyond this point, the film turns unstable, and starts
shedding travelling waves. These waves have two notable properties:

– A remarkably good linear fit can be made for the line passing through the critical
point and the crests of all the developed waves. This means that the ratio of crest
speed to crest growth rate is approximately constant. However, the speed and
growth rate are not separately constant, since the waves are in fact accelerating, as
seen from the increasing crest-to-crest distance (wavelength).

– The wave troughs appear to be capped from below, as opposed to growing deeper.
This is likely related to the evaporation effect, injecting more gas if the troughs grow
too deep.

The slope of the wave crest linear fit is 0.057, and the wave troughs are capped at
approximately h = 0.7. At the time shown (t = 30), the four developed crests move
at speeds 2.3, 2.6, 3.5 and 4.3. This is somewhat close to what can be predicted from
the linearized advection speed in Eq. (39), ã = 3h̃2, using the analytical steady state for
h̃. However, the linearization over-predicts the wave speeds of the smaller waves, and
under-predicts the wave speeds of the larger waves. The rightmost wave has a growth
rate of 0.24, which can be divided by its speed 4.3 to show that its crest will follow the
mentioned linear fit.

Note that the location of the critical point is sensitive to the Bond number. Exploring
this dependence is beyond the scope of this paper.

6 CONCLUSIONS

In this work, a physical model for the interface dynamics of planar film boiling at
arbitrary orientation was derived. The resulting thin film equation, similar to other
works on thin film liquid flow, was fourth order, highly nonlinear, parabolic, and included
a source term. It was then demonstrated how, through the use of a single length scale,
a dimensionless version of this equation can be derived, with the Bond number, the
evaporation number and the inclination angle as parameters.

A semi-implicit numerical method for solving this equation was derived. This method
avoids having to satisfy the intractable time-step limitations required by the fourth order
diffusion term, while still limiting the work to solving a linear pentadiagonal system each
time step. Specific boundary conditions were derived for the case of a freely growing film
starting from a given thickness at the lower end. It was found that a buffer layer approach
was useful for approximating a non-reflecting outflow boundary in the cases with incident
travelling waves.

A few numerical tests were performed in order to test the model. The tests revealed
the potential for running wave instabilities at large Bond numbers in the liquid-above-
vapor orientations. In these cases, the vapor film is stable up to a certain critical point,
beyond which wave instabilities are shedded. Certain predictable patterns were identified
for these growing and accelerating waves.
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Future work could be focused on exploring the dependence of the instabilities, especially
the critical point, on the dimensionless parameters of the model. This can be done both
numerically and with analytical tools such as linear stability analysis. Additional topics
could include investigating the effect the instabilities have on the overall heat transfer
rate, and the effect of additional model terms sometimes introduced in thin film flow,
such as the Marangoni effect and van der Waals forces.
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A VELOCITY BOUNDARY CONDITIONS

At both sides of the vapor film, we assume that the no-slip condition is reasonable,
as it usually is when the pressures are not extremely low. At the solid wall side, this
trivially reduces to the condition of u = 0, since the wall is stationary. At the liquid-
vapor interface, it is not that obvious. The no-slip condition still applies, but this is
no-slip relative to the liquid, which may itself move.

At the liquid-vapor interface, an additional boundary condition applies, which is the
continuity of shear stress. Under the assumptions of the lubrication approximation, this
condition may be stated as

μv
∂u

∂Z

∣∣∣∣
i

≈ μl
∂ul

∂Z

∣∣∣∣
i

, (48)

where ul is the x-directed liquid velocity, μl is the liquid viscosity, and the subscript i
indicates evaluation at the interface. We now use the parabolic profile in Eq. (8), which
admittedly was derived by the assumption being motivated in this section, to estimate
the actual shear rate at the interface. This gives

∂u

∂Z

∣∣∣∣
i

≈ −6

δ
ū, (49)

where ū is the average velocity in the film. If we assume that the liquid velocity profile
follows a decreasing quadratic profile reaching zero (and zero derivative) a distance δl
from the interface, such as in [11], we have that

∂ul

∂Z

∣∣∣∣
i

≈ − 2

δl
ui, (50)
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where ui is the velocity at the interface. If we insert Eqs. (49) and (50) into Eq. (48), we
get that

ui

ū
≈ 3

μv

μl

δl
δ
. (51)

For typical liquid-gas pairs, we have μv/μl ≈ 0.01. This means that if the liquid boundary
layer has a somewhat similar thickness to the vapor film, the interface velocity will be
negligible compared to the average velocity in the vapor film. This justifies also using the
condition u ≈ 0 at the liquid-vapor interface, which leads to Eq. (8).

B NUMERICAL BOUNDARY CONDITIONS

B.1 Left boundary

The numerical stencil requires two missing cell values to the left of the leftmost cell
(i = 0). We fill these values based on the following principles:

– Set h−1 such that Hh0−1/2 becomes a specified boundary value h3
B.

– Set h−2 such that Q3h0−1/2 = 0.

This gives values for the additional cells of

h−1 = 2hB − h0 (52)

h−2 = h1 − 6 (h0 − hB) . (53)

Inserting this into Eq. (45) yields the following equation at the first cell (i = 0),

+ hn+1
i

[
1 + 4KHn

i+1/2 −R
(
Hn

i+1/2 + 2h3
B

)]

+ hn+1
i+1

[
(R− 3K)Hn

i+1/2

]

+ hn+1
i+2

[
KHn

i+1/2

]

= hn
i +Δt

E

hn
i

− C
(
Hn

i+1/2 − h3
B

)
+ 2KHn

i+1/2hB − 2Rh4
B, (54)

and the following equation for the second cell (i = 1),

+ hn+1
i−1

[
RHn

i−1/2 −K
(
Hn

i+1/2 + 4Hn
i−1/2

)]

+ hn+1
i

[
1 + (3K −R)

(
Hn

i+1/2 +Hn
i−1/2

)]

+ hn+1
i+1

[
RHn

i+1/2 −K
(
3Hn

i+1/2 +Hn
i−1/2

)]

+ hn+1
i+2

[
KHn

i+1/2

]

= hn
i +Δt

E

hn
i

− C
(
Hn

i+1/2 −Hn
i−1/2

)− 2KHn
i−1/2hB. (55)

The cubed face value Hh0−1/2 is simply set to h3
B.
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B.2 Right (outflow) boundary

The numerical stencil requires two missing cell values to the right of the rightmost cell
(i = m). We fill these values based on the following principles:

– Set Q3hi+1/2 = 0 for the two rightmost faces.

This has the benefit of keeping the equation system pentadiagonal, which is convenient
for computational reasons. This gives values for the additional cells of

hm+1 = 3hm − 3hm−1 + hm−2 (56)

hm+2 = 6hm − 8hm−1 + 3hm−2. (57)

Inserting this into Eq. (45) yields the following equation at the last cell (i = m),

+ hn+1
i−2

[
RHn

i+1/2

]

+ hn+1
i−1

[
R
(−3Hn

i+1/2 +Hn
i−1/2

)]

+ hn+1
i

[
1 +R

(
2Hn

i+1/2 −Hn
i−1/2

)]

= hn
i +Δt

E

hn
i

− C
(
Hn

i+1/2 −Hn
i−1/2

)
, (58)

the following equation for the second to last cell (i = m− 1),

+ hn+1
i−2

[
KHn

i−1/2

]

+ hn+1
i−1

[
(R− 3K)Hn

i−1/2

]

+ hn+1
i

[
1 + 3KHn

i−1/2 −R
(
Hn

i+1/2 +Hn
i−1/2

)]

+ hn+1
i+1

[
RHn

i+1/2 −KHn
i−1/2

]

= hn
i +Δt

E

hn
i

− C
(
Hn

i+1/2 −Hn
i−1/2

)
, (59)

The cubed face value Hm+1/2 is set to

Hn
m+1/2 =

(
hm + hm+1

2

)3

=

(
4hm − 3hm−1 + hm−2

2

)3

. (60)
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Abstract. The flow of dense water flowing along a continental slope is addressed. The
study is based on a sequence of numerical investigations using the dynamics of overflow
mixing and entrainment (DOME) setup. The model used in the present study is a terrain
following ocean model facilitating a high resolution near the bottom that may be required
to capture the Ekman transports correctly. The focus is on the sensitivity of the plume
dynamics to the bottom boundary condition and on the sensitivity to the vertical grid
size.

It is found that consistent results with a no-slip bottom boundary conditions and a
quadratic drag law are obtained as long as the drag coefficient is computed appropriately.
With a quadratic drag law, fewer layers in the vertical are needed, so this is the most cost
efficient alternative. However, with a quadratic drag law and a constant value of the drag
coefficient the Ekman transports inside the plume will not be captured.

1 INTRODUCTION

The flow of dense water from the marginal seas down the continental slopes and into
the deep ocean is very important for the global circulation and such flows have been
investigated in many scientific studies based on observations, laboratory investigations,
numerical experiments and theory, see for instance [1, 2, 3, 4, 5, 6, 7, 8, 9] and references
therein. The rotation of the earth affects the gravity flows, and dense water descending
on a slope will lean towards the slope ([10]). In a rotating system, frictional Ekman
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transports in the bottom boundary layer will be superimposed on the primary flow of the
along slope dense plume ([11, 12, 13]).

The setup from DOME (Dynamics of Overflow Mixing and Entrainment
http://www.rsmas.miami.edu/personal/tamay/DOME/dome.html) has been used in many
studies of gravity flows along slopes using numerical ocean models, see [14, 15, 16, 17, 18,
19, 20, 21, 22]. In [22], there are two tables that give overviews of parameters used and
model choices applied in the DOME tests.

In the numerical DOME studies, three choices of bottom boundary condition have been
applied: i) no-slip, ii) quadratic bottom drag with a drag coefficient that is a function of
the distance of the bottom most velocity point to the bottom, and iii) quadratic bottom
drag with a constant drag coefficient. In addition, a range of vertical grids have been
applied, but so far it has not been shown that vertical velocity profiles consistent with
Ekman drainage have been reproduced. In the present study, a σ-coordinate ocean model
is applied to investigate the sensitivity of the numerical results to vertical resolution and
to the bottom boundary condition.

2 MODEL AND RESULTS

2.1 The numerical model and model setup

In this study, a σ-coordinate ocean model named the Bergen Ocean model (BOM)
is applied ([23, 24, 25, 26]). A non-hydrostatic version of the BOM has been applied to
investigate dense water flows on laboratory scale ([27]). In the present ocean scale studies,
non-hydrostatic processes will not be resolved and the hydrostatic version from the [8]
study is applied.

A horizontal view of the DOME computational domain is given in Fig. 1. The domain
is 1100 × 700 km, the maximum depth is 3600 m, and a slope with slope steepness 0.01
connects the deep part to the coast where the depth becomes 600 m. From x = 800
km, there is a 100 km wide and 600 m deep channel. The dense plume water enters the
domain through this embayment. The lateral boundaries to the east and to the west are
open, and Neumann boundary conditions are applied to let the flow freely out of or into
the computational domain through these boundaries.

The initial ambient stratification, ρ(z), is linear and given by

ρ(z) = ρb − N2ρrefz

g
(1)

where ρb = 1022 kgm−3, ρref = 1021 kgm−3, the buoyancy frequency N = 2.3× 10−3 s−1,
the gravity g = 9.81 ms−2, and z is the vertical distance from the deepest part (3600 m).
Through the channel, there is an inflow of dense water, ρinflow = ρb, with flux Q = 5Sv
(1 Sv = 106m3s−1). A passive tracer, τ , is introduced as in [17] and τ is initially set to 0
and τ = 1 in the inflowing dense water.

The Coriolis parameter f is 1 × 10−4 s−1 and the height above the bottom of the
interface of the inflowing water is tilted to achieve an approximate geostrophic balance.
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Figure 1: Horizontal view of the DOME computational domain.

The horizontal grid size is 10 km, and in order to investigate the sensitivity of the model
outputs to vertical resolution, a sequence of vertical σ-grids, see Fig.2, is produced. For
some grids with non-equidistant sigma layer thickness, ∆σ, the resolution is finest near
the bottom (approximately over the Ekman layer), then there is a layer with intermediate
resolution above (covering approximately the body of the plume), and ∆σ is largest in
the ambient above. The sigma layer thicknesses are smoothed in the transition zones. In
addition, a range of smoothly graded vertical grids is produced using a modified version
of the transformation given in [28] with high resolution near the bottom. Let the number
of σ-layer interfaces be KB, ∆ε = 1/(KB − 1), and let the thickness of the bottom most
sigma layer be ∆σb. The algorithm for computing the σ-values at the σ-layer interfaces is

for K = 1, KB
ε = (K − 1)/(KB − 1)

σ(KB + 1−K) = −1.0 + ε− (∆ε −∆σb)
sin(πε)
sin(π∆ε)

end for;

By using this procedure, σ(KB) = −1.0, σ(KB − 1) = −1.0 + ∆σb, σ(1) = 0.0, and
σ(2) ∼ −2/(KB− 1) so that the thickness of the uppermost layer is approximately twice
the thickness obtained with an equidistant distribution, see the two plots in Fig.2. For
the grids produced with this algorithm, the σ-layer thickness of the bottommost σ-layer
is 0.0001 or 0.00002 and the thicknesses increase gradually upwards, see Fig.2b.

The horizontal diffusivity is 10 m2s−1 and the horizontal viscosity is 50 m2s−1. In
addition, there will be numerical diffusivity and numerical viscosity associated with the
use of a superbee limiter TVD-scheme for advection, see [29]. The Mellor-Yamada (M-Y)
turbulence scheme ([30]) is often used in model studies with terrain following models,
and it is also used in the present studies to compute vertical viscosity, νv, and vertical
diffusivity, κv, with minimum values of both set to 2× 10−5 m2s−1.

In order to investigate the sensitivity of the numerical results to the bottom bound-
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Figure 2: Sigma layer thickness (∆σ) as function of σ for the vertical discretizations considered. The
number of sigma layers for each grid is given in the legend. The thicknesses of the bottom most sigma
layers (∆σb) are also given in the legend. The sigma layer thicknesses for the grids based on the [28]
distribution are given to the right and indicated with a L in the legend.

ary condition, the experiments are performed with three choices of bottom boundary
condition.

The importance of using a no-slip bottom boundary condition is stressed in [31], and
some experiments are performed with the no-slip condition used in the MITgcm, see
mitgcm.org and [17],

�τb =

(

2
νv
∆zb

+ CD|�Ub|
)

�Ub (2)

where ∆zb is the thickness of the bottom most grid cell, CD is a drag coefficient, and �Ub

is the velocity vector in the lowermost grid cell, which is a half-cell above the bottom in
our staggered C-grid model.

Other experiments are performed with a quadratic drag law

�τb = CD|�Ub|�Ub (3)

with CD given by

CD = max[0.002,
κ2

(ln(zb/z0))2
] (4)

where zb is the distance of the nearest grid point to the bottom. The von Karman constant
κ = 0.4 and the bottom roughness parameter z0 = 0.01 m. The drag coefficient tend to
infinity as zb tend to z0 and approaches the background level (0.002 in this case) as zb
increases, see Fig. 3. For zb in the range from 1 m to 75 m, typical for many such studies,
CD is in the range from 0.007 to 0.002.
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In Table 1 in [22] there is a list of bottom drag coefficients and CD = 0.002 is a
commonly used value. We have also performed some experiments using this constant
value rather than CD computed from Eqn. (4).

10
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Figure 3: Values of CD = κ2

(ln(zb/z0))2
as function of zb (The lower bound in Eqn. (4) is omitted).

The model is time-spilt, and the 3D time step is 180 s and there are 30 2D time steps
per 3D step. Each experiment is run for 40 days.

2.2 Model results

Following [22], the bottom tracer concentration τbottom is computed as

τbottom(x, y) =

∫ zbot+∆zplot
zbot

τ(x, y, z)dz

∆zplot
(5)

where zbot(x, y) is the z-coordinate of the bottom, and ∆zplot is an averaging depth set to
60 m.

The vertical extent of the plume up to the level where τ becomes less or equal to 0.01,
δp, is computed from

δp(x, y) =

∫

τ>0.01

dz (6)

and called plume thickness.
To illustrate the pathway of the dense water plume, the bottom tracer concentrations

and the plume thickness after 40 days are given in Fig. 4. These results are produced with
a high vertical resolution and a quadratic drag law with CD computed from Eqn. (4) and
the results are in qualitative agreement with corresponding results given in [14, 16, 22]
produced with the same horizontal resolution.

Integrated transports in the along slope and cross slope directions for a selection of
vertical grids are given in Fig. 5. The results produced with a quadratic drag law are in
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Figure 4: Bottom tracer concentration (to the left) and plume thickness (to the right) after 40 days.
The tracer concentration is computed from Eqn. (5) and the plume thickness is computed from Eqn. (6).
The results are based on results from the experiment with 250 σ-layers, see left panel of Fig. 2, and CD

computed from Eqn. (4).

general consistent, and even with 50 equidistant σ-layers main features of the plume are
captured. Contrary to this, the results produced with a no-slip condition are very sensitive
to the vertical grid. With 50 equidistant σ-layers, the plume front basically reaches only
half way towards the open boundary after 40 days. The no-slip results become more
consistent with the drag law results as the vertical resolution is refined, and it is the
thickness of the bottom most cell, ∆σb, that is the key factor. With a no-slip bottom
boundary condition and a [28] σ-layer distribution with ∆σb = 0.00002, the transports
both in x- and y-directions become consistent with corresponding drag law results.

From the vertical profiles of tracer concentration, density, and across slope velocity
components given in Fig. 6 it may also be seen that the results produced with a quadratic
drag law are far more robust than the no-slip results. The no-slip results produced with
a [28] σ-layer distribution and ∆σb = 0.00002 are, however, consistent with the quadratic
drag law results. The down slope maximum speeds are for instance approximately 30 cm
s−1 in both sets of experiments.

The evidence from this exercise does not support the statements in [31] that a no-slip
bottom boundary condition and a high resolution near the bottom are necessary when
modeling dense water flow. However, one should bear in mind that this was based results
from experiments with a quadratic drag law and a constant coefficient CD. In [22] the
use of constant values of CD are indicated in their Table 1. Our results suggest that
when applying CD computed from Eqn. (4), which is also the standard procedure in
the Princeton Ocean Model (POM) ([32]), the results with quadratic drag law becomes
consistent with corresponding no-slip results. In order to investigate the sensitivity of the
results to the choice of CD, some experiments are repeated with CD = 0.002 and the results
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Figure 5: Plume transports after 40 days in the x-direction (top panel) and the y-direction (bottom
panel) for a selection of vertical grids. In the legends, the number of σ-layers and the value of ∆σb are
given, and L is used to indicate that a [28] type σ-layer distribution is used. The results produced with
a quadratic drag law are given to the left, and the no-slip results are given to the right.

are compared to results produced with CD produced from Eqn. (4) in Fig. 7. The along
slope transport are relatively robust to the number of vertical layers and to the drag law,
see Fig. 7a. However, one may notice that away from the inlet, the transports decrease
when increasing the number of σ-layers for the constant CD case. This tendency becomes
more noticable for the across slope transports. When the vertical resolution increases
and the bottom most velocity points move into the log-layer, the across slope transports
are reduced and the plume becomes more attached to the coast. From Fig. 7c it may
be noticed that in the experiment with 250 σ-layers and constant CD the vertical tracer
profile is very different from the corresponding profile obtained with the same vertical
resolution and the Eqn. (4) drag law. The vertical profiles of across slope velocities given
in Fig. 7d show that the Ekman veering that can be captured with the Eqn. (4) drag law
or no-slip bottom boundary condition, will not be captured with a constant CD drag.
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Figure 6: Vertical profiles after 40 days at (x, y) = (−100km,−40km) of tracer concentration (upper
panel), ρ′ = ρ − 1020 kg m−3 (second panel), and across slope velocity components (third panel). The
results produced with a quadratic drag law are given to the left, and the no-slip results are given to the
right.
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Figure 7: Numerical results after 40 days from the experiments with constant CD = 0.002. The
experiments with 20 and 50 σ-layers are performed with equidistant distribution of σ-layers and the
experiment with 250 layers is performed with the distribution given in Fig. 2. Corresponding results
produced with the Eqn. (4) drag law and 250 layers are also given. Plume transports in the x-direction
are given in the upper left panel and transport in the y-direction are given in the upper right panel.
Vertical profiles of tracer concentration are given in the lower left panel and vertical profiles of the across
slope velocities are given in the lower right panel. The profiles are taken at (x, y) = (−100km,−40km).

3 DISCUSSION

We have investigated the sensitivity of the DOME results to three different bottom
boundary conditions:
i) no-slip,
ii) quadratic drag law with CD computed from Eqn. (4), and
iii) quadratic drag law with constant CD.
A range of vertical grids are used to explore the sensitivity to the vertical grid size. The
experiments are done with an inflow rate of 5Sv.

It is found that consistent results with bottom boundary conditions i), and ii) may be
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obtained given enough resolution. With ii), fewer layers in the vertical are needed, so this
is the most cost efficient alternative. With iii), one may balance the number of layers so
that overall transports seem reasonable, but the Ekman transports inside the plume will
not be captured, so this is not a robust way of representing dense water flows.

The thickness of the Ekman layer is a few tens of meters and the plume thickness is
of the order 100 meter. The present results suggest that by using a quadratic drag law
with CD computed from Eqn. (4), and approximately 10 σ-layers over the bottom most
100m, the near sea bed processes become adequately resolved. By using a transformation
such as the one suggested in [28], a distribution of σ-layers that cost efficiently resolves
the Ekman transports is obtained.

Many large scale oceanic studies are performed with z-coordinate ocean models using
quadratic drag laws with constant drag coefficients and poor resolution of the Ekman
layer. The present results suggest that the downward Ekman transports of the densest
fluid parcels in dense water plumes will not be captured in such investigations.
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[20] Wang, Q., Danilov, S., and Schröter, J. Comparison of overflow simulations on differ-
ent vertical grids using the Finite Element Ocean circulation Model. Ocean Modelling
(2008) 30:313–335.

[21] Bates, M., Griffies, S., and England, M. A dynamic, embedded Lagrangian model
for ocean climate models, Part II: Idealised overflow tests. Ocean modelling (2012)
59-60:60–76.

[22] Reckinger, S., Petersen, M., and Reckinger, S. A study of overflow simulations us-
ing MPAS-Ocean: Vertical grids, resolution, and viscosity. Ocean Modelling (2015)
96:291–313.

[23] Berntsen, J., Xing, J., and Alendal, G. Assessment of non-hydrostatic ocean models
using laboratory scale problems. Continental Shelf Research (2006) 26:1433–1447.

[24] Berntsen, J. and Oey, L.-Y. Estimation of the internal pressure gradients in σ-
coordinate ocean models: comparison of second, fourth, and sixth order schemes.
Ocean Dynamics (2010) 60:317–330.

[25] Berntsen, J. A perfectly balanced method for estimating the internal pressure gradi-
ents in σ-coordinate ocean models. Ocean Modelling (2011) 38:85–95.

12



69

J. Berntsen, G. Alendal, H. Avlesen, and Ø. Thiem

[26] Berntsen, J., Thiem, Ø., and Avlesen, H. Internal pressure gradient errors in sigma-
coordinate ocean models in high resolution fjord studies. Ocean Modelling (2015)
92:42–55.

[27] Berntsen, J., Darelius, E., and Avlesen, H. Gravity currents down canyons: Effects
of rotation. Ocean Dynamics (2016) 66:1353–1378.

[28] Lynch, D., Ip, J., Naimie, C., and Werner, F. Convergence studies of tidally-rectified
circulation on Georges Bank. In Lynch, D. and Davies, A., editors, Quantitative Skill
Assessment for Coastal Ocean Models. (1995) American Geophysical Union.

[29] Yang, H. and Przekwas, A. A comparative study of advanced shock-capturing
schemes applied to Burgers equation. Journal of Computational Physics (1992)
102:139–159.

[30] Mellor, G. and Yamada, T. Development of a turbulence closure model for geophysical
fluid problems. Reviews of Geophysics and Space Physics (1982) 20:851–875.

[31] Wobus, F., Shapiro, G., Maquead, M., and Huthnance, J. Numerical simulations of
dense water cascading on a steep slope. Journal of Marine Research (2011) 69:391–
415.

[32] Blumberg, A. and Mellor, G. A description of a three-dimensional coastal ocean
circulation model. (1987) In Heaps, N., editor, Three-Dimensional Coastal Ocean
Models, Volume 4 of Coastal and Estuarine Series, pages 1–16. American Geophysical
Union.

13



70



71

9. National Conference on Computational Mechanics
MekIT’17

B. Skallerud and H I Andersson (Eds)

COMPLEX GEOMETRY HANDLING FOR A CARTESIAN
GRID BASED CFD SOLVER

HANS BIHS1, ARUN KAMATH1, MAYILVAHANAN ALAGAN CHELLA1

and CASABA PAKOZDI 2

1Department of Civil and Transport Engineering
NTNU Trondheim

Høgskoleringen 7A, 7491 Trondheim, Norway
e-mail: hans.bihs@ntnu.no web page: http://www.reef3d.com/

2Department of Ocean Engineering
SINTEF Ocean

Key words: CFD, Immersed Boundary, Ray-Casting, Level Set Method, REEF3D

Abstract. Complex geometries can be a challenge for computational fluid dynamics
(CFD) solvers that use a Cartesian mesh. In the current paper, an algorithm is described
with which complex geometry features can be incorporated in a ghost cell immersed
boundary method through a simple and straightforward algorithm. The complex geome-
tries are handled with a trivial triangular surface mesh in the widely used STL format.
Grid generation is than achieved with an optimized ray-tracing algorithm, which deter-
mines solid and fluid cells, as well as the closest distances from the solid boundaries to
the neighboring fluid cells. As the numerical model uses a Cartesian mesh, the presence
of irregular solid boundaries is handled by immersing them through ghost cell extrapola-
tion into the fluid domain. The capabilities of the presented method are shown through
two real-world examples: wave hydrodynamics around an offshore wind turbine jacket
substructure and supercritical flow over the spillways of a hydropower plant.

The numerical model used in this study is REEF3D, an open-source three-dimensional
CFD code. It employs the level set method for the representation of the free surface. This
approach is capable of handling complex air-water interface topologies. The Reynolds-
Averaged Navier-Stokes (RANS) equations are discretized with the fifth-order accurate
Weighted Essentially Non-Oscillatory (WENO) scheme in space and with a third-order
Runge-Kutta based fractional step scheme in time. For the pressure, the projection
method is used on a staggered grid configuration, assuring tight pressure-velocity cou-
pling. The model solves for the pressure Poisson equation using a conjugated gradient
solver, which is preconditioned with a geometric multigrid algorithm. Turbulence closure
is achieved through the k-ω model. The fully parallelized model uses the domain decom-
position approach, making it possible to execute the code on the local supercomputer
facilities.
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1 INTRODUCTION

For computational fluid dynamics (CFD) solvers, the usage of a Cartesian mesh has
many advantages over unstructured body-fitted meshes. The algorithms for the discretiza-
tion of the governing equations can be implemented in a more straightforward manner,
complicated coordinate transformations are not necessary. In addition, the data struc-
tures can use a simple structured format. For high-order finite volume or finite differences
discretization, large stencils are required. In case of the fifth-order accurate Weighted
Essentially Non-Oscillatory (WENO) scheme [14] seven point stencils are needed for each
coordinate direction which is handled easier and much faster in the structured Cartesian
grid system. The CFD solver presented in the current paper is used mainly for complex
free surface flows, which are represented as two-phase flow and modeled with an interface
capturing method. At the interface between water and air, a large jump in the matrix
coefficients of the Poisson equation occurs due to the density difference. As a conse-
quence, tight pressure-velocity coupling is a priority. The most efficient and robust way
of achieving this, is a staggered variable arrangement. With a Cartesian grid, staggering
is relatively easy accomplished. For unstructured grids, staggering is quite challenging
as coordinate transformations for four different variables have to be performed. As a
result, most unstructured grid finite volume CFD codes are implemented as colocated
solvers, e.g. OpenFOAM [26]. While unstructured grids can be used to conform to irreg-
ularly shaped solid bodies, the mesh quality has a tendency to deteriorate for increasing
geometric complexities as well as for moving solid bodies.

The challenge with Cartesian mesh based solvers is the inclusion of complex flow do-
main boundaries. A lot of attention has been paid to this problem, leading to a range
of different immersed boundary methods [20], such as direct forcing [12] or ghost cell im-
mersed boundary methods [24]. Here, a major pre-processing step is assigning solid and
fluid cells as well as determining the closest distance from the immersed boundary to the
neighboring fluid cells. In [27] a ray-casting algorithm is proposed for inside/outside and
closest distance calculation.

In the present manuscript the open-source CFD code REEF3D is employed [8]. The
model has been used extensively for complex wave hydrodynamics problems in the field of
coastal and ocean engineering [1] [16] [15]. The complex fluid-structure interface is mod-
eled with the ghost cell immersed boundary method [5]. From triangular surface meshes,
ray-casting algorithms are used [11] to get inside-outside information in addition to the
closest distances to the solid. Compared to [27], a modified and slightly more optimized
version of the ray-casting algorithm is implemented. Instead of using two different al-
gorithms for inside/outside and closest distance information, the current implementation
calculates both in the same step. In addition, the closest distance field is converted to
a signed distance function so that the solid boundary can be represented by a level set
function [18]. This streamlines the further data handling inside the CFD solver.
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2 NUMERICAL MODEL

In this part, a brief description of the underlying flow solver REEF3D is given, which
is used for the examples in the present paper. Further information can be found in [8] [7].
The governing equations of the numerical model are the continuity and the incompressible
Reynolds-averaged Navier-Stokes (RANS) equations:

∂Ui

∂xi

= 0 (1)

∂Ui

∂t
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∂xj

= −1
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where U is the velocity averaged over time t, ρ is the fluid density, P is the pressure, ν
is the kinematic viscosity, νt is the eddy viscosity and g the gravity term. The convective
terms of the RANS equations are discretized with the fifth-order WENO (weighted essen-
tially non-oscillatory) scheme by Jiang and Shu [14] in the conservative finite-difference
framework. The conservative WENO scheme is used to treat the convective terms for
the velocities Ui, while the Jacobi-Hamilton version is used for the variables of the free
surface and turbulence algorithms. For the time treatment a third-order accurate TVD
Runge-Kutta scheme is employed, consisting of three Euler steps [22]:
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Adaptive time stepping is used in order to control the CFL number.
Chorin’s projection method for incompressible flow is used for the treatment of the

pressure [10]. During the solution of the RANS-equations at each Euler step of the
Runge-Kutta time stepping procedure, the pressure gradient is excluded. Based on the
resulting divergence of the flow, a Poisson equation for the pressure is formed with the
right hand side containing the continuity defect (Eq. 4). The Poisson equation is solved
using high-perfomance solver library HYPRE [9] with fully parallelized BiCGStab [25]
preconditioned by a geometry multigrid solver [3]. The gradient of the new pressure field
is then used to correct the velocity field, making it divergence free.

− ∂
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The location of the free water surface is represented implicitly by the zero level set
of the smooth signed distance function φ(�x, t). The level set function gives the closest
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distance to the interface and the two phases are distinguished by the change of the sign.
This results in the following properties:

φ(�x, t)











> 0 if �x ∈ phase 1

= 0 if �x ∈ Γ

< 0 if �x ∈ phase 2

(5)

In addition, the Eikonal equation |∇φ| = 1 is valid. When the interface Γ is moved
under an externally generated velocity field �v, a convection equation for the level set
function is obtained:

∂φ

∂t
+ Uj

∂φ

∂xj

= 0 (6)

When the interface evolves, the level set function loses its signed distance property. In
order to maintain this property and to ensure mass conservation, the level set function is
initialized after each time tep. In the present paper a PDE based reinitialization equation
is solved [23]:
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S (φ) is the smoothed sign function [19]. With the level set function in place, the
material properties of the two phases can be defined for the whole domain. In an area of
1.6∆x in each direction of the interface, the density ρ and the viscosity ν are smoothed
out with a regularized Heaviside function.

3 RAY-CASTING ALGORITHM

For many CFD simulations, complex solid geometries are encountered when meshing
the fluid domain. Often, the solid geometries are described with triangular surface meshes,
predominantly in the STL (STereo Lithrography) file format. An STL file describes the
surface geometry of a three-dimensional body through non-connected triangles and can
be either in ASCII or binary format. The current implementation reads ASCII format, as
binary STL files can be easily converted with available software such as Paraview [4]. Also,
it is expected that the surface mesh is fully intact without any holes or gaps. Different
software solutions are available to repair such files. The numerical model REEF3D solves
all equations on a staggered Cartesian grid. Non-grid conforming geometries are taken into
account through a ghost cell immersed boundary with local-directional extrapolation [5].
In order to go from the triangular surface mesh to an immersed boundary representation
on a Cartesian mesh the following information is crucial:

• inside/outside information for all cells

• closest distance from boundary to neighboring fluid cell
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The point-in-polygon test [17] is used to determine whether a cell is inside the fluid or
inside the solid. When a point is located inside a polygon, any arbitrarily oriented line
through this point will intersect with the surrounding polygon. The point-in-polygon test
is based on the observation that the number of intersections with the polygon is uneven
on either side of the point when it is located inside the polygon (see Fig. 1). When a
point lies outside the Polygon, the number of intersections with the polygon is even on
either side of the point (see Fig. 2).

P1

(a) P1

P2

(b) P2

Figure 1: Point in polygon test: P1 and P2 inside the polygon.

In REEF3D the test is implemented as follows: Rays are cast along the x-axis coor-
dinate axis (see Fig. 3). For the given Cartesian mesh those rays or lines coincide with
the location of the center of the cells. In the resulting yz-plane, rays are cast only along
those cells which are occupied by triangles. The intersection of the line with the triangle
is calculated with Algorithm 5.3.4 ”Intersecting Line Against Triangle” from [11].

P3

(a) P1

P4

(b) P2

Figure 2: Point in polygon test: P1 and P2 outside the polygon.

For each triangle, intersections of the rays are registered in two different three-dimensional
arrays spanning the complete Cartesian mesh. Those arrays register the numbers of ”left”
and ”right” intersections. For an intersection location in cell iintersection, for all cells at
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the (j, k) position of the ray and i indices smaller than iintersection the ”left” array is in-
cremented by one, while the ”right’ array is incremented along the ray for i indices larger
than iintersection. After rays have been cast for all triangles, the arrays for ”left” and
”right” intersections should contain uneven numbers for cells located inside triangular
surface mesh and even numbers for those outside. This algorithm is very efficient, as the
three-dimensional problem is projected into the 2D space of the yz-plane.

(a) triangular surface mesh (b) Casting of a single ray

Figure 3: Ray-casting for a rectangular box with triangular surface mesh.

The intersection location from the above described algorithm is used to calculate the
closest distance from the neighboring cells to the solid boundary. In order to get the
closest distances in all three coordinate directions, the ray-casting algorithm is now also
performed in y- and z- direction. As a result, the complete algorithm consists of three
2D operations. The ghost cell immersed boundary method used in REEF3D decomposes
the ghost cell extrapolation into the three coordinate directions of the mesh [5]. This
presents a significant improvement in flexibility and robustness over the original ghost
cell immersed boundary method presented by [24], as it resolves sharp corners directly.
The closest distance is then converted into a signed distance function. The distance
values inside the solid are given a negative sign and in the fluid a positive sign. As an
initialisation step before the fluid simulation, the signed distance function is reinitialized
with the PDE based scheme by [23] as given in Eq. 7. In contrast to the level set function
for the water-air interface, the interface values are not updated. Thus, the signed distance
values from the ray-casting are intact also after reinitialization, maintaining the correct
closest distance information.
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4 EXAMPLES

4.1 Rectangular Box

The first example is a simple rectangular box measuring 0.4 m x 0.4 m x 0.4 m. The
box is located in the center of a Cartesian mesh with the lengths 1.0 m x 1.0 m x 1.0
m. The triangular surface mesh (see Fig. 3) has been generated by REEF3D’s mesh
generation tool DIVEMesh [6]. From this geometric description inside-outside, closest
distance and eventually the level set function for the solid box have been generated.

(a) dx = 0.05 m (b) dx = 0.025 m

(c) dx = 0.01 m (d) dx = 0.005 m

Figure 4: Level set representation of the rectangular box for different mesh widths. The
zero level set contour is shown. Higher mesh resolutions result in a sharper representation
of the edges.

The result for the level set function can be seen in Fig. 4. For dx = 0.05 m, the level
set representation of the box has clearly experienced strong smoothing at the edges. With
increasingly finer grids, the edge of the level set function becomes shaper. While some
smoothing of the level set function appears to be present for all presented mesh widths,
it should be kept in mind that the signed distance values closest to the solid surface are
unchanged from the ray-casting algorithm for all grid sizes. Fig. 5 shows the merging
of two boxes with the lengths 0.4 m x 0.4 m x 0.4 m on the same Cartesian mesh for
dx = 0.005 m. The ray casting is performed for each individual box separately, while
the inside/outside and closest distance information is carried over from one box to the
other. Thus, complicated structures can be build up from using several simple geometric
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entities.

(a) Wedge with mesh and level set
function

(b) Signed distance field with the zero
level set for the fluid-solid interface

Figure 5: Representation of the solid body with a level set function.

4.2 Offshore Wind Substructure

An example for a complex structure made up of many simple pieces is an offshore wind
substructure. The presented geometry is from the WAVESLAM project, a Hydralab IV
project jointly headed by the University of Stavanger and NTNU Trondheim [2]. The
geometry is a 1:8 scale model which was used for extensive wave impact experiments in
the Large Wave Flume (GWK) in Hannover. The jacket is 4 m high and 2.4 m x 2.4 m
wide with a tube thickness of 0.14 m. The Cartesian uses a mesh width dx = 0.025m.
Again, the triangular surface mesh for the solid structure is generated within DIVEMesh.
In Fig. 6, the triangular surface mesh is shown on the left and the level set representation
on the right hand side. The level set representation looks very similar to the original
geometry, indicating that the details of the complex structure are well captured.. The
flow domain is 15 m long, 5 m wide and 4.5 m high, resulting in a mesh with ca. 21
million cells. The waves are generated with a Dirichlet boundary condition at the inlet,
where velocities and free surface location are prescribed. At the outlet, wave reflections
are avoided with active wave absorption [21].

8
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Figure 6: Offshore wind substructure with triangular surface mesh (left) and level set
representation (right).

With this setup of the numerical wave tank, the tank domain can be kept relatively
short. In fact, the tank is shorter than the generated regular waves, which are of height
H = 1.2 m and length L = 20.0m with a still water depth of d = 2.5m. The non-breaking
wave impacting the jacket is shown in Fig. 7. It can be seen that the free surface
topography at this simulation time instance features a complicated pattern due to the
complex flow obstacle that the jacket presents.

Figure 7: Wave hydrodynamics around offshore wind substructure.

4.3 Hydropower Plant

The Sarpfossen hydropower plant was tested in the hydraulic laboratory at NTNU
Trondheim where a 1:45 scale model was built [13]. The capacity of the spillways were
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tested for the maximum probable flood. A focus was on the reduced cross section area
just upstream of the spillways due to a railroad bridge. The selected discharge for the
current simulations is Q = 0.25 m3/s, corresponding to Q = 3396 m3/s in full scale. The
location of the spillways including the railroad bridge positioned further upstream can be
seen in Fig. 8 a) and b).

In contrast to previous cases, here the STL encloses the fluid domain and not the
solid. This is easily taken into account by multiplying the solid level set function by -1,
effectively reversing the fluid-solid description. Fig. 9 a) shows the simulation results
with REEF3D. The solid is represented by the level set function, which captures the
details of the complex spillways geometry. The flow domain is 3.8 long in flow direction,
2.4 m wide and 0.8m high. A mesh size of dx = 0.01 m is used for the current CFD
calculations, resulting in a total of 7.3 million cells out of which 3.97 million are active
fluid cells. The flow solver captures the free surface flow with great detail. Shock waves
can be observed around the vertical obstacles in between the spillways. Over the spillways,
the flow becomes supercritical which is also indicated through the much increased flow
velocity magnitudes.

feet
km

4000
1

(a) Aerial View, Data: Google 2016

feet
meters

600
100

(b) 3D View, Data: Google 2016

(c) Complete STL file, red box shows
simulation domain

(d) STL file of flow domain with
the top boundary removed

Figure 8: Sarpfossen hydropower plant.

10
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(a) Simulation with REEF3D and solid repre-
sentation through level set function

(b) Hydraulic laboratory experiment at
NTNU Trondheim

Figure 9: Sarpfossen hydropower plant results.

5 CONCLUSIONS

In this paper an innovative method for describing complex solid geometries on a Carte-
sian mesh with immersed boundaries is presented. The solid body geometries are given
through triangular surface meshes. With a ray-casting algorithm, it can be determined
from the surface mesh whether cells lie within the fluid or the solid. In addition, the
closest distance from the solid to the neighboring fluid cells can be accurately calculated.
The distance information is then converted into a level set function, which gives the signed
distance from the solid boundary. While the level set function needs to be reinitialized,
which could lead to potential smoothing of the function, the interface values are not
updated and thus the closest distance values used by the immersed boundary are kept
intact. The method was tested for different cases with varying levels of complexity. For
the rectangular box, the offshore wind substructure and the hydropower plant, the mesh
of the flow domain including the information necessary for the ghost cell immersed bound-
ary were easily generated. The CFD model’s capabilities together with the ray-casting
algorithm show great potential for ever more complex flow simulations.
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Abstract. Extreme wave conditions emanate from the random and instantaneous
interaction of waves during storm events. These wave conditions may cause poten-
tially severe damage to ships and offshore oil and gas structures. There are several
reported methods for simulating extreme waves. The main purpose of the present
study is to simulate extreme waves with two different wave generation methods using
the open-source CFD model REEF3D. Two extreme wave generation methods are
considered: a focused wave group and an approach based on transient wave pack-
ets. The numerical model uses the incompressible Reynolds-Averaged Navier-Stokes
(RANS) equations to model the two-phase flow. The free surface is represented with
the level set method. A Dirichlet boundary condition is imposed at the inlet of the
wave tank. Focused waves are generated by superpositioning of the linear wave com-
ponents of an irregular sea state at an intended point in space and time. Whereas in
the case of the transient wave packets, a large wave is generated at a certain concen-
tration point along the tank by superimposing the wave components of the transient
wave train. Further, the temporal and spatial development of extreme waves based
on two methods are examined in the numerical wave tank.

1 INTRODUCTION

Over the last few decades, human activities have discharged large amount of car-
bon dioxide and other greenhouse gases into the atmosphere. The main source of

1
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greenhouse gases is the burning of fossil fuels in order to produce energy and from
additional industrial emissions. As a result, an increase in mean global temperature
and change in precipitation patterns can be observed. The predicted and observed
weather record indicates more frequent storms with higher wind speeds in the future.
Resulting extreme wind and wave conditions over the oceans and in coastal areas can
cause hazardous events that may lead to severe damage of coastal infrastructure and
marine structures. The knowledge concerning the characteristics of extreme waves is
essential to determine the design parameters for fixed and floating offshore structures
and ships. In particular, the extreme response analysis plays an important role in
the design of offshore structures e.g. air-gap and vertical wave impact.

Several numerical studies based on computational fluid dynamics (CFD) have
been performed to model non-breaking focused waves over constant depth e.g. Ning
et al. [1], Westphalen et al. [2] and Bihs et al. [3]. It is quiet challenging to describe
the evolution of a steep focused wave group. Because the focusing mechanism needs
to account for the higher-order terms evolve during the wave-wave interactions. This
method becomes even more difficult for modeling breaking wave events as the focused
wave group breaks early than anticipated location and time. A method based on the
transient wave packets is capable of generating large steep waves in a wave tank and
this method was proposed by Clauss et al. [4]. This method has been extensively
utilized to generate extreme waves in laboratory conditions in order to investigate
extreme wave loads on ships and offshore structures [5].

The main purpose of the study is to investigate two different extreme wave gen-
eration methods and their time and spatial developments during the focusing and
defocusing process. Two methods for simulating extreme waves are namely a dis-
persed focusing wave group and a method based on transient wave packets. Both
methods are widely used to test offshore structures in physical and numerical wave
tanks. The time and spatial evolution of the main wave crest are investigated for
three different incident waves for each wave type. Further, the free surface changes
during the extreme wave propagation are also presented and discussed.

2 NUMERICAL MODEL

In the present study, the open-source hydrodynamic model REEF3D [6] is used
to simulate extreme waves in the numerical wave tank. The numerical model has
been thoroughly evaluated for simulating breaking waves [7, 8] and their interaction
with structures [9, 10] and focused wave interaction with a slender cylinder [3]. The
two-phase viscous flow is described by solving the incompressible Reynolds-Averaged

2
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Navier-Stokes (RANS) equations. The governing equations are as follows:

∂ui

∂xi

= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

[

(ν + νt)

(

∂ui

∂xj

+
∂uj

∂xi

)]

+ gi (2)

u is the velocity averaged over time t, ρ is the fluid density, p is the pressure, ν
is the kinematic viscosity, νt is the eddy viscosity, and g is the gravity term. A
fifth-order weighted essentially non-oscillatory (WENO) scheme is employed for the
discretization of the convective terms in the RANS equations [11]. This higher-order
scheme provides good numerical stability and oscillation-free numerical solutions.
Hence, an accurate representation of the free surface is highly important to capture
the interface deformation. The complex interface deformation is captured using the
level set method (LSM) proposed by [12]. The free surface is described by the smooth
signed level set function φ(�x, t) which is zero at the interface.

2.1 Focused wave generation

The focused wave simulation is performed by superimposing the linear regular
wave components present in the irregular wave trains. The linear free surface eleva-
tion η(1) is defined as:

η(1) =
N
∑

i=1

Aicosθi (3)

where, Ai is the amplitude of each wave component and θi is the phase of each
component, which is defined as:

θi = kix− ωit− εi (4)

where ωi is the angular frequency and ki is the wave number of each component. εi
is the phase angle of each wave component. In the case of a focusing wave group, a
focused wave crest is generated by superimposing of the linear wave components of
an irregular sea state at an intended point in space (xf ) and time (tf ).

εi = kixf − ωitf (5)

A focused wave group consists of several wave components and the amplitude of
each component can be described as the function of the wave spectrum Si(ω) and

3
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the focus amplitude Af :

Ai = Af
Si(ω)∆ω

N
∑

i=1

Si(ω)∆ω

(6)

Here, the contribution of each spectral component to the maximum wave height at
the focus point is obtained. The JONSWAP spectrum is employed in the numerical
model for the generation of irregular waves. It is described using the significant wave
height Hs, the peak angular frequency ωp and the number of components N .

Si(ω) =
5

16
H2

sω
4
pω

−5
i (−5

4
)exp((

ωi

ωp

)−4)γ
exp(

−(ω−ωp)
2

2σ2ωp
2 )

Aγ (7)

The wave spectrum, Si(ω) defines the distribution of wave energy over frequency ω.

2.2 Wave packet generation

The propagation of wave packet is first dominated by high frequency wave compo-
nents followed by low frequency components. A normalized Fourier spectrum defines
the transient wave packet which consists of several frequency components:

|F | = 27(ω − ωbeg)(ω − ωend)
2

4(ωbeg − ωend)3
(8)

Here, ω is the angular frequency and the subscripts beg and end are the start and
end of the Fourier spectrum on the x-axis. The scaling factor f and the amplitude
of the each wave component are defined as:

f =
Afocus

N
∑

i=1

A′
i

(9)

Ai = fA′
i (10)

For low steep waves, the first-order wave components are sufficient to achieve a
intended focus point in space and time. It is important to account for the contribution
of higher-order terms to describe the propagation of the focused wave group and
the transient wave packets for higher steepness waves. However, the wave packet
generation requires a more number of wave components (500 components) than the
focused wave generation (20 components). In the present study, the wave components
evolve from the non-linear wave-wave interactions are considered up to the second-
order and it is implemented in the model based on Ning et al. [1] formulation which

4
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is originally derived from Scäffer et al. [13]. The second-order wave surface elevation
and the horizontal and vertical components of particle velocity are defined as follows:

η = η(1) + η(2) (11)

u = u(1) + u(2) (12)

w = w(1) + w(2) (13)

Simu.

nos.

Wave

type
Cases

Significant

wave height,

Hs (m)

Peak period ,

Tp (s)

Focus dis-

tance, xf

(m)

Focus time,

tf (s)

1
Focused

waves

FW-1 0.05 1.25 7.5 10.0

2 FW-2 0.10 1.25 7.5 10.0

3 FW-3 0.18 1.25 7.5 10.0

4
Wave

packets

WP-1 1.10 7.0 20.0 18.0

5 WP-2 1.20 7.0 20.0 18.0

6 WP-3 1.40 7.0 20.0 18.0

Table 1: List of simulation cases

3 Evolution of focused wave group

The numerical set-up consists of a 15m long and 1.0m high wave tank with a water
depth of 0.50m which corresponds to the intermediate water depth condition. Three
focused wave groups are generated with different significant wave heights (FW-1 to
3) as listed in Table 1. The intended focus time (tf ) and position (xf ) is 10.0s and
7.5m (from the inlet), respectively, for all focused wave cases. At the inlet, a Dirichlet
boundary condition is imposed and the relaxation method is employed for the wave
absorption at the outlet.

5
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3.1 Time evolution of focused wave group
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Figure 1: Numerical wave surface elevation of the focused group versus time at (a) different
locations for case FW-1 from x from 6.0m to 8.5m at the interval of 0.5m (the red line denotes the
wave crest at the focus point) and (b) the focus point, xf=7.5m (tf=10.0s).

Figs. 1, 2 and 3 present the computed wave surface elevations (η) of the focused
wave group over time for cases FW-1 to 3. In order to examine the time evolution
of the focused wave group, the wave surface elevation is computed at 6 different
locations along the wave tank (x=6.0m, 6.5m, 7.0m, 7.5m (focus point), 8.0m and
8.5m, x is the distance from the inlet). For low steep waves (FW-1 and 2), the
maximum wave height exactly occurs at the intended focus location (xf ) of 7.5 m
from the wave inlet and time (tf ) of 10.0s. The amplitude at the focus point (Af )
is 0.026m and 0.052m for case FW-1 and 2, respectively. The height of the wave
components immediately ahead of and after the focus point are nearly equal for
case FW-1. As the wave spectrum becomes steep, the amplitude of preceding wave
component is always higher than the one immediately after the focus point. As can
be seen from Fig. 3 that the actual focus point shifts backward in time (tf=10.5s)
when the significant wave height is increased to 0.175. The delay in the focus time
is mainly due to the non-linear interaction of steep wave components. For less steep
wave cases (FW-1 and 2), the amplitude of the main wave crest gradually increases
up to the focus point and then, it decreases gradually downstream. But in the case
of steep wave case, the maximum amplitude of the focused group at different wave
gauge positions varies significantly, but the variation is gradual for low steep waves.

6
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Figure 2: Numerical wave surface elevation of the focused group versus time at (a) different
locations for case FW-2 from x from 6.0m to 8.5m at the interval of 0.5m (the red line denotes the
wave crest at the focus point) and (b) the focus point, xf=7.5m (tf=10.0s).

When the significant wave height increases, the number of steep wave components
increase in the focused wave group. Due to the non-linear interactions between the
steep wave components give a rise to the higher-order wave components. For all
cases, the relationship between the amplitude of the focused wave (Af ) and the
significant wave height (Hs) is almost linear which is Af=0.52Hs. However, the high
steep waves influence the focus time significantly.

3.2 Spatial evolution of focused wave group

Figs. 4, 5 and 6 show that the computed wave surface elevations (η) along the wave
tank around the focus time (tf ) for cases FW-1 to 3. In general, as the time increases
the wave surface elevation increases rapidly while approaching the focus point. Then,
the focused wave crest starts to defocus and decreases gradually downstream. For
both cases FW-1 and 2, the wave group exactly focuses at xf=7.5m and tf=10.0s.
Moreover, the computed wave surface elevation of the focused wave group clearly
depicts the spatial evolution of the focusing and defocusing process. It also appears
that the rate of increase in the amplitude of the main wave crest at each time incident
becomes higher for high steep waves.
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Figure 3: Numerical wave surface elevation of the focused group versus time at (a) different
locations for case FW-3 from x from 6.0m to 8.5m at the interval of 0.5m (the red line denotes the
wave crest at the focus point) and (b) the focus point, xf=8.5m (tf=10.5s).
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Figure 4: Numerical wave surface elevation of the focused group along the wave tank at different
time instants for case FW-1 from t=8.0s to 12.40s at the interval of 0.21s.

As in the case of time evolution, the focus location shifts further downstream (xf )
for the steep wave case (FW-3) as shown in Fig. 6. Since the wave group consists of
a large number of steep wave components approaches the focus point, the interaction
among the wave components increases resulting in higher-order wave components. It
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Figure 5: Numerical wave surface elevation of the focused group along the wave tank at different
time instants for case FW-2 from t=8.0s to 12.40s at the interval of 0.21s.

means that the interaction between the wave components produces a steep focused
wave crest and it becomes unstable. Consequently, the wave group travels further
downstream and focuses at xf=8.5m. The simulated free surface changes along with
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Figure 6: Numerical wave surface elevation of the focused group along the wave tank at different
time instants for case FW-3 from t=8.0s to 12.40s at the interval of 0.21s.

the scaled (scale factor=2) contour and velocity magnitude during the focused wave
propagation are presented in Fig. 7 for case FW-3 at t=9.5s, 10.0s, 10.25s and 10.50s.
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At t=9.5s, the main wave crest in the group approaches the focus point with lower
crest velocity (Fig. 7 (a)). As it propagates further downstream, the wave amplitude
increases, but the wave components do not focus at the 7.5m as shown in Figs. 7 (b)
and (c). Due to the non-linear terms evolved during the wave-wave interaction, the
wave group travels further shoreward and focuses at xf=8.5m (Fig. 7 (d)).

(a)

(b)

(c)

(d)

Figure 7: The simulated free surface with the scaled contour line (scale factor=2) for the interface
and velocity magnitude (m/s) during the propagation of the focused wave group for case FW-3 at
t= (a) 9.5s, (b) 10.0s, (c) 10.25s and (d) 10.50s.
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4 Evolution of transient wave packet

The numerical wave tank for simulating transient wave packets is a 25m long and
8.0m high wave tank with a water depth of 4.0m which corresponds to the deep
water depth condition. Three cases are simulated with different significant wave
heights (cases WP-1 to 3) as listed in Table 1. The location and the time of the
concentration point in the wave tank is 20.0m and 18.0s, respectively, for all focused
wave packet cases. At the inlet, a Dirichlet boundary condition is imposed and the
active absorption method is employed for the wave absorption at the outlet [13].

4.1 Time evolution of transient wave packet
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Figure 8: Numerical wave surface elevation of the transient wave packets versus time at (a) different
locations from x= 10.0m to 22.0m at the interval of 1.0m for case WP-1 (the red line denotes the
wave crest at the concentration point) and (b) the concentration point, xf=20.0m (t=18.0s).

Figs. 8, 9 and 10 present the development of wave surface elevations of the focused
transient wave packets over time for cases WP-1 to 3. The wave surface elevations
are computed at different locations from x= 10.0m to 22.0m at the interval of 1.0m
for studying the time development of wave surface elevations during the propagation.
Unlike the focused wave group, the transient wave packet at the concentration point
has a distinct high peak without secondary wave components before and after the
main wave crest. With the amplitude Fourier spectrum, first high frequency wave

11
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components followed by the low frequency components are generated in the wave
tank. For all cases, the wave packet is focused at t=18.0s and x=20.0m. For all
three significant wave heights the transient wave packet concentrates exactly at the
intended point in time and space.
At the beginning, the main wave crest of the transient wave group has a deeper
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Figure 9: Numerical wave surface elevation of the transient wave packets versus time at (a) different
locations from x= 10.0m to 22.0m at the interval of 1.0m for case WP-2 (the red line denotes the
wave crest at the concentration point) and (b) the concentration point, xf=20.0m (t=18.0s).

preceding and a shallower following wave trough and a small upstream wave crest.
As the wave group propagates further downstream along the wave tank close to
the concentration point, the preceding wave tough becomes shallower, the following
wave trough becomes deeper and the upstream wave crest disappears. Thus, the
amplitude of the main wave crest increases. In addition, the horizontal asymmetry
of the main wave crest decreases as the distance from the focus point decreases. The
amplitude at the concentration point is 0.59m (0.56Hs), 0.68m (0.57Hs) and 0.80m
(0.59Hs) for case WP-1 to 3. The ratio of the focused amplitude and the significant
wave height increases as the incident wave height increases.

4.2 Spatial evolution of transient wave packet

Figs. 11, 12 and 13 show the wave surface elevations of the focused wave packets
along the wave tank for case WP-1 to 3 for different time instants from t=16.0s

12
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Figure 10: Numerical wave surface elevation of the transient wave packets versus time at (a)
different locations from x= 10.0m to 22.0m at the interval of 1.0m for case WP-3 (the red line
denotes the wave crest at the concentration point) and (b) the concentration point, xf=20.0m
(t=18.0s).
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Figure 11: Numerical wave surface elevation of the transient wave packets along the wave tank at
different time instants from t=16.0s to 19.0s at the interval of 0.075s for case WP-1.

to 19.0s at the interval of 0.075s. It appears that the development of main wave
crest increases slowly and steadily up to the concentration point of xf=20.0m and
decreases slowly. The main wave crest has a relatively deeper wave trough upstream
and downstream. Unlike the time development of the main wave crest, the rate of
increase and decrease in the amplitude of the main wave crest before and after the

13
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focus point becomes larger for higher significant wave heights. In particular, the
transient wave packet has no secondary wave components compared to the focused
wave group. When the wave crest approaches the concentration point, the front
face of the wave crest gets steeper followed by the rear face and thus, the vertical
asymmetry decreases and the horizontal asymmetry increases.
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Figure 12: Numerical wave surface elevation of the transient wave packets along the wave tank at
different time instants from t=16.0s to 19.0s at the interval of 0.075s for case WP-2.

0 5 10 15 20 25
L (m)

-0.4
-0.2

0
0.2
0.4
0.6
0.8

2
 (m

)

Figure 13: Numerical wave surface elevation of the transient wave packets along the wave tank at
different time instants from t=16.0s to 19.0s at the interval of 0.075s for case WP-3.

Fig. 14 shows the simulated free surface with velocity magnitude and the scaled
contour line for the interface (scale factor=2) at t=17.0s, 17.5s, 18.0s and 18.5s.
Initially, the maximum velocity is noticed under the forward front part of the wave
crest than the rear part due its larger vertical asymmetry as shown in Fig. 14. This
is also consistent with the previous observation as presented in Fig. 12.
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(a)

(b)

(c)

(d)

Figure 14: The simulated free surface with the scaled contour (scale factor=2) for the interface
and velocity magnitude (m/s) during the propagation of the transient wave packets for case WP-3
at t= (a) 17.0s, (b) 17.50s, (c) 18.0s and (d) 18.50s.

15



100

Mayilvahanan Alagan Chella , Hans Bihs and Øvind A. Arntsen

During the propagation, the deformation of the front face of the main wave crest
takes place followed by the rear face. At the concentration point (xf=20.0m), the
vertical asymmetry is nearly unity. Then, the amplitude of the main wave crest
decreases gradually as the wave group propagates further shoreward (Fig. 14) (d).

5 CONCLUSIONS

This paper has investigated extreme wave generation using two different methods
in a numerical wave tank. The numerical simulations are performed with the open-
source hydrodynamics model REEF3D. The model uses the incompressible Reynolds-
Averaged Navier-Stokes (RANS) equations together with the level set method for free
surface. Two wave generation methods for modeling extreme waves are considered
in the present study namely a dispersed focusing wave group and a method based
on transient wave packets. The focused wave generation is based on superimposing
the linear wave components of an irregular wave train at a particular point in space
and time. In the case of the transient wave packets, a large single crested wave is
generated along the length of the tank at a certain concentration point by superim-
posing the wave components of the transient wave packets. For high steep waves,
the focus time and location shifts downstream for the focused wave group due to
the non-linear wave-wave interactions. At the same time, the transient wave packets
provide a good representation of large and steep extreme wave crests. Moreover,
the evolution of free surface flow features for wave packets and focused waves are
represented well in the numerical model.
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Abstract. We describe a numerical methodology for simulation of immiscible radial dis-
placement in a porous medium or Hele-Shaw cell. A Darcy-Cahn-Hilliard model is used in
conjunction with a spectral element numerical approximation. We use a geometry trans-
formation to solve the equations on an unbounded domain, and exponential convergence
is accomplished in both the radial and the angular direction.

1 INTRODUCTION

When a fluid is injected into a porous medium saturated with a different fluid, the
moving interface between the two fluids can become unstable if the fluid already saturating
the medium has the higher viscosity. This classic stability problem was first studied by
Hill [1] who did a series of experiments for displacement in a column with packed charcoal.
More rigorous stability analyses in linear displacement were performed by Chuoke et al.
[2] and Saffman & Taylor [3].

Wilson [4] and Paterson [5] were the first to use linear stability theory to study ra-
dial displacement, and they showed the stabilising effect of interfacial tension. Paterson
also did radial displacement experiments, and found the theoretical predictions to agree
reasonably well with the experimental results. Homsy [6] reviewed the viscous fingering
literature for both miscible and immiscible displacement in porous media and Hele-Shaw
cells.

When the injecting fluid has a different temperature than the fluid already saturating
the porous medium, a second, thermal, front moves behind the fluid front separating the
two fluids. The heat shared with the porous matrix causes the thermal front to lag behind
the fluid front.

Pritchard [7] studied thermo-viscous instability in radial miscible displacement. The
double front system formed when a fluid is injected into a porous medium saturated with

1
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a fluid with different temperature and composition, was studied using linear stability
theory. Pritchard found that instabilities on the compositional front tended to dominate
due to the solute diffusivity being much lower than the thermal diffusivity.

A similar double front system was studied in a rectilinear geometry by Islam & Azaiez,
using linear stability analysis [8] and with numerical simulations [9].

We study the thermo-viscous stability problem that emerges when a diffuse thermal
front is interacting with an immiscible fluid or concentration front. Both fronts are poten-
tially unstable. The thermal front is stabilised by diffusion, the fluid front by interfacial
tension.

We describe a methodology that can be used to simulate the immiscible thermo-viscous
stability problem in a two-dimensional radial geometry, and we document the resulting
convergence properties. Since our primary goal is to study the growth of instabilities on
the interface, the accuracy of the simulation is of great importance. Small amounts of
numerical diffusion could stabilise an otherwise unstable front. For this reason, we use
spectral methods, with a Fourier expansion in the angular direction and a polynomial
expansion in the radial direction.

The governing equations and the numerical methodology are presented in sections 2
and 3, respectively. Results from convergence tests are shown in section 4, and the findings
are summarised in section 5.

2 GOVERNING EQUATIONS

A fluid with viscosity η̂0 and temperature T̂0 is injected into a porous medium, or Hele-
Shaw cell, saturated with a fluid with viscosity η̂∞ and temperature T̂∞. The injected
fluid spreads radially outwards from the injection point r̂ = 0, with both thermal and
concentration fronts moving as R ∝

√
t.

We use a diffuse-interface approach to describe the immiscible incompressible two-
phase flow, with a convective Cahn-Hilliard equation for the concentration. The governing
equations for the Darcy-Cahn-Hilliard system [10, 11, 12] are

∇̂ · û = 0, (1a)

∇̂p̂ =
η̂

k̂
û− ǫ̂ρ̂∇̂ · ((∇̂c)(∇̂c)T ), (1b)

∂T̂

∂t̂
+

λ

φ
∇̂ · (ûT̂ ) = κ̂T ∇̂

2T̂ , (1c)

∂c

∂t̂
+

1

φ
∇̂ · (ûc) = κ̂c∇̂

2µ̂ (1d)

and

µ̂ =
∂f̂0

∂c
− ǫ̂∇̂2c. (1e)

2
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The equations (1a–1e) for velocity û, temperature T̂ and concentration ĉ are expressed in
a polar coordinate system. The viscosity η̂ is a function of T̂ and ĉ, while the permeability
k̂, the density ρ̂, the coefficient of capillarity ǫ̂, the effective porosity φ, and the diffusion
coefficients κ̂T and κ̂c are constants. The thermal lag coefficient [7]

λ =
φtρ̂fluidĈfluid

φtρ̂fluidĈfluid + (1− φt)ρ̂matrixĈmatrix

< 1 (2)

quantifies the thermal lag caused by heat being shared with the porous matrix. Ĉ is the
specific heat capacity and φt is the total porosity. For a Hele-Shaw cell, λ = 1.

We non-dimensionalize equations (1a) to (1e) and introduce the stream function ψ,
defined such that

ur =
1

r

∂ψ

∂θ
(3a)

and

uθ = −
∂ψ

∂r
, (3b)

where ur and uθ are the radial and angular non-dimensional velocities. In order to resolve
the moving fronts more easily, ξ = r/

√
2t is introduced and the equations are transformed

from (r, θ, t) to the variables (ξ, θ, t). The steady fluid or concentration front is located at
ξ = 1 and the thermal front at ξ = λ.

The resulting governing equations are

∇
2ψ −

(

βT

∂T

∂ξ
+ βc

∂c

∂ξ

)

∂ψ

∂ξ
−

1

ξ2

(

βT

∂T

∂θ
+ βc

∂c

∂θ

)

∂ψ

∂θ

=
C

Sη

1

2tξ

(

∂c

∂θ

∂

∂ξ

(

∇
2c
)

−
∂c

∂ξ

∂

∂θ

(

∇
2c
)

)

, (4a)

2t
∂T

∂t
− ξ

∂T

∂ξ
+

λ

ξ

(

∂ψ

∂θ

∂T

∂ξ
−

∂ψ

∂ξ

∂T

∂θ

)

=
1

PT

∇
2T, (4b)

2t
∂c

∂t
− ξ

∂c

∂ξ
+

1

ξ

(

∂ψ

∂θ

∂c

∂ξ
−

∂ψ

∂ξ

∂c

∂θ

)

=
1

Pc

∇
2µ (4c)

and

µ =
∂f0

∂c
−

C

2t
∇

2c, (4d)

where the Laplacian is defined as

∇
2q =

1

ξ

∂

∂ξ

(

ξ
∂q

∂ξ

)

+
1

ξ2
∂2q

∂θ2
. (5)

For an immiscible interface, the dimensionless Helmholtz free energy function f0 is convex.
We use the function

f0 = c2(1− c)2. (6)

3
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The non-dimensional viscosity depends on the temperature and concentration as

η = e−βT T−βcc. (7)

If βT,c is negative, the viscosity is greater ahead of the front and the front is potentially
unstable. The Cahn number C, the source strength S and the Péclet numbers PT and Pc

are all constants.

3 NUMERICAL METHODOLOGY

We use a Galerkin formulation and discretise the weak forms of equations (4a) to
(4d). The weak form of each equation is found by multiplying with a test function v and
integrating over the domain (omitted for brevity).

The equations are solved with the boundary conditions

T = 0, c = 0, ∇c = 0, ψ = θ at ξ = 0 (8a)

and
T → 1, c → 1, ∇c → 0, ψ → θ as ξ → ∞. (8b)

The boundary conditions at ξ → ∞ pose a challenge for the discretisation because
imposing the same boundary conditions at the end of a large but finite domain, will
incur a finite error. This is handled by using a geometry transformation to solve the
equations on an infinite domain [13, 14]. We divide the domain into E ring-shaped
elements (θ ∈ (−π, π)), where the radial coordinate ξ in each domain is expressed as a
function of the reference variable ζ ∈ (−1, 1). The first E−1 elements use linear geometry
transformations, while element E uses

ξE(ζ) =
1 + ζ

1− ζ
LE + ξE−1(1), (9)

where LE determines how fast the grid approaches infinity.
The temperature T in element e is approximated, using a Fourier approximation in the

θ-direction and a polynomial approximation in the ξ-direction, as

T e(ζ, θ) ≈

M/2
∑

m=−M/2+1

N
∑

n=0

T̃ e
mn exp(imθ)ln(ζ), (10)

and similarly for c and ψ. As the test function v, we use

v = exp(−ijθ)lk(ζ), (11)

where lk is the N -order Lagrangian interpolant through the N+1 Gauss Lobatto Legendre
nodes.

We use a combination of explicit and implicit stiffly stable schemes [15] to integrate
the equations in time. Both explicit and implicit schemes are of third order accuracy
and only the biharmonic operator in the concentration equation and the Laplacian in the
temperature equation are treated implicitly.

4
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Figure 1: Numerical error ε as a function of polynomial order N for T (circles), c (squares) and ψ

(triangles), with M = 256

4 RESULTS

In order to test the convergence properties of the numerical methodology, we perform
a series of simulations with a wide range of M and N values. For our test simulations,
we use λ = 0.9, PT = 20, Pc = 103, C = 10−5, S = 1 and βT = βc = − log 10. With
this combination of parameters, both fronts will be unstable. The radial and angular
structure of the solution are both sufficiently complex to provide a challenge for the
numerical approximation. We use E = 7 elements, with the last one stretching to infinity.

The error is estimated by comparing the solution at the final time with a reference
simulation using M = 256 and N = 60, and computing the maximum norm ε(T ) =
||TMN −T ||∞. The reference simulation is initialised from the axisymmetric base solution
for T and c at t = 0.01, and white noise with amplitude 10−8 for ψ. All the other
simulations are then initialised from the reference simulation at t = 0.2 and simulated
until t = 1.

Figure 1 shows the approximation error ε for T , c and ψ as a function of the polynomial
order N . We observe exponential convergence for T , c and ψ, but with significantly lower
error in T than in c and ψ. This is to be expected considering the highly diffusive thermal
front. It is clear that the use of an infinite domain has not compromised the exponential
convergence we expect from a spectral approximation.

In figure 2 the error ε is plotted as a function of M , showcasing the convergence
properties of the Fourier expansion. Again, we observe exponential convergence, with
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Figure 2: Numerical error ε as a function of Fourier expansion order M for T (circles), c (squares) and
ψ (triangles), with N = 60

particularly rapid convergence for T .

5 SUMMARY AND CONCLUSIONS

We have described a numerical methodology used to simulate two-dimensional immis-
cible radial displacement. A diffuse interface Darcy-Cahn-Hilliard system coupled with
the energy equation is used to represent the two-dimensional porous-medium or Hele-
Shaw flow. The equations are discretised using a spectral element approximation, with
a Fourier expansion in the angular direction and a polynomial expansion in the radial
direction.

We have seen that the numerical approximation converges exponentially, in both the
radial and the angular direction, and this is accomplished on an unbounded domain. The
combination of a diffuse interface model with a spectral approximation, gives an efficient
and highly accurate solution methodology for immiscible displacement problems.
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Abstract. The influence of the computational domain size in a DNS study of the three-
dimensional wake behind a cross formed by two intersecting flat plates has been inves-
tigated. The Reynolds number based on the uniform inflow velocity U0 and the plate
width d is 1000. The wake flow is characterized by qualitatively different flow regimes;
from the three-dimensional wake in the intersection region with suppressed vortex shed-
ding, to quasi two-dimensional shedding flow behind the outer branches.The spanwise
base pressure gradient indicates the existence of secondary flows. The effect of the free-
slip condition employed at the two vertical sides of the computational domain, as well
as along the top and the bottom planes, is demonstrated for two cases. Moreover, the
influence of the domain size on the base pressure and mean fluctuating kinetic energy is
shown. By extending the plate lengths from 21d to 31d, the adverse effects of the free-slip
boundary conditions were eliminated and the cross-configuration mimicked infinitely long
crossing plates.

1 INTRODUCTION

The wake behind multiple bluff-body configurations has received many researcher’s
interest due to its importance in academic and engineering fields. Intersecting config-
urations, e.g. a perpendicular arrangement of cylinders, have applications in offshore
structures, aquaculture etc. The turbulent wake behind two intersecting circular cylin-
ders was studied by Osaka et al.[1], Zdravkovich[2] and Fox and Toy[3] experimentally.
For two intersecting flat plates Donoso et al.[4] studied the effect of intersection upon the

1
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vortex shedding from each plate. The wake behind two intersecting plates has been inves-
tigated by the present authors ([5, 6]). The wake flow behind intersecting plates/cylinders
can be characterized by a complex massive separated flow in the intersection region which
changed to quasi-two dimensional vortex streets behind the outer branches. A base pres-
sure gradient drives the flow away from the intersection region towards the outer branches.
In addition, secondary flow of second kind as classified by Prandtl is also observed as four
pairs of vortices located symmetrically with respect to the geometrical symmetry planes.
The aim of present study is to investigate the influence of the computational domain size
in simulating such a complex wake flow. In particular, the effect of computational set-up
on the base pressure and mean fluctuating kinetic energy is studied.

2 Flow configuration and numerical method

The cross-plate structure consists of two intersecting thin flat plates, placed normal to
the inflow. The whole geometry is positioned in a single plane and the Reynolds number
Re based on the inflow velocity U0 and the width of a plate d, is 1000. The mass conser-
vation and Navier-Stokes equations for an incompressible flow of a viscous fluid are given
in Eq. (1) and (2):

∂uj/∂xj = 0 (1)

∂ui/∂t + uj(∂ui/∂xj) = −1/ρ(∂p/∂xi) + ν(∂2ui/∂xj
2) (2)

Direct Numerical Simulation(DNS) of the flow past the cross-plate configuration has
been carried out by the finite-volume code (MGLET)[7]. The code has a second-order
central-differencing scheme for spatial discretization and a third-order explicit Runge-
Kutta scheme for marching in time. The Poisson equation is solved by an iterative strongly
implicit procedure (SIP). The code uses a staggered Cartesian grid and a direct forcing
Immersed Boundary Method (IBM)[8] is employed in order to implement the surface of
the cross-plate in the computational grid.

Two computational domains have been used in the DNS study. The small domain has
20d length in streamwise direction and 21d length in spanwise and cross-stream directions,
with 384 × 366 × 366 number of grid points in each direction[5]. The large domain has
also 20d length in streamwise but 31d length in spanwise and cross-stream directions
with a grid consisting of 384× 474× 474 degrees of freedom[6] (figure 1). All the spatial
dimensions are normalized by the plate width d, and all velocities are scaled by the inflow
velocity U0.

The boundary conditions consist of uniform inflow velocity U0 without any free-stream
perturbations at the inlet x/d = −5, and free-slip conditions at the vertical side planes
of the computational domain as well as along the top and the bottom planes. At the
outlet x/d = +15, a Neumann boundary condition is used for the velocity components
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Figure 1: Computational domain (not to scale). The plate width is d = 1. In the small domain L = 10
and H = 21. In the large domain L = 15 and H = 31.

and the pressure is set to zero. The time step is chosen to be ∆t = 0.001d/U0. This
time step satisfies the stability criterion and is comparable with the time step used in
earlier DNS studies of wake flows at moderate Reynolds numbers. The ratio of the local
grid size δ = (∆x∆y∆z)1/3 to the local Kolmogorov length scale η = (ν3/ε)1/4 is less
than 5 for both computational set-ups. Here, ε is the dissipation rate of turbulent kinetic
energy ε = ν(∂ui/∂xj)(∂ui/∂xj). The same grid resolution was used in both cases and
the energy spectra shown in Figure 5 in Dadmarzi et al. [6] indicate that the resolution
is appropriate for the present purpose.

3 Results and discussion

Figure 2 shows the mean streamline patterns in the horizontal (x, y)-plane through the
centerline of the horizontal plate from both the small and the large domain simulations.
For the intersecting plates, with the suppression of the vortex shedding at the intersection
region, the spanwise pressure gradient along the plates drives the fluid out from the
intersection toward the outer branches. As figure 2(a) shows, for the small domain, the
outward-driven secondary flow from the intersection is still strong close to the boundaries.
The free-slip condition at the surrounding boundaries suppresses the normal velocity
component and the blockage effect appeared in a form of a small recirculation bubble
just next to the surrounding computational planes (shown by red circles in the figure).
Figure 2 shows how effectively the enlargement of the domain size in the spanwise and
cross-stream directions reduces the adverse effect of the free-slip boundary condition on

3
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a) b)

Figure 2: Streamline patterns in the horizontal (x, y)-plane through the centerline of the horizontal
plate (z/d = 0), (a) for small (with 21d length in y and z directions) and (b) large (with 31d length in y

and z directions) domain simulations.

the flow dynamics close to the vertical (and horizontal) sides. In the small-domain case,
a small recirculation bubble appears next to the vertical boundaries (at y/d = ±10),
whereas in the large-domain simulation, in figure 2(b), this effect is not visible. For
the large domain simulation, the secondary flow is negligible close to the computational
boundaries and at the outer branches the results are similar to a single flat plate as shown
by Dadmarzi et al.[6]. Therefore we can say that the large domain results are comparable
with flow past a single cross with infinitely long branches. Based on the results shown in
figure 2, it is likely to believe that results obtained using an even larger domain, say 20d
x 41d x 41d, will only be marginally different from those in figure 2(b).

The spanwise distribution of the base suction coefficient along the center-line of one
of the horizontal branches from two simulations[5, 6] compared with the experimental
data from Zdravkovich[2], Donoso et al.[4], Fox and Toy[3] are presented in figure 3. As
the figure shows, the base suction coefficient in both simulations with the small and the
large computational domain follow the trend of the experimental results qualitatively.
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In the intersection region (|y/d| < 2) with suppressed vortex shedding, the base suction
pressure coefficient has its lowest value. By moving away from the intersection region up
to y/d = 3, −(C̄P ) increases and reaches its local maximum. In the intersection region,
the base suction pressure is almost the same for the both domains, they differ as we
approach the maxima (y/d ∼ 3). The local peak at y/d = 3 obtained from the simulation
with the large domain, is higher than the value obtained with the small domain. After
passing the peak in the large domain, the base suction pressure approaches the value for
a single flat plate close to the boundaries, as shown by Dadmarzi et al.[6] in their figure
8 (b). On the contrary, in the small domain the suction pressure decreases continuously
until the side boundary of the domain. The lower value of the base suction pressure might
be associated with the presence of the secondary flow along the whole span of the plates.

Figure 3: Spanwise base suction coefficient along the center-line of one half of the horizontal plate. The
blue line and the red line show DNS results from the small and the large domain simulation, respectively.
Experimental data from Zdravkovich[2]: ⋄, Re = 9.4× 104, for intersecting circular cylinders; Donoso et
al.[4]: –, for intersecting plates; Fox and Toy[3]: *, Re = 2 × 104, for intersecting circular cylinders; Fox
and Toy[3]: +, Re = 2× 104, for intersecting square cylinders, are also shown.

The time mean streamwise velocity U/U0 profile along the wake centerline at the in-
tersection and the outer branches for both the small[5] and the large domains[6], is shown
in figure 4. The recirculation length at the intersection of the small domain simulation
exceeds 7.5d with the largest velocity defect of about 0.80U0. However, for the large do-
main, the recirculation length is about 6.5d with maximum velocity defect 0.85U0. This
is consistent with the observed streamline patterns in figure 2. The mean streamwise ve-
locity trend remains the same, i.e. smaller recirculation length and larger velocity defect
for the large domain compared to the small domain simulation, along the branches until
close to the side boundaries (dashed-dotted lines in figure 4). At the outer branches in
the small domain[5], a larger recirculation bubble with slightly lower primary shedding
frequency (0.162U0/d) compared to the large domain[6] (i.e. 0.165U0/d), is observed.

5
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Figure 4: Evolution of the time-mean streamwise velocity with streamwise position. The blue and
red solid lines show U/U0 along the intersection bubble in the small and the large domain simulations
respectively. The blue and the red dashed-dotted lines show U/U0 along the wake centerline at the
outer branches, 1.5d distance from the side boundaries, in the small and the large domain simulations,
respectively.

Figure 5 shows the time-mean spanwise velocity V/U0 along the wake centerline a short
distance from the intersection (y/d = 2d) as well as 1.5d from the side boundaries in the
small and the large domain simulations[5, 6]. As the figure shows, the secondary mean flow
is stronger closest to the intersection and then decreases as we approach the boundaries.
The spanwise velocity in the intersection region of the large domain simulation has slightly
larger values compared to the small domain one. Close to the boundary, the spanwise
velocity in the small domain still has a value about 10% of the free-stream velocity U0

while the corresponding value in the large domain simulation is almost zero.
Figure 6 shows the streamwise variation of variance of the fluctuating velocity com-

ponents (figure 6(a,c,d)) and the mean fluctuating kinetic energy (figure 6(b)) next to
the corner of the intersecting plates, where only incoherent motions contribute to the
velocity fluctuations. These data are taken at y = z = 1.2d on the diagonal z = y in
the cross-sectional plane. As mentioned by Dadmarzi et al.[6], along the bisector z = y

the primary production of ū2 along the vertical branch becomes equally important as the
primary production along the horizontal branch and ū2 attains its maximum value. It is
noteworthy to mention that the peak value in the ū2 profiles is at the same x-position
in both simulations and it is about twice the peak values in the v̄2 and w̄2 profiles. The
trend of the variation of the velocity fluctuations and thereby also of the mean fluctuating
kinetic energy, is similar for the small and the large domain simulations. However, the
values corresponding to the large domain are larger. The spanwise and cross stream ve-
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Figure 5: Variation of the time-mean spanwise velocity (V/U0) with streamwise position. The blue and
the red solid lines show V/U0 along the wake centerline 2d from the intersection (y/d = 2) in the small
and the large domain simulations, respectively. The blue and red dashed-dotted lines show V/U0 along
wake centerline at the outer branches, 1.5d from the side boundaries, in the small and the large domain
simulations, respectively.

locity fluctuation components are almost identical due to the symmetry of the flow about
the intersection. The shift in the x-position of maxima in v̄2 and w̄2 curves in the small
domain compared to the large domain might be associated with the prolongation of the
recirculation length in the intersection of the small domain, as seen in figure 2.

4 Conclusion

The results of two DNS studies of the wake behind a cross-plate configuration at Re
= 1000 with different computational domain sizes were compared. The spanwise base
pressure gradient indicated the existence of secondary flows ventilated from the intersec-
tion region towards the branches. The effect of the free-slip condition at the sides as
well as top and bottom boundaries, with respect to presence of the secondary flow, was
demonstrated. The base pressure and mean fluctuating kinetic energy were shown for
the two computational set-ups and their differences were discussed. Although a spanwise
plate length 21d might at first sight seem appropriate, the present comparative study
showed that the free-slip boundary conditions had an unexpectedly large influence on
the computed wake flow characteristics. However, by extending the plate lengths to 31d,
these adverse effects were eliminated and the cross-configuration mimicked infinitely long
crossing plates.

7



118

Fatemeh H. Dadmarzi, Vagesh D. Narasimhamurthy, Helge I. Andersson and Bjørnar Pettersen

a) b)

c) d)

Figure 6: Streamwise variation of (a) u2(U2

0
), (b) k(U2

0
), (c) v2(U2

0
) and (d) w2(U2

0
) close to the

intersection corner at y/d = z/d = 1.2.
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Abstract. Energy preserving numerical methods for a certain class of PDEs are derived,
applying the partition of unity method. The methods are extended to also be applicable
in combination with moving mesh methods by the rezoning approach. These energy pre-
serving moving mesh methods are then applied to the Benjamin–Bona–Mahony equation,
resulting in schemes that exactly preserve an approximation to one of the Hamiltonians
of the system. Numerical experiments that demonstrate the advantages of the methods
are presented.

1 INTRODUCTION

Numerical solutions of di↵erential equations by standard methods will typically not
inherit invariant properties from the original, continuous problem. Since the energy-
preserving methods of Courant, Friedrichs and Lewy were introduced in [1], the devel-
opment of conservative methods has garnered much interest and considerable research,
surveyed in [2] up to the early 1990s. In some important cases, conservation properties
can be used to ensure numerical stability or existence and uniqueness of the numerical
solution. In other cases, the conservation of one or more invariants can be of importance
in its own right. In addition, as noted in [3], one may expect that when properties of
the continuous dynamical system are inherited by the discrete dynamical system, the
numerical solution can be more accurate, especially over large time intervals.

The discrete gradient methods for ordinary di↵erential equations (ODEs), usually at-
tributed to Gonzalez [4], are methods that preserve first integrals exactly. Since the late
1990s, a number of researchers have worked on extending this theory to create a coun-
terpart for partial di↵erential equations (PDEs), see e.g. [5, 6]. Such methods, which
are either called discrete variational derivative methods or discrete gradient methods for

1
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PDEs, aim at preserving some discrete approximation of a first integral which is preserved
by the continuous system. Up to very recently, the schemes presented have typically been
based on a finite di↵erence approach, and exclusively on fixed, uniform grids. Two dif-
ferent discrete variational derivative methods on fixed, non-uniform grids were presented
by Yaguchi, Matsuo and Sugihara in [7, 8]. In [9], Miyatake and Matsuo introduce in-
tegral preserving methods on adaptive grids for certain classes of PDEs. Eidnes, Owren
and Ringholm presented in [10] a general approach to extending the theory of discrete
variational derivative methods, or discrete gradient methods for PDEs, to adaptive grids,
using either a finite di↵erence approach, or the partition of unity method, which can be
seen as a generalization of the finite element method.

In this paper, we present an application of the approach introduced in [10] to the
Benjamin–Bona–Mahony (BBM) equation, also called the regularized long wave equation
in the literature. Although what we present here is a finite element method, the theory
can be easily applied in a finite di↵erence setting. Previously, there have been devel-
oped integral preserving methods for this equation [11], as well as adaptive moving mesh
methods [12], but the schemes we are to present here are, to our knowledge, the first com-
bining these properties. In fact, in [12] it is noted that combining integral preservation
with adaptivity is an interesting topic for further research.

2 THE DISCRETE GRADIENT METHODS FOR PDEs

We give a quick survey of the discrete gradient methods for PDEs, and present an
approach to the spatial discretization by the partition of unity method (PUM).

2.1 Problem statement

Consider a PDE of the form

u

t

= f(x, uJ), x 2 ⌦ ✓ Rd

, u 2 B ✓ L

2
, (1)

where u

J denotes u itself and its partial derivatives of any order with respect to the
spatial variables x1, ...., xd

, and where we assume that B is sufficiently regular to allow all
operations used in the following.

We define a first integral of (1) to be a functional I[u] satisfying
⌧
δI
δu

[u], f(x, uJ)

�

L

2

= 0, 8u 2 B,

recalling that the variational derivative

δI
δu

[u] is defined as the function satisfying

⌧
δI
δu

[u], v

�

L

2

=
d

d✏

����
✏=0

I[u+ ✏v] 8v 2 B.

2
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This means that I[u] is preserved over time by (1), since

dI
dt

=

⌧
δI
δu

[u],
@u

@t

�

L

2

= 0.

Furthermore, we may observe that if there exists some operator S(x, uJ), skew-symmetric
with respect to the L

2 inner product, such that

f(x, uJ) = S(x, uJ)
δI
δu

[u],

then I[u] is a first integral of (1), and we can state (1) on the form

u

t

= S(x, uJ)
δI
δu

[u]. (2)

The idea behind the discrete variational derivative methods is to derive a discrete version
of the PDE on the form (2), by obtaining a so-called discrete variational derivative and
approximate S(x, uJ) by a skew-symmetric matrix, see e.g. [5].

As proven in [10], all discrete variatonal derivative methods can be expressed as discrete
gradient methods on a system of ODEs obtained by discretizing (2) in space, to get a
system

du

dt
= S(u)rI(u), (3)

where S(u) is a skew-symmetric matrix. The discrete gradient methods for such a system
of ODEs preserve the first integral I(u) [13]. These numerical methods are given by

un+1 − un

∆t

= S̄(un

,un+1)rI(un

,un+1),

where S̄(un

,un+1) is a consistent skew-symmetric time-discrete approximation to S(u)
and rI(v,u) is a discrete gradient of I(u), defined as a function satisfying

(rI(v,u))T (u− v) = I(u)− I(v),

rI(u,u) = rI(u).

There are many possible choices of discrete gradients. For the numerical experiments in
this note, we will use the Average Vector Field (AVF) discrete gradient [6], given by

rI(v,u) =

1Z

0

rI(⇠u+ (1− ⇠)v)d⇠,

Note that when discretizing the system (2) in space, we do so by finding a discrete
approximation Ip to the integral I, and define an energy preserving method to be a
method preserving this approximation.

3
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2.2 Partition of unity method on a fixed mesh

The partition of unity method is a generalization of the finite element method (FEM).
Stating a weak form of (2), the problem consists of finding u 2 B such that

hu
t

, vi
L

2 =

⌧
S(x, uJ)

δI
δu

[u], v

�

L

2

= −
⌧
δI
δu

[u], S(x, uJ)v

�

L

2

8v 2 B.

We define an approximation to u by

u

h(x, t) =
MX
i=0

u

i

(t)'
i

(x),

where the test functions '

i

(x) span a finite-dimensional subspace Bh ✓ B. Referring to
[10] for details, we then obtain the Galerkin form of the problem: Find u

i

(t), i = 0, . . . ,M,

such that

MX
i=0

du
i

dt
h'

i

, '

j

i
L

2 = −
MX
i=0

w

i

(u)
⌦
'

i

, S(x, uh,J)'
j

↵
L

2 8j 2 {0, ...,M},

where, with A

ij

= h'
i

, '

j

i
L

2 ,

w(u) = A

−1rIp(u).

We end up with an ODE for the coefficients u
i

:

du

dt
= Sp(u)rIp(u). (4)

Here, Sp(u) = −A

−1
B(u)A−1 is a skew-symmetric matrix, with B(u) given by B(u)

ji

=⌦
'

i

, S(x, uh,J)'
j

↵
L

2 , and the system is thereby of the form (3). Then, the scheme

un+1 − un

∆t

= Sp(u
n

,un+1)rIp(u
n

,un+1).

will preserve the approximated first integral Ip in the sense that Ip(u
n+1) = Ip(u

n).

3 ADAPTIVE SCHEMES

The primary motivation for using an adaptive mesh is usually to increase accuracy while
keeping computational cost low, by improving discretization locally. Such methods are
typically useful for problems with e.g. traveling wave solutions and boundary layers. The
di↵erent strategies for adaptive meshes can be classified into two main groups [14]: The
quasi-Lagrange approach involves coupling the evolution of the mesh with the PDE, and
then solving the problems simultaneously; The rezoning approach consists of calculating
the function values and mesh points in an intermittent fashion. Our method can be
coupled with any adaptive mesh strategy utilizing the latter approach.

4



125

S. Eidnes and T. Ringholm

3.1 Adaptive discrete gradient methods

Let pn, un, pn+1, and un+1 denote the discretization parameters and the numerical
values obtained at the current time step and next time step, respectively. Note that we
now alter the notion of a preserved first integral further, to requiring that Ipn+1(un+1) =
Ipn(un). The idea behind our approach is to find pn+1 based on un and pn, transfer un

to pn+1 to obtain û, and then use û to propagate in time to get un+1. If the transfer
operation between the meshes is preserving, i.e. if Ipn+1(û) = Ipn(un), then the next
time step can be taken with the discrete gradient method for static meshes. If, however,
non-preserving transfer is used, corrections are needed in order to get a numerical scheme.
We introduce in [10] the scheme

un+1= û− (Ipn+1(û)− Ipn(un))z⌦rIpn+1(û,un+1), z
↵ +∆tSpn+1(û,un+1)rIpn+1(û,un+1), (5)

where z is a vector which should be chosen so as to obtain a minimal correction, and
such that hrIpn+1(û,un+1), zi 6= 0. In the numerical experiments to follow, we have used
z = rIpn+1(û,un+1).

A preserving transfer can by obtained using the method of Lagrange multipliers. De-
pending on whether r- p- or h-refinement (or a combination) is used between time steps,
we expect the shape and/or number of basis functions to change. See e.g. [14] or [15] for
examples of how the basis may change through adaptivity. Denote by Bh = span{'

i

}M
i=0

the trial space from the current time step and by B̂h = span{'̂
i

}M̂
i=0 the trial space for the

next time step, and note that in general, M 6= M̂ . We wish to transfer the approximation
u

h from Bh to B̂h, obtaining an approximation û

h, while conserving the first integral, i.e.
I[uh] = I[ûh]. This can be formulated as a constrained minimization problem:

min
û

h2B̃h

||ûh − u

h||2
L

2 s.t. I[ûh] = I[uh]. (6)

Observe that

||ûh − u

h||2
L

2 =
M̂X
i=0

M̂X
j=0

û

i

û

j

Â

ij

− 2
M̂X
i=0

MX
j=0

û

i

u

n

j

C

ij

+
MX
i=0

MX
i=0

u

n

i

u

n

j

A

ij

= ûT

Âû− 2ûT

Cun + un

Aun

,

where A

ij

= h'
i

, '

j

i
L

2 , Â
ij

= h'̂
i

, '̂

j

i
L

2 and C

ij

= h'̂
i

, '

j

i
L

2 . The problem (6) can thus
be reformulated as

min
û2RM̂+1

ûT

Âû− 2ûT

Cun + un

Aun s.t. Ipn+1(û)− Ipn(un) = 0.

This is a quadratic minimization problem with one nonlinear equality constraint, for which
the solution û is the solution of the nonlinear system of equations

Âû− Cun − λrIpn+1(û) = 0

Ipn+1(û)− Ipn(un) = 0,
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which can be solved numerically using a suitable nonlinear solver.

4 ADAPTIVE ENERGY PRESERVING SCHEMES FOR THE BBMEQUA-
TION

4.1 The BBM equation

The BBM equation was introduced by Peregrine [16], and later studied by Benjamin
et al. [17] as a model for small amplitude long waves on the surface of water in a channel.
Conservative finite di↵erence schemes for the BBM equation were proposed in [18] and
[11], the latter being a discrete gradient method on fixed grids. A moving mesh FEM
scheme employing a quasi-Lagrange approach is presented by Lu, Huang and Qiu in [12],
which we also refer to for a more extensive list of references to the existing numerical
schemes for the BBM equation.

Consider now an initial-boundary value problem of the one-dimensional BBM equation
with periodic boundary conditions,

u

t

− u

xxt

+ u

x

+ uu

x

= 0, x 2 [−L,L], t 2 (0, T ] (7)

u(x, 0) = u0(x), x 2 [−L,L] (8)

u(−L, t) = u(L, t), t 2 (0, T ]. (9)

By introducing the new variablem(x, t) := u(x, t)−u

xx

(x, t), equation (7) can be rewritten
on the form (2) as

m

t

= S(m)
δH
δm

,

for two di↵erent pairs of an antisymmetric di↵erential operator S(m) and a Hamiltonian
H [m]:

S1(m) = −(
2

3
u+ 1)@

x

− 1

3
u

x

,

H1 [m] =
1

2

Z
(u2 + u

2
x

)dx,

and

S2(m) = −@

x

+ @

xxx

,

H2 [m] =
1

2

Z
(u2 +

1

3
u

3)dx.

4.2 Discrete schemes

We apply the PUM approach to create numerical schemes which preserve an approxi-
mation to either H1 [m] or H2 [m], splitting ⌦ := [−L,L] into M elements {[x

i

, x

i+1]}M−1
i=0 .

Defining the matrices A and E by their components

A

ij

=

Z

⌦

'

i

'

j

dx and E

ij

=

Z

⌦

'

i,x

'

j,x

dx,
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we set m = (A+E)u. Note that the matrices A and E depend on the mesh, and thus will
change when adaptivity is used. We will then distinguish between matrices from di↵erent
time steps by writing e.g. An and A

n+1.
Approximating u by u

h as in section 2.2, we find

H1
p(m) = H1[mh] =

1

2

Z

⌦

(uh)2 + (uh

x

)2dx

=
1

2

X
i,j

u

i

u

j

Z

⌦

'

i

'

j

dx+
1

2

X
i,j

u

i

u

j

Z

⌦

'

i,x

'

j,x

dx

=
1

2
uT(A+ E)u

The integrals can be evaluated exactly and efficiently by considering elementwise which
basis functions are supported on the element before applying Gaussian quadrature to
obtain exact evaluations of the polynomial integrals. We define the matrix B1(u) by

B1(u)ji = −2

3

M−1X
k=0

u

k

Z

⌦

'

i

'

j,x

'

k

dx−
Z

⌦

'

i

'

j,x

dx− 1

3

M−1X
k=0

u

k

Z

⌦

'

i

'

j

'

k,x

dx.

An approximation to the gradient of H1 with respect to m is found by the AVF discrete
gradient

rH1
p(m

n

,mn+1) = (A+ E)−1rH1
p(u

n

,un+1) = (A+ E)−1

1Z

0

rH1
p(⇠u

n + (1− ⇠)un+1)d⇠

= (A+ E)−11

2
(A+ E)

�
un + un+1

�
=

1

2

�
un + un+1

�
.

Thus we have the required terms for forming the system (4) and applying the adaptive
discrete gradient method to it. Corresponding to (5), we get the scheme

(An+1 + E

n+1)
�
un+1 − û

�
=

⇣
ûT (An+1 + E

n+1) û− (un)T (An + E

n)un

⌘
(û+ un+1)

(û+ un+1)T (û+ un+1)

+
∆t

2
B

n+1
1

✓
û+ un+1

2

◆�
û+ un+1

�
.

Here we have chosen the skew-symmetric matrix B1 to be a function of û and un+1,
but could also have chosen e.g. B1(û), resulting in a decreased computational cost at
the expense of less precise results. During testing, the basis functions were chosen as
piecewise cubic polynomials.
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In the same manner we may obtain a scheme that preserves H2 [m]. In this case

H2
p(m) = H2[mh] =

1

2

Z

⌦

(uh)2 +
1

3
(uh)3dx

=
1

2

X
i,j

u

i

u

j

Z

⌦

'

i

'

j

dx+
1

6

X
i,j,k

u

i

u

j

u

k

Z

⌦

'

i

'

j

'

k

dx.

and

(B2)ji = −
Z

⌦

'

i

'

j,x

dx+

Z

⌦

'

i

'

j,xxx

dx.

Note that the skew-symmetric matrix B2 is independent of u.
Defining the tensor D by its elements

D

ijk

=

Z

⌦

'

i

'

j

'

k

dx,

we get, with the convention of summation over repeated indices, the AVF discrete gradient
with respect to u given by the elements

�rH2
p(u

n

,un+1)
�
i

=
1

2
A

ij

(un

j

+ u

n+1
j

) +
1

6
D

ijk

(un

j

(un

k

+
1

2
u

n+1
k

) + u

n+1
j

(
1

2
u

n

k

+ u

n+1
k

)).

and again the discrete gradient with respect to m by

rH2
p(m

n

,mn+1) = (A+ E)−1rH2
p(u

n

,un+1).

If we employ integral preserving transfer between the meshes, we get the scheme

un+1 − û = ∆t(A+ E)−1
B2(A+ E)−1rH2

p(û,u
n+1),

where we note that Sp,2 := (A + E)−1
B2(A + E)−1 is a skew-symmetric matrix. If non-

preserving transfer is used, we need a correction term, as in the H1 scheme above. The
calculation of such a term is straightforward, but we omit it here for reasons of brevity.

To approximate the third derivative in B2, we need basis functions of at least degree
three, and to guarantee skew-symmetry in B2, these basis functions need to be C

2 on
the element boundaries. This is not obtainable with regular nodal FEM basis functions,
so we have instead used third order B-spline basis functions as described in [19] during
testing.

5 NUMERICAL RESULTS

To demonstrate the performance of our methods, we have tested them on two one-
dimensional simple problems: A soliton solution, and the interaction of two waves. We
have tested our H1- and H2-preserving schemes on uniform and moving meshes, and
compared the results to those obtained using the explicit midpoint method. For the
transfer operation between meshes, we have used a piecewise cubic interpolation method
in the H1 preserving scheme, and exact transfer in the H2 preserving scheme.

8
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5.1 Mesh adaptivity

As noted in section 3, our methods can be coupled with any adaptive mesh strategy us-
ing the rezoning approach. For our numerical experiments, we have used a simple method
for r-adaptivity based on the equidistribution principle: Splitting ⌦ into M intervals, we
require that

xi+1Z

xi

!(x)dx =
1

M

LZ

−L

!(x)dx,

where the monitor function ! is a function measuring how densely grid points should lie,
based on the value of u. For a general discussion on the choice of an optimal monitor
function, see e.g. [20, 21]. For the problems we have studied, a generalized solution arc
length monitor function proved to yield good results. This is given by

!(x) =

s
1 + k

2

✓
@u

@x

(x)

◆2

.

For k = 1, this is the usual arc length monitor function, in which case the equidistribution
principle amounts to requiring that the arc length of u over each interval is equal. In
applications, we only have an approximation of u, and hence ! must be approximated
as well. We have applied a finite di↵erence approximation and obtained approximately
equidistributing grids using de Boor’s method as explained in [14, pp. 36-38].

5.2 Soliton solution

With u0(x) = 3(c− 1) sech2
⇣

1
2

q
1− 1

c

x

⌘
, the exact solution of (7)–(9) is

u(x, t) = 3(c− 1)sech2

 
1

2

r
1− 1

c

l(x, t)

!
,

with l(x, t) = min
j2Z |x− ct+ 2jL|. This is a soliton solution which travels with a con-

stant speed c in x-direction while maintaining its initial shape.
To evaluate the numerical solutions, we have compared them to the exact solution and

calculated errors in shape and phase. The phase error is evaluated as

E

phase
n

= |ct
n

− x

⇤|,
where x

⇤ = argmax
x

u

h

(x, t
n

), i.e. the location of the peak of the soliton in the numerical

solution. The shape error is given by

E

shape
n

=

����
����uh

(x, t
n

)− u

✓
x,

x

⇤

c

◆����
���� ,
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where the peak of the exact solution is translated to match the peak of the numerical
solution, and the di↵erence in the shapes of the solitons is calculated.

The results of the numerical tests can be seen in figures 1–3. Here, M denotes the
degrees of freedom used in the spatial approximation and ∆t the fixed time step size. DG1
and DG1MM denotes the H1

p preserving scheme with fixed, uniform grid and adaptive
grid, respectively; similary DG2 and DG2MM denotes the H2

p preserving scheme with
uniform and adaptive grids.

In Figure 1 we see the relative errors inH1
p andH2

p. The DG1 and DG1MM schemes are
compared to schemes using the same 3rd order nodal basis functions, but the trapezoidal
rule for time-stepping, denoted by TR and TRMM. Likewise, the DG2 and DG2MM
schemes are compared to the IM and IMMM schemes, using B-spline basis functions and
the implicit midpoint method for discretization in time. The error in H1

p is very small for
the DG1 and DG1MM schemes, as expected. Also the error in H2

p is very small for the
DG2 and DG2MM schemes. The order of the error is not machine precision, but is instead
dictated by the precision with which the nonlinear equations in each time step is solved.
We can also see that while the TR and IM schemes, with and without moving meshes,
have poor conservation properties, the moving mesh DG schemes seem to preserve quite
well even the integrals they are not designed to preserve.

In figures 2 and 3 we see the phase and shape errors, of our methods compared to
non-moving mesh methods and non-preserving methods, respectively. The advantage of
using moving meshes is clear, especially for the H2

p preserving schemes. The usefulness
on integral preservation is ambiguous in this case. It seems that what we gain in precision
in phase, we lose in precision in shape, and vice versa.

5.3 A small wave overtaken by a large one

A typical test problem for the BBM equation is the interaction between two solitary
waves. With an initial condition

u0(x) = 3(c
r

− 1) sech2
✓
1

2

r
1− 1

c

r

(x− x

r

)

◆
+ 3(c

s

− 1) sech2
✓
1

2

r
1− 1

c

s

(x− x

s

)

◆
,

one wave will eventually be overtaken by the other as long as c
r

6= c

s

, i.e. if one wave is
larger than the other. There is no available analytical solution for this problem. The two
waves are not solitons, as the amplitudes will change a bit after the waves have interacted
[22].

Solutions obtained by solving the problem with our two energy preserving schemes,
giving very similar results, are plotted in Figure 4. Also, to illustrate the mesh adaptivity,
we have included a plot of the mesh trajectories in Figure 6. Each line represents the
trajectory of one mesh point in time, and we can see that the mesh points cluster nicely
around the edges of the waves as they move.

To illustrate the performance of our methods, we have in Figure 5 compared solutions
obtained by using the H2

p-preserving moving mesh method with the solutions obtained

10
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Figure 1: The soliton problem. Relative error in the approximated Hamiltonians H1
p

(left) and H2
p (right) plotted as a function of time t 2 [0, 50]. c = 3, L = 200,∆t = 0.1,

M = 200.
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Figure 2: The soliton problem. Phase error (left) and shape error (right) as a function of
time. c = 3, L = 200,∆t = 0.1, M = 200.
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Figure 3: The soliton problem. Phase error (left) and shape error (right) as a function of
time. c = 3, L = 200,∆t = 0.1, M = 200.

by using a fourth order Runge–Kutta method on a static mesh, with the same, and quite
few, degrees of freedom. The DG2MM solution is visibly closer to the solutions in Figure
4. The non-preserving RK scheme does a worse job of preserving the amplitude and speed
of the waves compared to the DG2MM scheme, and we observe unwanted oscillations.

In Figure 7 we have plotted the Hamiltonian errors for this problem. Again we see
that the energy preserving schemes preserve both Hamiltonians better than the Runge–
Kutta scheme, but we do also observe that the DG1 scheme preserves H2

p better than the
DG1MM scheme, and vice versa for the DG2 and DG2MM schemes. Note also that an
increase in the errors can be observed when the two waves interact, but that this increase
is temporary.

6 CONCLUSIONS

In this paper, we have presented energy preserving schemes for a class of PDEs, first
on general fixed meshes, and then on adaptive meshes. These schemes are then applied
to the BBM equation, for which discrete schemes preserving two of the Hamiltonians of
the problem are explicitly given.

Numerical experiments are performed, using the energy preserving moving mesh schemes
on two di↵erent BBM problems: a soliton solution, and two waves interacting. Plots of
the phase and shape errors illustrate how, for the given parameters, the usage of moving
meshes gives improved accuracy, while the integral preservation gives comparable results
to existing methods, without yielding a categorical improvement. We will remark, how-
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Figure 6: Mesh point trajectories in time. Each line represents one mesh point.
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ever, that in many cases, the preservation of a quantity such as one of the Hamiltonians
in itself may be a desired property of a numerical scheme. For the two wave interaction
problem, we do not have an analytical solution to compare to, but plots of the solution
indicate that our schemes perform well compared to a Runge–Kutta scheme.

Although the numerical examples presented here are simple one-dimensional problems,
the adaptive discrete gradient methods should also be applicable for multi-dimensional
problems. This could be an interesting direction for further work, since the advantages of
adaptive meshes are typically more evident when increasing the number of dimensions.
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Abstract. Landslides of the debris flow type pose a serious natural hazard. These land-
slides are often triggered by hydro-meteorological processes during extreme precipitation
events. Debris flows usually form a dense flow composed of water and poorly graded soil
particles. The propagation of these landslides greatly influences the consequences they
have. The run-out of debris flows is usually simulated with depth-averaged models. These
are fast to simulate due to the integration over the flow height, which reduces the problem
from three to two dimensions. For the design of countermeasures resisting the pressure
from the flow, it can be advantageous to use more advanced 3D numerical methods, such
as computational fluid dynamics (CFD). The particle phase of debris flows has here been
considered as a granular flow, and implemented as a non-Newtonian viscoplastic rheology
in the open-source CFD code REEF3D. In the numerical model, the Reynolds-Averaged
Navier-Stokes (RANS) equations are discretized with the fifth-order accurate Weighted
Essentially Non-Oscillatory (WENO) scheme in space and with a third-order Runge-Kutta
based fractional step scheme in time. The level set method used for representing the free
surface handles the complex air-granular flow interface topology. The pressure gradient
is modelled with Chorin’s projection method for incompressible flow. The granular flow
rheology includes a Coulomb frictional yield stress, increasing with the normal stress, and
a viscous term that is non-linear dependent on the shear rate. The implementation has
been validated using results from laboratory dam break experiments with dry sands.

1 INTRODUCTION

Debris flows and debris avalanches are landslide phenomena that can potentially cause
large damages and pose a serious natural hazard [1]. A debris flow is a mix of water
and poorly graded soil particles, forming a dense flow [2]. This type of landslides is often
triggered by hydro-meteorological processes during extreme precipitation events, see Fig.

1
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Figure 1: Debris flow in Hunnedalen, Norway, June 2016. [Photo: NPRA]

1. The expected increase in precipitation due to climate changes may lead to higher
frequency of Norwegian debris flow events in the future. This provides the motivation for
studying debris flows in the Norwegian SFI project KLIMA2050 [3], which this work is a
part of.

The debris flow propagation determines a large portion of the consequences and the
risk associated with the landslides. Run-out parameters include the maximum distance
reached, flow velocities, thickness and distribution of deposits, as well as the interaction
behavior with obstacles in the flow path [4, 5, 6]. To predict the run-out distance and to
design countermeasures for reducing the consequences, a solid understanding and descrip-
tion of the debris flow mechanism is necessary. In engineering practice, the propagation
of debris flows is usually simulated with depth-averaged models considering the debris
flow as a single-phase material. These models are fast to run simulations with due to the
integration over the flow height, which reduces the problem from three to two dimensions.
Although neglecting variation in the velocity profile over the height reduces the accuracy
of the models, they can produce sufficiently good run-out distance results. However, the
complete velocity profile may be more important for interactions between the flow and
structures.

For the design of countermeasures resisting the pressure from the flow, it may be
necessary to use more advanced three dimensional numerical methods. With the recent
increases in computer power, it is now feasible to consider methods such as Computa-
tional Fluid Dynamics (CFD). The debris flow material can also here be represented as
a single-phase material, although a multiphase approach is more appropriate [7]. For the

2
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interstitial fluid phase, consisting of water with fine particles in suspension, a viscoplastic
non-Newtonian rheology may be sufficient [8]. The particle phase of debris flows can be
assumed to have a non-Newtonian rheology appropriate for granular flows. In this pa-
per, the viscoplastic Herschel-Bulkley rheology is modified to include Coulomb friction
for granular flow.

2 NUMERICAL MODEL

2.1 Navier-Stokes equations

The open-source CFD code REEF3D [9] is used in this work. In REEF3D, the three-
dimensional Navier-Stokes equations, which govern the behavior of viscous and incom-
pressible fluids, are solved numerically with the finite difference method. For the conser-
vation of mass and momentum, the code considers the continuity and Reynolds Averaged
Navier-Stokes (RANS) equations:

∂ui

∂xi

= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

[

(ν + νt)

(

∂ui

∂xj

+
∂uj

∂xi

)]

+ gi (2)

where u is the velocity, ρ is the fluid density, p is the pressure, ν is the kinematic viscosity,
νt is the eddy viscosity and g is the gravitational acceleration. On the left hand side of
the RANS equations are the transient and convective velocity terms. On the right hand
side are the surface and volume forces, the viscous and pressure terms, and the gravity,
respectively. The Reynold stress term capturing the turbulence is modelled separately in
REEF3D. However, in this paper laminar flow is considered and the eddy viscosity is set
to zero.

The RANS equations are discretized in the numerical model with the fifth-order ac-
curate Weighted Essentially Non-Oscillatory (WENO) scheme in space [10] and with a
third-order Runge-Kutta based fractional step scheme in time [11].

2.2 Pressure

The pressure gradient is modelled with Chorin’s projection method [12] for incom-
pressible flow. A staggered grid is used to avoid decoupling of velocity and pressure. The
momentum equation with the pressure gradient removed is solved for an intermediate ve-
locity field u∗

i . The pressure for the new time step pn+1 is determined and used to correct
the velocity field. In order to create divergence free flow field, the pressure needs to fulfil
the following equation:

∂

∂xi
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1

ρ (φn)
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∂xi

)

=
1
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∂u∗
i

∂xi

(3)
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2.3 Level set method

The level set method proposed by Osher and Sethian [13] is employed for locating the
free surface. Air is modelled as a second fluid in this approach. This approach can handle
the complex air-debris flow interface topology. To define the interface Γ between the two
fluids, the following continuous signed distance function is used:

φ(�x, t)











> 0 if �x ∈ phase 1

= 0 if �x ∈ Γ

< 0 if �x ∈ phase 2

(4)

The level set function φ(�x, t) is coupled to the velocity field uj with a convection
equation, and the spatial discretization is determined with the Hamilton-Jacobi WENO
scheme version [14]:

∂φ

∂t
+ uj

∂φ

∂xj

= 0 (5)

3 NON-NEWTONIAN RHEOLOGY

3.1 Herschel-Bulkley rheology

The non-Newtonian Herschel-Bulkley rheology has been implemented in the REEF3D
CFD code [15], for the purpose of modelling the interstitial fluid phase of debris flows.
The interstitial fluid consists of water with fine particles in suspension, for which the
viscoplastic Herschel-Bulkley rheology can be considered appropriate [16, 17, 18].

The Herschel-Bulkley rheology has a non-linear stress relationship with the shear rate
γ̇ and features a yield stress τy. In order to have shear deformation of the material,
the shear stress acting on it must exceed this yield stress. For shear stresses lower than
the yield stress, the shear rate is zero. The Herschel-Bulkley rheology is defined by the
following shear stress and shear rate relation:

τ(γ̇) = τy +Kγ̇n (6)

and

γ̇ =

{

0 if τ < τy
(

1
K
(τ − τy)

)
1
n if τ ≥ τy

(7)

where τ is the shear stress, γ̇ is the shear rate, τy is the yield stress, K is the consistency
parameter, n is the Herschel-Bulkley exponent. If n > 1 shear-thickening behavior is
defined, and n < 1 defines shear-thinning behavior. If n = 1 it becomes the Bingham
rheology, and if additionally τy = 0, it becomes the Newtonian rheology.

The Herschel-Bulkley rheology is implemented in the REEF3D code as a generalized
Newtonian fluid, with a non-linear shear rate dependent viscosity. The kinematic viscosity

4



141

Petter Fornes, Hans Bihs and Steinar Nordal

ν(γ̇) is determined as the non-linear shear stress τ(γ̇) in Eq. 6 divided by the shear rate
γ̇ (and the density ρ). To prevent numerical issues related to the kinematic viscosity
approaching infinity as the shear rate goes to zero, a maximum kinematic viscosity ν0 is
used for low shear rates:

ν(γ̇) = min

{

ν0
(

τy
γ̇
+Kγ̇n−1

)

1
ρ

(8)

where ν is the kinematic viscosity included in Eq. 2, ν0 is the maximum kinematic
viscosity and ρ is the density. The kinematic viscosity ν is determined locally for each
cell in every time step since it varies spatially and temporally, and it is considered as an
isotropic property. The scalar shear rate γ̇ used to calculate the viscosity is determined
as the magnitude of the three-dimensional shear rate tensor D:

γ̇ = ‖D‖ =

√

√

√

√

1

2

3
∑

i=1

3
∑

j=1

γ̇ij γ̇ij (9)

The implementation of the viscosity (Eq. 8) makes the rheology bi-viscous. It results
in a material that can not come to rest at a sloped angle when the flow finally slows down.
Even though the viscosity is very high for low shear rates, the material will continue to
flow slowly until leveling off horizontally. This is unlike depositions of landslides composed
by materials with yield strength, which can support an inclined slope surface. Therefore,
the flowing material will be considered as having stopped when the magnitude of velocity
is several orders of magnitude lower than while propagating.

An alternative implementation to avoid infinite viscosity could be to employ a regular-
ization parameter [19]. If so, an exponential function will be included in the yield stress
term in Eq. 6, reducing it to zero for very small shear rates. This will make the shear rate
dependendent viscosity function continuous, which may improve the stability. However,
it will not prevent the slow deformation after depostion, and has not been considered
necessary.

3.2 Granular flow rheology

Granular materials have a frictional resistance to shearing that increases with increased
contact pressure between the individual particles, normally given by the Mohr-Coulomb
failure criterion (Eq. 10). When granular soils are yielding, the shear stress is proportional
to the effective normal stresses, which is the contact pressure between the soil grains. The
internal frictional angle ϕ thus provides a frictional coefficient µ = tanϕ which determines
how much shear stress the material can sustain without deforming for a given pressure.
This determines for example how steep the slope angle of a pile of dry sand can be
naturally.

τy = σ′
n · tanϕ+ c (10)
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where τy is the yield shear strength, σ′
n is the effective normal stress, ϕ is the friction

angle and c is the cohesion (low for dry granular soils).
For Eularian description of dry granular flows (or the particle phase of debris flows),

modelling the granular material as a single-phase continuum, including Coulomb friction
in a visco-plastic rheology can be considered. Johnson [20] proposed a Coulomb-viscous
rheology for debris flows, adding the Mohr-Coulomb failure criterion (Eq. 10) as the
yield strength to the Bingham rheology (Eq. 6, n = 1). Savage and Hutter [21] included
Coulomb criterion in a depth-averaged model for dry granular flows. In the µ(I) rheology
for dense granular flow by Jop et al. [22], the frictional coefficient µ is a non-linear function
of the intertial number I, which is a number that depends on the shear rate and pressure.
Moriguchi et al. [23] used a Coulomb-viscous rheology (Bingham with Coulomb friction
for the yield strength) to back-calculate laboratory tests of dry sand dam breaks in a
slope. A maximum value for the generalized viscosity was used, like in Eq. 8. Domnik
et al. [24] proposed a similar Coulomb-viscoplastic model for a granular material, with a
regularizition parameter included as in [25] instead of a biviscous implementation.

Here, the Herschel-Bulkley rheology (Eq. 6) is modified by including the Coulomb
friction relation in Eq. 10 as the yield stress. This makes it similar to the Coulomb-
viscous rheology in Moriguchi et al. [23], but also including Herschel-Bulkley exponent n
makes it possible for a non-linear dependency on the shear rate. In this paper, the flowing
material is assumed to be a single-phase dry sand with constant density. The effective
normal stress σ′

n in the Mohr-Coulomb criterion can then be equated to the fluid pressure
p (which is determined in Eq. 3 with the dry granular density). Thus, the following
Coulomb Herschel-Bulkley rheology is considered:

τ(γ̇, p) = p tanϕ+ c+Kγ̇n (11)

where τ is the shear stress, γ̇ is the shear rate, p is the fluid pressure, ϕ is the dynamic
friction angle of the granular material, c is cohesion, K is the consistency parameter and
n is the Herschel-Bulkley exponent. This rheology is implemented in the REEF3D code
like this:

ν(γ̇, p) = min

{

ν0
(

max
[

0, p tanϕ+c
γ̇

]

+Kγ̇n−1
)

1
ρ

(12)

where ν, p and γ̇ are variables, determined locally in each time step, while ν0, ϕ, c, ρ, K
and n are material constants, given as input parameters at the start of the calculation. A
max-criterion is included to ensure that the expression for the yield stress is never lower
than zero, which could make the viscosity negative. That is unphysical and would also
cause severe convergence problems.

For a dry sand with only compressible air in the pore spaces, the assumption σ′
n = p

is considered acceptable. For a debris flow however, the presence of interstitial pore
water fluid, may complicate the situation. If considering both the water fluid phase and
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the granular particle phase, an Eularian multiphase (mixture theory) approach might
be suitable [26, 27]. It has been observed that interstitial pore water fluid pressure can
build up during deformation, which reduces the contact stress between the particles and
consequently reduces the frictional resistance of the flowing mass [28]. When there is
water present, the effective normal stress can be determined as the total normal stress
(pressure) minus the interstitial pore fluid pressure. The build up of so-called excess pore
pressure should be considered in the rheology.

4 EXPERIMENTS

To validate the REEF3D Coulomb frictional yield stress implementation, a laboratory
dam break test with dry sand by Moriguchi et al. [23] is considered here. 50kg of the
material was placed in a box 50x30x30cm. It was released and driven only by gravity
down a 180cm long, 30cm wide flume, with slope angles θ = 45, 50, 55, 60, 65◦. At the end
of the slope, a plate with a pressure sensor measured the impact force.

Figure 2: Model experiment dimensions

Simulation of this experiment has been done with a 2D REEF3D model (1 cell out of
the plane), see Fig. 2. The calculation domain had dimensions 300x100cm and cell length
was 0.25cm. This resulted in a mesh with 480000 cells. A 30cm tall, 5cm wide obstacle was
placed 180cm from the 50x30cm starting sand body, representing the pressure plate. The
rest of the domain was filled with air, with density 1.205kg/m3 and kinematic viscosity
1.41 · 10−5m2/s. The experiment simulated here was done with a slope angle θ of 45◦.
In the numerical model, this was modelled by giving the gravitational acceleration as
gx = g · sin θ and gz = g · cos θ.

The material properties in the numerical simulation are presenteted in Table 1. These
base case values were based on the values used by Moriguchi et al. [23]. A parametric
study was done to check the senstivity of the material properties included in Coulomb
Herschel-Bulkley rheology; friction angle ϕ, cohesion c, consistency parameter K and
the Herschel-Bulkley exponent n. The parameters were varied individually, values are
presented in Table 2. One case was added where the friction angle was set to zero, which

7
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means that the yield strength is equal to the cohesion. This makes it essentially the
Herschel-Bulkley or Bingham (n = 1) rheology, without the Coulomb friction.

Table 1: Base case material properties

Material property Unit Base case

Density ρ [kg/m3] 1379.0
Maximum kinematic viscosity ν0 [m2/s] 1000000.0
Friction angle ϕ [◦] 30.0
Cohesion c [Pa] 1.0∗

Consistency parameter K [Pa · sn] 1.0
Herschel-Bulkley exponent n [−] 1.0

∗Small value assumed to avoid numerical issues

Table 2: Parametric study of material properties, parameters sets (PS)

Parameter Unit PS-BC PS-ϕ PS-c PS-K PS-n PS-τy

ϕ [◦] 30.0 45.0 30.0 30.0 30.0 0.0
c [Pa] 1.0 1.0 1000.0 1.0 1.0 1000.0
K [Pa · sn] 1.0 1.0 1.0 10.0 1.0 1.0
n [−] 1.0 1.0 1.0 1.0 0.35 1.0

5 RESULTS

Figure 3: Base case, free surface elevation with time t [s]

8



145

Petter Fornes, Hans Bihs and Steinar Nordal

Figure 4: Base case, kinematic viscosity ν at time t = 0.0, 0.4, 0.8, 1.2, 1.6s
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Figure 5: Base case, pressure p at time t = 0.0, 0.4, 0.8, 1.2, 1.6s

The results from the numerical simulations of the dam break experiments are presented
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here. Fig. 3 shows the evolution of the free surface with time for the base case material
properties given in Table 1. After around 0.8s the sand starts to flow over the wall, which
was not included in the physical experiment. Compared to the experimental results in
[23], the main flow behaviors observed in the laboratory was captured in the numerical
simulation.

Fig. 4 shows contours of the kinematic viscosity ν, which depends on the local shear
rate γ̇ and the local cell pressure p. The pressure is shown in Fig. 5. Shear bands can
be observed where the viscosity is low due to the locally high shear rates. Because of the
coupling between pressure and velocity, this affects the pressure contours.

The pressure acting on the wall obstructing the flow is integrated, and the total hor-
izontal forces with time is presented in Fig. 6. The figure also shows the results from
the sensitivity study of the different material properties. For both cases with increased
cohesion, there are large oscillations after the impact. There seems to be less spikes in
the force at impact and more gradual increase when either friction angle or consistency
parameter is increased. The final forces reached in all the cases have similar values as in

Figure 6: Horizontal forces acting on wall with time (spikes cropped at 500 N)

Figure 7: Parametric study, free surface elevation at time t = 0.8s
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the original experiment, almost 200N . There, the same extent of oscillations and spikes
were not observed, however.

The effect of the individual material properties is also shown in Fig. 7, plotting the free
surfaces at time t = 0.8s. There is little effect observed of varying the Herschel-Bulkley
exponent n from 1.0 to 0.35. The latter value is appropriate for fine grain suspensions
[8]. Increasing consistency parameter K increases the viscous shear stress, and increasing
the friction angle ϕ increases the contribution from the Coulomb friction to the yield
strength. For both cases, the flow is slowed slightly down, and impacts the wall later.
Increasing the cohesion c also increases yield strength, but does not affect the results at
0.8s much. Only using increased c, with zero friction angle, makes the flow quite more
mobile. Back-calculation has not been done to obtain a parameter set with better match
to the experimental results. To improve the match, a higher friction angle and consistency
parameter should be considered.

6 CONCLUSIONS

- A non-Newtonian granular flow rheology is implemented in the REEF3D open-
source CFD code. Coulomb frictional yield stress is included in the viscoplastic
Herschel-Bulkley rheology. It has been validated for laboratory dam break experi-
ments on dry granular sand.

- The yield stress is modelled as a very high viscosity at low shear rates with the
generalized Newtonian implementation. This means that even if a flowing material
slows down and is practically depositioned, the deformation will never stop until
resting with a horizontally levelled surface. This can be considered sufficent as long
as the velocity becomes very small. To allow for deposition with a sloped surface the
yield stress should be accounted for more realistically, potentially with a coupled
elastoplastic and viscoplastic model.

- The implemented rheology can be appropriate for the particle phase of debris flows.
However, full debris flow behavior, including the collisions between the larger sized
grains, the buildup of excess pore pressure, temporal and spatial rheological changes,
cannot realistically be captured with a single-phase continuum material. An Eular-
ian multiphase CFD model may be suitable for this purpose.
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Abstract. In this present study, four multiphase flow cases were simulated in an annulus
pipe configuration using the interFoam solver in OpenFOAM. Three of the cases were
conducted using a k− ω RANS model while the remaining simulation was executed with
a one equation LES formulation. The annulus consists of two concentric cylinders where
the outer diameter is 0.1 m and the inner diameter is 0.05 m. Pipe geometries of lengths
between 2 and 10 m were meshed and applied with periodic boundary conditions across
the inlet and outlet. A pressure drop was administered throughout the domain of each
case with a magnitude between 110 Pa/m and 1157 Pa/m. Additionally the mesh used in
the RANS simulation model was constructed with a symmetric boundary condition along
xy-plane to reduce the size of the computational mesh. The internal domain was initialized
with liquid volume fractions and superficial velocities based on experimental data provided
by IFE. The cases yielded wavy flow with indications of a possible transition to slug flow in
cases 3 and 4. All cases displayed waves of varying amplitude and frequency. Comparing
to experiments conducted at IFE, the high frequency low amplitude flow regime in case
1 matched well in terms of the velocity field. Cases 3 and 4 with larger waves had
prevalent discrepancies between the applied pressure drop and expected phase velocity
when contrasted to the experimental Results

1 INTRODUCTION

Multiphase pipe flow is most frequently associated with the oil, gas and power indus-
tries. That said, it is applicable to a vast range of other fields including aerospace and

1

Multiphase flow simulation in an annulus configuration
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medicine. Generally speaking multiphase flow problems consist of two or more separate
fluids present in a system. These fluids behave according to their state, physical condi-
tions and properties of the system such as pressure, surface roughness and fluid velocities.
When considering an annulus configuration the hydraulic diameter also plays a vital part.
The coupling between the phase interaction and pipe geometry further contribute to
the complexity of the problem. The accurate prediction of flow pattern, liquid holdup,
phase fraction at arrival and pipeline pressure distribution are of immediate concern to
oil companies[1, 6]. These concerns consist of several aspects, including pipeline design
and maintenance, flow efficiency, safety and preservation of the environment.

There are several empirical models such as the method developed by Beggs et al.[2] and
mechanistic models that can be used to predict pipeline behavior. Mechanistic models
include the original pioneering work of Taitel et al. [10] which in turn has lead to more
recent efforts, one of which is the methods devised by Petalas [8]. Mechanistic models
are more robust compared to the empirical counterpart as they are based on fundamental
physics. However they too employ said empirical correlations as well as other estimates
which contributes to an underlying uncertainty built into the results. Even so, a good
mechanistic model is often reasonable enough when employed correctly that it can be
used together with well data or experiments to validate a CFD model.

Empirical models are easy to use and readily available from several sources. Although
easy to implement they are still only as good as the data from which they are derived and
as such should only ever be used for similar cases. Even in cases that are applicable the
simplification of the physics involved contribute to a significant uncertainty [11].

Most ready-made models, including empirical, mechanistic and commercial flow simu-
lators are set up to handle multiphase pipe flow in a conventional configuration. Despite
the direct relationship with the drilling and well control industries, very little work has
been done to categorize flow within an annulus. In industry annulus flow occurs inten-
tionally in the gas-filled compartment of a gas-lifted well [6], and unintentionally in the
drilling industry during a blow-out. Considering how important annulus multiphase flow
is in the industry, it comes as a surprise that there is a serious lack of dedicated research
to the topic. Perhaps the lack of concern can be attributed to the fact that prior to the
Deepwater Horizon Oil spill in 2010 no incident had occurred which warranted extensive
research.

After the 2010 oil spill regular multiphase flow models were used to estimate the oil spill
based on the frequency of slugs at the site. However questions should be raised about the
approach of applying these methods to an annulus. Considering that the encased cylinder
drastically alters the behavior of the flow within, it affects the hydraulic diameter, the
friction factor, the interfacial area between the fluids and so on. At the time of the
Deepwater horizon incident there were but a few published papers which dealt with any
form of multiphase flow in an annulus such as the Caetano[3] thesis in 1985 and Ekberg’s[4]

paper in 1999, this lack of information somewhat explains why the standard models were
used, but not why it was accepted.
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Taking into account the lack of experimental studies conducted using an annulus, it
was as expected that even less research has been conducted using CFD. It is, after all,
very difficult to validate a CFD model without any experimental or field data to compare
with.

In this paper an initial attempt at performing CFD simulation using the OpenFOAM
solver interFoam on a multiphase annulus problem has been carried out. The simulations
will eventually be compared with extensive experiments performed at IFE Kjeller where
an ongoing campaign is being conducted and scheduled to run through 2018. The data
is available as part of this research project and by utilizing simulations together with the
experimental work it nurtures an excellent possibility of expanding the current knowledge
base of multiphase flow in the annulus configuration.The two turbulence models used
are the Smagorinsky sub grid model for the LES simulation and the k-ω RANS model.
The k-ω model has previously been implemented in RANS simulations by Shuard[9] while
Peters[7] successfully utilized the Smagorinsky model for his LES simulations in his thesis.
As this project is in its infancy these models were chosen as a suitable starting point.

1.1 interFoam Solver

The solver used in this paper was the interFoam solver. This solution method accepts a
variety of LES and RANS turbulence models, and can easily be manipulated for different
setups. What is important to mention is that the ”Volume of Fluid” (VOF) method,
which interFoam utilizes, solves the continuity and momentum equations as though the
fluids were one. This differs from other possible solvers such as multiphaseEulerFoam
which calculates the momentum equations for each phase separately. The VOF method
models the flow by solving the momentum equation for the two fluids as if they were a
homogeneous mixture, thus density and velocity are averaged and the averaged continuity
equation becomes

∇ · ū = 0, (1)

where ū is the averaged velocity of the two phases such that

ū = αgug + αlul. (2)

The subscripts l and g, signify liquid and gas, while α is the phase fraction. Applying them
to the momentum equation, while using a similar approach to Eq. 2 for other mixture
properties such as density and viscosity yields the momentum equation as

Dū

Dt
= −1

ρ̄
∇p+ ν̄eff∇ · (∇ū+ (∇ū)T ) + g +

Fs

ρ̄
. (3)

Fs is the surface tension force, g gravity, while the overbar quantities denote averages of
the two phase values.

A governing equation is solved for the phase fraction α
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Dαl

Dt
+∇ · (ucαlαg) = 0. (4)

This equation employs interface sharpening in the region where both phases are present
by adding an artificial interface velocity uc, this interface velocity serves only to create
a sharper interface between the phases. The magnitude of the velocity depends on the
interface sharpening coefficient (Cα), which in case of this work was set between 0.7 and
1. For interface sharpening coefficients of magnitude equal to or less than 1 the interface
compression velocity becomes :

uc = Cα|u| ∇αl

|∇αl| . (5)

2 GEOMETRY, MESH AND BOUNDARY CONDITIONS

The Geometry of the concentric annulus pipe used in these simulations was created in
Gmsh. The outer diameter of the pipe is 0.1 m while the inner diameter is 0.05 m. The
pipes used are between 2 and 10 m long. While the 10 m pipe consist of approximately
1.5 million cells, the 2 m pipe has 1.55 million cells. The cells are uniformly distributed
in the streamwise and circumferential directions while the cells between the two cylinder
walls are refined in the near wall regions as seen in Fig.1.

By carefully describing the separation of the grid elements along transfinite lines it was
possible to create the entire mesh using only hexahedral elements as seen in Fig. 1. This is
advantageous for the VOF method which the interFoam solver uses. Generating the mesh
along transfinite lines with hexahedral elements creates uniform cells with little if any
skewness. The direct description of the elements makes the Courant Number estimation
for simulation purposes straight forward while also simplifying the mapping of the periodic
conditions. The mapping is made trivial because the inlet and outlet patches are an exact
geometric match.

The model geometry for the RANS simulation cases were further simplified by applying
a symmetric boundary condition across the xy-plane. When there is insignificant amounts
of crossflow and the RANS turbulence model is used, Shuard[9] determined that the final
results from the full and half mesh were the same. Thus the mesh density can be vastly
improved while maintaining or reducing the required simulation time. From previous
iterations of the simulations presented here it was the observed that the RANS simulations
are indeed mirrored about the centerline.
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Figure 1: 2 m pipe with 1.55 million cells

After creating the mesh it was converted to the OpenFOAM format. Within the case
files of the OpenFOAM framework the boundary conditions and the dynamic solution
method was specified.

The initial conditions were chosen by referencing experimental data from IFE, the flow
map for multiphase pipe flow by Lee et al.[5] and approximating the superficial phase
velocities for the liquid and gas phases in the annulus configuration. The phase velocities,
pressure drop, liquid volume fraction and Courant number restrictions for each case are
summarized in Table 1. Each case was selected because they are near or at data points
provided by IFE and can be compared qualitatively in regards to flow regime and final
velocities.

Table 1: Initial conditions

CASE ug (m/s) ul (m/s) αl(%) ∆P (Pa/m) CFLalpha CFL

1 3.24 0.4 22.5 110 0.30 0.40
2 3.23 1.05 38.0 155 0.25 0.40
3 3.24 1.5 43.0 340 0.30 0.40
4 3.0 1.2 38.0 1157 0.30 0.40

In combination with the initial state of the system typical physical properties for oil
and gas were chosen to resemble those used in experiments by Nossen et.al[6]. These are
summarized in Table 2.
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Table 2: Physical properties

Phase viscosity (m2/s) density (kg/m3) σ

Oil 2.0·10−6 800.0 0.0285
Gas 7.56·10−7 24.0 0.0285

As with many computational fluid dynamic problems there are several possible sets
of valid boundary conditions or solution methods in OpenFOAM. For this array of sim-
ulations periodic inlet and outlet conditions have been used together with a prescribed
pressure drop. The standard boundary conditions are summarized in Table 3. Note that,
depending on the type of simulation, some of these parameters may not be used. For
example, an LES simulation has no need for the omega values and are thus omitted.

Table 3: Boundary conditions

parameter inlet outlet walls
alpha Mapped inletOutlet zeroGradient
U Mapped pressureinletOutletVelocity noSlip
k Mapped inletOutlet kqRWallFunction
ω Mapped inletOutlet omegaWallFunction

prgh totalPressure totalPressure fixedFluxPressure
νT calculated calculated nutkWallFunction

There are several ways of estimating k and ω, for this work a method based on the
turbulent intensity and hydraulic diameter was used. The turbulent intensity can be
determined by

I = 0.16Re
− 1

8
dh

, (6)

where the reynolds number based on the hydraulic diameter is

Redh =
ū · dh
ν̄

. (7)

The aforementioned averaging procedure based on the phase fraction as seen in Eq. 2
was used to solve for the velocity and viscosity components, while the hydraulic diameter
of a concentric pipe is defined as

dh = douter − dinner. (8)

Using Eq. 6-8 the turbulent kinetic energy is solved for by
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k =
3

2
(ūI)2, (9)

after which one can use k to solve for the specific dissipation ω

ω =
C

− 1
4

µ k
1
2

l
. (10)

Here Cµ = 0.09, and l is the turbulent length scale. For the sake of consistency the
turbulent length has been determined as a function of the hydraulic diameter and is
solved for as l = 0.007dh.

3 Results

3.1 Case 1 RANS simulation

Case 1 was carried out both as a large eddy simulation (LES) and as a k-ω RANS.
Several different meshes was used to study the effect of the mesh density on the flow
pattern. The two turbulence models resulted in similar flow patterns and therefore only
the RANS model will be discussed. An LES simulation will be presented in Case 2. Case
1, which utilized an initial gas velocity (ug) of 3.24 m/s and liquid velocity (ul) of 0.87
m/s was run with the interior domain consisting of 77 % gas and 23 % oil at their relative
velocities. The interface Courant Number was restricted to 0.3 while the cells with purely
one phase in them were restricted to 0.5. The Courant number was used to limit the time
step, with the largest allowed time step being 0.005 s. Using these initial conditions and
a pressure drop of 110 Pa/m the smooth laminar flow at startup develops into frequent
low amplitude waves.

3.1.1 10 m pipe with coarse mesh

Case 1 was first run in a 10 m pipe using a mesh of 672,000 cells using periodic boundary
conditions between inlet and outlet as well as symmetry conditions across the centerline
(y-axis) while using an interface compression of 1. The mesh information is reiterated in
Table 4.

Table 4: Mesh and pipe Information

Cell dir. Length (m) cell size (m) #.faces

Streamwise 10.0 6.67·110−3 1500
Outer Dia. 0.1 5.24·110−3 30
Inner Dia 0.05 2.62·110−3 30
Annulus eccentricity=0 6.72·110−4 to 2.1·110−3 19
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The cells in the streamwise direction are spaced 6.67 mm apart evenly throughout the
domain. The cells closest to the walls are 0.67 mm thick while the interior region cells
are 2.1 mm thick, the near wall region uses a linear progression to merge from the near
wall interior region where the cell thickness is constant.

t = 0.0 s t = 5.0 s

t = 10.0 s t = 15.0 s

t = 20.0 s t = 25.0 s

Figure 2: Snapshots of phase field with 5 s time steps.

In previous iterations of these flow simulations a startup slug was formed due to poor
initial conditions. In the 5 s timestep image if you carefully inspect the central region,
there is a small visible buildup of liquid. Because the initial conditions are close to the final
result this liquid accumulation does not form the aforementioned slug and significantly
reduces the required simulation time. The wave frequency is approximately 4 Hz which
resembles that observed during the experiments at IFE. Concerning the wave amplitude
it appears that the experimental wave formations have a noticeably larger amplitude than
the simulated case. A typical set of waves seen in experiment for this case is shown in
Fig.3.

Figure 3: IFE experiment [6]

8
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Velocity Field Phase Field

Figure 4: Velocity field and phase fraction distribution at x=5.0 m t=40 s

As seen in Fig.4 the fully developed mean velocity for the gas phase is around 3.0 m/s
while the liquid phase is very near the original 0.87 m/s used to initialize the problem.
These values match within 10 % of the original magnitudes and indicate that the pressure
drop from the experimental results is applicable to this flow regime for pressure driven
flow simulations.

3.1.2 3 m pipe with 840 k cells

The second mesh studied in case 1 is significantly refined when compared to the previous
iteration and contains 840 k cells distributed along the 3 m pipe. Similarly to the former
mesh the pipe is split along the centerline and applied with symmetric boundary conditions
to mirror the behavior across the yx-plane.

Table 5: Mesh and pipe Information

Cell dir. Length (m) cell size (m) #.faces

Streamwise 3.0 3.33·10−3 900
Outer Dia. 0.1 5.1·10−3 32
Inner Dia 0.05 2.55·10−3 32
Annulus eccentricity=0 5.37·10−4 to 1.0·10−3 32

The cells along the x-axis (streamwise) of the pipe are a constant 3.33 mm long, while
their thickness varies from 0.537 mm close to the wall to 1.0 mm in the central interior
region. Along the outer diameter the cells stretch 5.1 mm while along the inner diameter

9
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they are half of that. Compared to the original mesh most of the refinement occurs in
the streamwise direction where the number of faces per meter was doubled and in the
annulus where the number of faces was increased by 68 %.

t = 0.0 s t = 0.7 s

t = 1.4 s t = 2.1 s

t = 2.8 s t = 3.5 s

Figure 5: Snapshots of phase field with 0.7 s time steps

In comparison to the coarse mesh flow regime shown in Fig. 2, the refined pipe flow acts
consistent with the coarse mesh behavior. By 2.8 and 3.5 s there are visible oscillations of
the surface, these oscillations were seen as a precursor to the formation of larger waves in
the coarse mesh where they first occurred at around 10 s. The coarse mesh is a significantly
longer pipe which may have an impact on the initial development of the flow when using
periodic boundary conditions since the laminar smooth section will stretch further from
startup and could explain why oscillations are seen earlier during this sub case.

Velocity Field Phase Field

Figure 6: Velocity field and phase fraction distribution at x=1.5 m t=3.5 s

10
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When comparing Fig.6 to Fig.4 it is important to remember that the flow in Fig. 4 is
already fully developed wave flow. Fig.6 shows a flow pattern which is still developing,
although if the two meshes were to be compared at similar stages the relationship between
the two velocity fields remain the same. In the fine mesh both phases are slowed down
11 % when compared to the coarse mesh. The only major difference between the two
simulations is that the pipe is shorter with a significantly refined mesh. Further simulation
time is required to determine if this decreased velocity experienced will alter the resultant
flow regime.

3.2 Case 2 - 2 m Pipe with 1550 k cells

The second case was carried out as a one equation LES simulation, using the Smagorin-
sky sub grid model. The pipe which is 2 m long and fully concentric consists of 1.55 million
cells. The interior domain was initially filled with 38% liquid and 62% gas. At start up
the superficial liquid velocity was 0.4 m/s, while the gas phase was travelling at a super-
ficial velocity of 2.0 m/s. A pressure drop of 310 Pa was imposed between the inlet and
the outlet of the pipe. As with the remainder of the simulations periodic conditions were
used to map the phase distribution and velocity field from the outlet back to the inlet
effectively creating an infinite pipe.

Table 6: Mesh and pipe Information

Cell dir. Length (m) cell size (m) #.faces

Streamwise 2.0 3.63·10−3 550
Outer Dia. 0.1 3.98·10−3 80
Inner Dia 0.05 1.99·10−3 80
Annulus eccentricity=0 3.79·10−4 to 8.82·10−4 38

Although further work is needed to determine if the LES simulation solution is con-
verged with respect to mesh size, the mesh described in Fig.6 is the finest used in any of
the cases presented in this paper. In the streamwise direction the cells are placed 3.63
mm apart, along the inner diameter the cells are 1.99 mm apart while along the outer
diameter they are exactly twice as long. Within the annulus the cells thickness increase
by linear progression from 0.379 mm nearest either wall to 0.882 mm in the central region
where the width of each cell is held constant.

11
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t = 0.0 s t = 0.9 s

t = 1.8 s t = 2.7 s

t = 3.6 s t = 4.5 s

Figure 7: Snapshots of phase field with 0.9 s time steps

Within the 2m domain of this pipe the flow quickly transitions from smooth stratified
flow to wavy flow with distinct waves being visible by 2.7 s. There appears to be some
mist like structures throughout the domain especially noticeable at the 3.6 s mark. The
turbulent eddies that form in the LES simulation lift and carry these liquid droplets
through the domain. As seen in the 4.5 s and 2.7 s image there is less of the mist present,
with time it will be possible to determine whether these structures persist throughout the
simulation or if it is a passing occurrence related to initialization.

Velocity Field Phase Field

Figure 8: Velocity field and phase fraction distribution x = 1.5 m and t = 4.5 s

The velocity field distribution and local holdup profile presented in Fig.8 indicate that
superficial gas and liquid velocities have deviated in regards to their initial values. At the
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given location the liquid holdup is 27%, which yields superficial gas and liquid velocities of
2.36 and 0.29 m/s respectively. When compared to experimental data these flow velocities
should generate wavy flow, Fig.3.2 reflects this expected behavior. There are visible
patches in the velocity field distribution, these eddy regions seem to closely match the
areas where there are liquid droplets in the phase field. Turbulent eddies have been known
to lift liquid particles from the surface and transport them through the gas phase which
could explain this apparent behavior.

3.3 Case 3 - 4 m pipe with 784k cells

Case 3 was simulated in a 4 m pipe with 784 k mesh elements.A symmetric boundary
condition was applied along the centerline creating a mirrored boundary about the y-axis.
Information about the mesh is summarized in figure 7. The interior was filled with liquid
fraction αl = 0.43 and the pressure drop through the domain was set as 1360 Pa. The
internal conditions were initialized such such that the superficial gas and liquid velocities
was set to 1.85 and 0.65 m/s respectfully. The interface compression coefficient was 0.9.

Table 7: Mesh and pipe Information

Cell dir. Length (m) cell size (m) #.faces

Streamwise 4.0 4.0x10−3 1000
Outer Dia. 0.1 5.61·10−3 30
Inner Dia 0.05 2.80·10−3 30
Annulus eccentricity=0 5.3·10−4 to 1.0·10−3 30

The mesh size within the annulus is refined in the near wall region. Using a linear
progression the cells adjacent the wall are 0.53x10−4 m thick while the largest cell in the
refinement region is 0.95x10−4 m, these cells border the constant thickness region of the
interior where the cells are 1.0 mm wide. The refinement region covers 0.005 m from
either wall and thus occupies 40% of the interior space.
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t = 0.0 s t = 2.5 s

t = 5.0 s t = 7.5 s

t = 10.0 s t = 12.5 s

Figure 9: Snapshots of phase field with 2.5 s time steps

The flow quickly develops from smooth stratified to wavy flow. As seen above there
appears to be two sets of waves distinguished by their amplitude. The large amplitude
waves are seen at t = 7.5 and 10.0 s while the more frequent low amplitude waves are
visible at t=5.0, 10.0 and 12.5 s. In both the snapshots at 5.0 and 7.5 s the low amplitude
waves are located in between large amplitude waves. When you inspect the 7.5 second
image it is noticeable that two of the waves are about to merge and create a larger
wave whilst in the 12.5 s snapshot two waves have already come together to generate a
significantly longer wave although of low amplitude. Several of these mergers can cause
the formation of a large slug. With further simulation time it will be possible to determine
if these waves merging lead to the transition from wavy flow to slug flow.

Velocity Field Phase Field

Figure 10: Velocity field and phase fraction distribution at x=2 m, t=12.5 s

The velocity profile snapshot indicates that the flow is accelerated from the initial con-
ditions. The superficial gas velocity is approximately 2.73 m/s while the liquid superficial
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velocity is 0.8127 m/s, this equates to an increase of around 45 and 25 % respectively
when compared to the initialized field. If the flow pattern transitions to slug flow most
likely the velocity distribution will drastically change and will have to be reevaluated.
Further simulation time and studies are needed to determine if the discrepancy is caused
by mesh dependency or if it will be resolved by the transition to slug flow.

3.4 CASE 4 - 4 m pipe with 1000 k cells

Using the k-ω RANS model and a 4 m pipe split down the y-plane with a total of 1
million cells case 4 was expected to yield slug flow. The computational domain was initially
filled with liquid and gas volume fractions of 0.38 and 0.62 respectively. A pressure drop
of 4628 Pa between inlet and outlet was applied while the velocity field was initialized for
the two phases as ug = 3.0 m/s and ul = 1.2 m/s

Table 8: Mesh and pipe Information

Cell dir. Length (m) cell size (m) #.faces

Streamwise 4.0 3.64·10−3 1100
Outer Dia. 0.1 5.07·10−3 32
Inner Dia 0.05 2.53·10−3 32
Annulus eccentricity=0 5.34·10−4 to 9.38·10−4 33

As shown above the mesh within the annulus varies, the finest elements are placed near
the walls while the central interior region is coarser. The cell closest to the wall is 0.534
mm thick while the widest cell is 0.938 mm. The cells in the streamwise direction are a
constant 3.64 mm, while the cells along the outer diameter are 5.07 mm and the inner
diameter 2.53 mm.

t = 0.0 s t = 2.5 s

t = 5.0 s t = 7.5 s

t = 10.0 s t = 12.5 s

Figure 11: Snapshots of phase field with 2.5 s time steps
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As with case 1 and 3 the flow quickly develops from the laminar smooth startup regime
to wavy flow. Similarly to case 3 there are indications that waves are combining to produce
an increased local liquid holdup, the right hand side of t = 7.5 s shows one such case of
two waves having merged together. A closer look on the wave interaction beforehand is
shown in figure 12.

t = 7.1 s t = 7.2 s

t = 7.3 s t = 7.4 s

Figure 12: Merging wave

The wave merging seen above takes place just prior to the snapshot at 7.5 s in Fig. 11.
The two waves combine to form a local accumulation of liquid. If several of these wave
mergers occur it may eventually lead to a situation where the liquid holdup is increased
enough to completely fill the cross section of the pipe. A phenomena commonly known
as slugging.

Velocity Field Phase Field

Figure 13: Velocity field and phase fraction distribution at x=1.85 m, t=7.5 s
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The cross sectional view shown above was taken directly between two wave peaks,
compared to the initial velocity both the liquid and gas phases have experienced a roughly
30% increase to their relative velocities. Similarly to the other cases further work is
needed to determine if this discrepancy from experiment is caused by mesh dependencies,
experimental setup or other causes.

4 CONCLUSIONS

The four cases studied in this paper yielded wavy flow with indications that transition
to slug flow was possible in at least two cases (3,4). Cases 1,3 and 4 were run using a k−ω
RANS formulation while case 2 was simulated using a one equation LES model. All the
simulations were carried out using periodic boundary conditions thus mapping the inlet
and outlet together. The RANS simulations had a symmetric boundary condition applied
about the centerline y-axis reducing the computational domain when compared to the
LES simulation. All cases were simulated using the interFoam solver in OpenFOAM and
with an applied interface compression coefficient between 0.7 and 1.0

Case 1 resulted in the formation of low amplitude wave flow with liquid holdup up close
to the projected result based on experimental data provided by Nossen et.al[6]. Compared
to experiment the waves were smaller in amplitude but of similar frequency. Cases 3 and
4 yielded both small and large amplitude waves, in these two cases smaller waves were
observed merging together. The waves merging lead to the formation of larger waves and
an increase in the local liquid holdup. This behavior is a known precursor to slug flow and
with further simulation time it will be possible to determine if these cases will undergo a
transition from wavy flow to slug formation.

Early indications point toward a discrepancy with regards to flow pattern and the ap-
plied pressure drop across the pipe in comparison to experiment. While the low amplitude
high frequency waves reproduce experimental data quite well (Case 1). Cases such as 3
and 4 result in a 30-40% velocity increase in both phases while not yet transitioning to
slug flow as the experiments did. It is possible that the increase in the velocity field is
exactly because the flow is yet to transition and further work is needed to determine the
cause of this disparity. Whether it is simply because it has not transitioned yet or if
the discrepancy is caused by the mesh density or other tuning parameters are issues to
be investigated in the near future. Analyzing case 1 early results indicate that the mesh
density is having an effect on the velocity field and further studies are needed to determine
mesh convergence with regards to the final results.
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Abstract. A framework for simulating the forced-vibration wind tunnel experiment using stabi-
lized ALE-VMS techniques has been developed. With a user-defined motion of the bridge deck
the problem reduces to a flow computation on a moving domain with time-dependent essential
boundary conditions. This leads to a coupled problem between the fluid and the fluid mesh,
which can be solved very effectively in a block-iterative fashion. An important advantage with
the forced-vibration method from a computational point of view is that no steady state response
needs to develop. The motion-dependent forces are thus obtained at a low computational cost.
Numerical results show good agreement with the experiments.

1 INTRODUCTION

The Norwegian Public Roads Administration (NPRA) launched in 2014 their ambitions to
complete the E39 Coastal Highway Route as a continuous and ferry free route within the next 20
years[49]. This implies eight extreme fjord crossings for which the current technology literally
falls short. Several concepts are under investigation, such as submerged floating tunnels, tension
legged platform (TLP) bridges, pontoon bridges, long span suspension bridges and hybrids.
Common for all is that with increasing span width, dynamic effects becomes a major issue and
often the main concern in design.

On slender bridges, with inevitably low eigenfrequencies, subjected to wind loading, self-
excited vibration phenomena such as galloping and flutter are of particular interest, since these

1
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may cause devastating effects leading to structural collapse like the infamous Tacoma Narrows
bridge failure. Such effects are largely dependent on the shape of the cross section, on which
most of todays calculations are based on extensive use of wind tunnel. A moderate use of wind
tunnel tests together with an increased use of numerical simulations can increase the accuracy
and efficiency of response calculations and make it possible to validate on a full scale. Such
numerical simulations may represent a technological advance in future long-span bridge design.

Efficient and accurate modelling of Computational Fluid Dynamics (CFD) and Fluid-Structure
Interaction (FSI) problems have seen a huge development in the recent decades. The core tech-
nology is the residual-based variational multiscale (RBVMS) formulation of the Navier Stokes
equations for incompressible flows (see e.g. [2, 9, 19, 20, 21, 41, 46, 47]) in the Arbitrary
Lagrangian-Eulerian (ALE) formulation [22]. The ALE formulation is an interface-tracking
technique to describe the fluid in a time dependent domain. This may also be achieved with
the Deforming Spatial Domain/Stabilized Space Time (DSD/SST) method [38, 43, 44, 45, 48].
These methods have been applied to some of the most challenging moving interface problems
in the recent years. Both methods rely on Streamline-Upwind/Petrov-Galerkin and Pressure-
Stabilizing/Petrov-Galerkin (SUPG/PSPG) stabilization [9, 38, 40] and stabilization of the in-
compressibility constraint[46].

The moving domain extension of RBVMS is referred to as the ALE-VMS formulation[2, 36],
and has successfully been applied to simulation of turbulent flows and FSI in e.g. [3, 4, 18, 27,
37]. An important feature of the ALE-VMS method is the weakly enforced essential boundary
conditions (BCs), introduced in [5]. Weak enforcement of the no-slip conditions improve the
accuracy significantly[1, 7, 17] when the boundary layer mesh is relatively coarse, which in
practice is always the case. In the limit of infinitely small elements, the weak enforcement gives
strongly enforced BCs. The simulations in this work are based on the ALE-VMS formulation
with weak BCs.

With this computational framework, we perform numerical simulations of the forced-vibration
wind tunnel experiment of the Hardanger Bridge sectional model, carried out at the Norwegian
University of Science and Technology (NTNU). In the forced-vibration experiment[15, 30] the
bridge section model is subjected to a prescribed motion, from which we read the motion-
dependent forces. This method is an alternative to the free-vibration method[32], where the
bridge section model is suspended on springs. The motion-dependent forces are analogous to
aerodynamic stiffness and damping, and are thus essential in the study of dynamic response.

The Hardanger Bridge is chosen for several reasons. Most importantly, we have access
to extensive wind tunnel experiments. Moreover, it represents a new generation of suspen-
sion bridges, with highly optimized aerodynamic design. A fully coupled free-vibration Fluid-
Object Interaction (FOI) simulation of the same bridge was carried out in [37].

We consider a sufficiently wide slice of the bridge deck, which is treated as a rigid object.
As there in a forced-vibration context is no need to evaluate the linear and angular momentum,
this type of problem consists of two blocks which can be solved in a block-iterative fashion:
1) use essential boundary conditions to set the current position of the object and solve the fluid
mesh problem, and 2) solve the fluid problem. In the fluid mesh problem, the boundary layer
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elements, which constitute approximately half of the mesh degrees-of-freedom, are treated as
rigid. This results in a relatively inexpensive solution of the fluid mesh problem, keeping mesh
distortion to a minimum.

The governing equations are presented in Sec. 2 and the discrete problem in Sec. 3. In Sec.
4 a brief description of wind forces in the context of bridge engineering is presented. Numerical
results are presented in Sec. 5, and concluding remarks are given in Sec. 6.

2 GOVERNING EQUATIONS FOR FLUID MECHANICS IN MOVING DOMAINS

In this section the weak form of the Navier-Stokes equations for incompressible flows are
presented in the ALE framework. A detailed derivation is given in [8].

Let Ω̂ ∈ Rnsd , nsd = 2, 3, represent the reference fluid mechanics domain with coordinates
x̂ and boundary Γ̂. The time dependent fluid domain Ωt with coordinates x and boundary Γt is
given as:

Ωt =
{

x | x = φ (x̂, t) ∀x̂ ∈ Ω̂, t ∈ (0, T )
}

, (1)

where the ALE-mapping is obtained through the time-dependent displacements of the fluid
domain, ŷ (x̂, t):

φ (x̂, t) = x̂ + ŷ (x̂, t) . (2)

See Fig. 1. Let Su and Sp represent sets of infinite-dimensional trial functions for the fluid
velocity u and pressure p, respectively. These function sets are formally written:

Su =
{

u|u (·, t) ∈
(

H1 (Ωt)
)nsd , ui = gi on (Γt)gi

}

, (3)

Sp =
{

p|p (·) ∈ L2 (Ωt) ,

∫

Ωt

pdΩ = 0 if Γt = (Γt)g

}

. (4)

Here L2 (Ωt) denotes the space of scalar-valued functions that are square-integrable on Ωt,
and (H1 (Ωt))nsd the space of vector-valued functions with square-integrable derivatives on Ωt.
The functions in Su satisfy the essential boundary conditions ui = gi on (Γt)gi for the fluid
mechanics problem. In the case of essential boundary conditions on all boundaries, we require
that the average pressure on Ωt is zero.

With the trial functions we define the test functions Vu and Vp as:

Vu =
{

w|w (·) ∈
(

H1 (Ωt)
)nsd , wi = 0 on (Γt)gi

}

, (5)

Vp = Sp. (6)

Note that the test functions only differ in the definition of the boundary conditions, for which
the test functions for linear momentum balance, Vu, vanish on the part of the boundary where
the fluid velocity is prescribed.

The variational formulation of the fluid mechanics problem can then be stated in terms of the
semi-linear and linear forms B and F , respectively, as follows. Find u ∈ Su and p ∈ Sp such
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Ω̂ x
ŷ

x̂

Γ̂

Γt

u = gΩt

σn = hn

Figure 1: Fluid domain and its boundary in the current configuration.

that ∀w ∈ Vu and q ∈ Vp:

B ({w, q} , {u, p} ; û) − F ({w, q}) = 0, (7)

where

B ({w, q} , {u, p} ; û) =
∫

Ωt

wρ

(

∂u
∂t

∣

∣

∣

∣

x̂

+ (u − û) · ���u
)

dΩ

+
∫

Ωt

ε(w) : σ(u, p) dΩ +
∫

Ωt

q��� · u dΩ, (8)

and
F ({w, q}) =

∫

Ωt

wρf dΩ +
∫

(Γt)h

w · h dΓ. (9)

Here, ρ is the density, f the body forces, h is prescribed surface tractions on (Γ)h and û = ∂ŷ
∂t

∣

∣

x̂

is the fluid domain velocity.
∣

∣

x̂
denotes that the time derivative is taken with respect to the

reference coordinates of the fluid domain. The Cauchy stress tensor σ is defined as:

σ(u, p) = −pI + 2µε(u), (10)

where I is the identity tensor, µ the dynamic viscosity and ε(w) the symmetric strain-rate tensor
given by:

ε(w) = 1
2
(

���w + ���wT
)

. (11)

3 ALE-VMS FORMULATION WITH WEAKLY-ENFORCED BCs

This section presents the residual-based variational multiscale (RBVMS) version of the
Navier-Stokes equations for incompressible flows in the ALE setting. RBVMS was origi-
nally developed for nonmoving domains and successfully applied to turbulent flows (see e.g.
[1, 6, 19, 23]). The moving-domain extension of RBVMS, the ALE-VMS formulation [36],
was introduced in [2]. With weak enforcement of essential boundary conditions, the no-slip
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condition is imposed in a penalty-like fashion allowing for some slip on the interface. This
method, which is purely based on numerical stability considerations behaves similarly to a wall
model and represents a significant improvement in accuracy for coarse boundary-layer resolu-
tion [1, 5, 7, 17].

For the discrete problem we now partition the time-dependent fluid domain into nel finite
element subdomains Ωe

t . Further, we decompose the fluid-object interface Γb
t into neb surface

elements. The finite-dimensional functional spaces for trial functions are denoted Sh
u and Sh

p

and the corresponding test functions Vh
u and Vh

p for the velocity and pressure, respectively. We
also introduce trial and test functions for the fluid mesh displacement ŷ. Superscript h indicate
that its attribute is finite-dimensional.

Sh
m =

{

ŷh|ŷh (·, t) ∈
(

H1 (Ωt)
)nsd , ŷh

i = gi on (Γt)gi

}

, (12)

Vh
m =

{

wh
m|wh

m (·) ∈
(

H1 (Ωt)
)nsd , wh

mi = 0 on (Γt)gi

}

, (13)

(14)

The ALE-VMS formulation augmented with weak BCs is then given: Find uh ∈ Sh
u , ph ∈

Sh
p and ŷh ∈ Sh

m , such that ∀wh ∈ Vh
u , qh ∈ Vh

p and wh
m ∈ Vh

m:

BV MS
({

wh, qh
}

,
{

uh, ph
}

; ûh
)

+ BW BC
({

wh, qh
}

,
{

uh, ph
}

; ûh
)

− F V MS
({

wh, qh
})

+ BMSH
({

wh
m

}

,
{

ŷh(t) − ŷh(t̃)
})

= 0, (15)

where

BV MS
({

wh, qh
}

,
{

uh, ph
}

; ûh
)

=
∫

Ωt

wh · ρ

(

∂uh

∂t

∣

∣

∣

∣

x̂

+
(

uh − ûh
)

· ���uh

)

dΩ

+
∫

Ωt

ε(wh) : σ(uh, ph) dΩ +
∫

Ωt

qh��� · uh dΩ

+
nel
∑

e=1

∫

Ωe
t

τSUPS

(

(

uh − ûh
)

· ���wh + ���qh

ρ

)

· rM

(

uh, ph
)

dΩ

+
nel
∑

e=1

∫

Ωe
t

ρνLSIC��� · whrC(uh) dΩ

−
nel
∑

e=1

∫

Ωe
t

τSUPSwh ·
(

rM

(

uh, ph
)

· ���uh
)

dΩ

−
nel
∑

e=1

∫

Ωe
t

���wh

ρ
:
(

τSUPSrM

(

uh, ph
))

⊗
(

τSUPSrM

(

uh, ph
))

dΩ, (16)

F V MS
({

wh, qh
})

=
∫

Ωt

whρ fh dΩ +
∫

(Γt)h

wh · hh dΓ, (17)
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BW BC
({

wh, qh
}

,
{

uh, ph
}

; ûh
)

=

−
neb
∑

b=1

∫

Γb∩(Γt)g

wh · σ
(

uh, ph
)

n dΓ

−
neb
∑

b=1

∫

Γb∩(Γt)g

(

2µε
(

wh
)

n + qhn
)

·
(

uh − gh
)

dΓ

−
neb
∑

b=1

∫

Γb∩(Γt)−
g

wh · ρ
((

uh − ûh
)

· n
) (

uh − gh
)

dΓ

+
neb
∑

b=1

∫

Γb∩(Γt)g

τB
TAN

(

wh −
(

wh · n
)

n
)

·
((

uh − gh
)

−
((

uh − gh
)

· n
)

n
)

dΓ

+
neb
∑

b=1

∫

Γb∩(Γt)g

τB
NOR

(

wh · n
) ((

uh − gh
)

· n
)

dΓ. (18)

and
BMSH

({

wh
m

}

,
{

ŷh(t) − ŷh(t̃)
})

=
∫

Ωt̃

ε(wh
m) : D ε

(

ŷh(t) − ŷh(t̃)
)

dΩ. (19)

In Eqs. 16 – 18 n is the outward normal vector, τSUPS, νLSIC, τTAN and τNOR are stabilization
parameters which depend on discretization and time stepping (see e.g. [6, 9, 38, 46, 47]). (Γt)−

g

is defined as the inflow part of (Γt)g:

Γ−
g =

{

x|
(

uh − ûh
)

· n < 0, ∀x ⊂ (Γt)g

}

. (20)

rM and rC are residuals of the linear-momentum balance and continuity, respectively, given by

rM = ρ

(

∂uh

∂t

∣

∣

∣

∣

x̂

+
(

uh − ûh
)

· ���uh − fh

)

− ��� · σ
(

uh, ph
)

, (21)

rC = ��� · uh. (22)

The fluid mesh part of the problem, Eq. 19, is the result of a linear-elastic solid with zero
inertia and no external forcing and is governed by the fluid mesh strain rates (Eq. 11) and the
elasticity tensor D evaluated in the fluid-domain configuration at time t̃ < t. See [3] for a
detailed description. For the fluid mesh material we use Jabobian-based stiffening [26, 42, 44],
a non-physical material law whose only purpose is to preclude high mesh distortion at a low
computational cost.

In a forced-vibration setting, the mesh velocity ûh is prescribed on all surfaces, including the
fluid-object interface, which completes the fluid mesh problem.

We let U = [uB], U̇ = [u̇B] and P = [pB] denote the vectors of nodal velocity, acceleration
and pressure for the fluid problem, respectively, and ¨̂Y =

[¨̂yB

]

, ˙̂Y =
[ ˙̂yB

]

and Ŷ = [ŷB]
denote the vectors of nodal fluid mesh acceleration, velocity and displacements, respectively.
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With this definition, the semi-discrete form of Eq. 15 becomes: find U, U̇, P, ¨̂Y, ˙̂Y and Ŷ
such that:

NM

(

U̇, U, P,
¨̂Y,

˙̂Y, Ŷ
)

= 0, (23)

NC

(

U̇, U, P,
¨̂Y,

˙̂Y, Ŷ
)

= 0, (24)

Nmsh

(

U̇, U, P,
¨̂Y,

˙̂Y, Ŷ
)

= 0, (25)

where NM , NC and Nmsh are the discrete residual vectors for fluid linear-momentum bal-
ance and continuity and fluid mesh linear-momentum, respectively. The nonlinear equation
system at Eqs. 23 – 25 is solved using a predictor-multicorrector Newton-Raphson method
with generalized-α time integration, which is a second order accurate, unconditionally stable
algorithm for both first and second order systems, with control over high-frequency dissipation
[3, 13, 25].

4 AERODYNAMIC FORCES ON BRIDGES AND THE FORCED-VIBRATION
EXPERIMENT

This section gives a brief introduction to the aerodynamic forces in the context of bridge en-
gineering. The motion-induced forces have been emphasized, since these are the main focus in
this work. Further, the forced-vibration wind tunnel experiment is introduced, and an algorithm
for numerical simulation of such problems is given.

4.1 Motion induced wind forces and forced-vibration wind tunnel experiments

Ū + v(t)
θ, M

h, L
p, D

H

B

Figure 2: Aerodynamic forces on bridge section.

Aerodynamic forces on bridge decks for strong winds are commonly computed from quasi-
steady theory [29] and the strip method [39]. With this approach the wind speed is split into a
stationary part Ū = [U, 0]T and a fluctuating part with zero mean v(t) = [u(t), w(t)]T .

The lateral, vertical and rotational degrees of freedom with respect to the deck centroid
are denoted p(t), h(t), and θ(t), respectively, with corresponding aerodynamic forces Q(t) =
[D(t), L(t), M(t)]T . See Fig. 2.
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The quasi-steady forces are given as:

Q(t) = Qs + Qse(t) + Qb(t), (26)

where Qs is the static force vector due to mean wind:

Qs =





Ds

Ls

Ms



 = 1
2ρU2





HCD(θ)
BCL(θ)

B2CM(θ)



 , (27)

where B and H are the width and height of the cross section, respectively. CM , CL and CM

are the shape-dependent drag, lift and pitching moment coefficients, respectively. The self-
excited forces, Qse(t)[12, 24, 33, 35], are introduced by structural motions, and the buffeting
forces Qb(t)[10, 11, 14, 31] are induced by horizontal and vertical wind fluctuations. As the
turbulence intensity in the wind tunnel is very low the buffeting forces are neglected. Thus,
the self-excited forces are simply obtained by subtracting the mean forces (Eq. 26). In the
simulations we define zero turbulence by using smooth inflow boundary conditions.

As an alternative to the free vibration wind tunnel experiment[32], the forced-vibration
experiment[16] has proven to be an efficient method to obtain the self-excited forces and flutter
characteristics of bridge sections[15, 30]. Here the sectional model is subjected to a prescribed
motion history for which the forces are measured. The aerodynamic forces, Q(t), are obtained
as the difference between in-wind and still air measurements. The wind tunnel experiments per-
formed in this work are carried out at the Fluid Mechanics Laboratory, Department of Energy
and Process Engineering, NTNU. A description of the rig can be found in [34]. The experiments
are typically performed for vibration frequencies up to 2.5 Hz and wind speeds ranging from 3
to 12 m/s.

4.2 Numerical simulation of the forced-vibration experiment

To simulate the forced-vibration experiment, a 2D rigid body motion of the bridge deck is
implemented as follows. Let X and x be the reference and current coordinates of a set of rigidly
connected points, respectively. Further, let Xc and xc denote the center of rotation in the various
configurations. Any 2D rigid body motion can then be uniquely defined by the rotation θ and
displacements dc = xc −Xc = [p, h]T of the center of rotation, corresponding to the three wind
tunnel degrees of freedom (Fig. 2).

The current position, x(t), is then given:

x(t) = R (θ(t)) (X − Xc) + xc(t), (28)

where R (θ) is the rotation tensor.
For a prescribed motion, Eq. 28 is used to govern the time-dependent fluid mesh boundary

conditions. These are applied to the bridge deck and its boundary layer elements and the interior
surface enclosing the wake (see Sec. 5.1). In contrast to FSI/ FOI computations, where tractions
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from the fluid mechanics block is used to move the structure and fluid mesh, we have here
chosen to solve the fluid mesh problem first and implemented the following algorithm.

Algorithm 1: CFD analysis around rigid objects with prescribed motion.

Partition for parallel computation, initialize;
Loop over time steps;
for t = 1 to T do

Predict solution vectors U, P, and ˙̂Y;
Multicorrector stage;
for iter = 1 to itermax do

Solve fluid mesh problem (iter = 1);
Set fluid mesh boundary conditions:
Ŷt = R (θ) (X − Xc) + xc at object surface and boundary layers, and
Ŷt = R (θ/2) (X − Xc) + xc at wake surface;
Build LHS matrix and RHS vector;

Precondition and solve to obtain Ŷt,
˙̂Yt

¨̂Yt;
Solve fluid mechanics problem;

Build LHS matrix and RHS vector of the ALE-VMS equations;
Precondition and solve to obtain Ut, U̇t and Pt;

end
end
A detailed description to each step can be found in [8].

5 NUMERICAL RESULTS

In this section results from the numerical simulations of the Hardanger Bridge sectional
model are presented and compared with experimental data. The vertical and pitching motions
are analyzed.

5.1 Analysis setup

The flow domain is taken as a 500 mm wide slice of the wind tunnel with the inflow and
outflow surface 1200 mm and 2800 mm from the bridge deck centroid, respectively. The domain
height is 1815 mm and the deck centroid is placed 930 mm above the floor, which correspond
to the physical dimensions of the wind tunnel.

For the fluid mechanics boundary conditions, smooth flow of U = 4 m/s is prescribed on
the inflow surface. The walls, including the transverse boundaries, are constrained with no
penetration, and on the bridge deck weakly enforced no-slip boundary condition is employed.
The outflow surface is traction-free.

An interior surface enclosing the deck and its wake (see Fig. 3) is defined in order to perform
local mesh refinement around the deck and in the wake region, and to employ mesh moving
boundary conditions. This surface is constrained to follow the vertical and horizontal motions
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Figure 3: The analysis domain represents a 500 mm wide slice of the wind tunnel.

of the bridge deck and rotate with half the magnitude. With this definition mesh resolution in
the turbulent region is maintained, even for relatively large rotations.

At the bridge deck surface 10 layers of prismatic elements with thickness 0.25 mm are gen-
erated. These boundary layers constitute approximately half of the nodes in the computational
model, see Fig. 4b. In the fluid mesh problem these are treated rigidly, which besides keep-
ing the mesh distortion at a minimum also reduce the fluid mesh problem significantly. Other
volumes are meshed with linear tetrahedra, giving approximately 4 · 106 elements in total. The
bridge deck grid, on which the aerodynamic forces are evaluated, is unstructured with local
refinement near all features, see Fig. 5.

5.2 Forced-vibration, vertical mode

In this test, the bridge deck is excited in a vertical harmonic motion with amplitude 15 mm,
same as in the wind tunnel, and a frequency of 1.1 Hz. From a fully developed turbulent flow
field 5 cycles are run. The current flow velocity, time stepping and discretization yield a Courant
number of approximately 2.4 throughout the analysis. Fig. 6 shows the total unfiltered forces
from the analysis, and Fig. 7 shows velocity streamline plots at points ”a” and ”b” (ref. Fig. 6).
To obtain the self-excited forces, we subtract the mean forces, D = 0.335 N/m, L = 0.685 N/m
and M = 0.0476 Nm/m, and remove the vortex shedding fluctuations by applying a cascaded
buttersworth filter[28] with cutoff frequency of 3 Hz. The filtered and unfiltered self-excited
forces are shown in Fig. 8.

To compare with the experimental values, we choose a random time window from the wind
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(a) Wake. (b) Boundary layer elements.

Figure 4: Closeup of the aerodynamic mesh near the bridge deck.

tunnel and compute the self-excited forces in a similar manner, using the same digital filter.
Since the mean wind velocity is slightly different, the self-excited forces is now represented
in terms of the dimensionless load coefficients, CD,se, CL,se and CM,se (ref. Eq. 27), normal-
ized with ρ = 1.225kg/m3, B = 0.366 m, and H = 0.0666 m. The results are shown in
Fig. 9. While the self-excited lift and pitching moment are in very good agreement with the
experiments, both with respect to phase and magnitude of the loads, the self-excited drag does
not match. One should however note that the self-excited drag force is very small for heaving
modes and difficult to measure experimentally. The resulting signal thus contains a lot of noise.
This is not an issue in the simulations, and a periodic drag in the same phase as the lift and
pitching moment is revealed.

5.3 Forced-vibration, torsional mode

Next we study the torsional mode of the bridge deck. In the experiments and simulation
the deck is excited in a harmonic motion with amplitude 2° and a frequency of 1.1 Hz. The
wind velocity is approximately U = 4 m/s. 5 cycles are run, and the total unfiltered forces are
shown in Fig. 10. Note how the drag is almost constant for such small rotations. Fig. 11 shows
velocity streamline plots one nose up and one nose down instance (points ”c” and ”d” in Fig.
10). Note the alternating turbulent flow on the top and bottom of the deck.

In the same way as for the vertical mode, the forces are filtered and detrended, and a com-
parison of the self-excited forces for the simulation and the wind tunnel experiment is shown in
Fig. 12. Again, lift and pitching moment is accurately represented. For the motion-dependent
drag, we can see a common content of a double frequency signal, but the drag is also here
vanishingly small and difficult to capture in the experiments, at least in the time domain.
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Figure 5: 3D view of mesh resolution near the bridge deck.

6 CONCLUSIONS

A framework for numerical simulation of forced-vibration wind tunnel experiments has suc-
cessfully been developed using ALE-VMS techniques. Numerical studies of the Hardanger
Bridge section model was carried out for harmonic excitation of one vertical and one torsional
mode, and the results are in very good agreement with the wind tunnel experiments.

Such flow computations lead to a one-way coupled problem between the fluid and the fluid
mesh. We have prescribed the motions to not only the bridge deck surface but also to the bound-
ary layer elements, which constitute a large proportion of the fluid mesh degrees-of-freedom.
This moves the mesh distortion away from the area of interest and reduces the fluid mesh prob-
lem significantly. In fact, there is only a small increase in computational cost compared to CFD
analysis itself.

In bridge engineering, self-excited forces are used to govern the flutter characteristics. This
requires the dependency of wind velocity and vibration frequency on the self-excited forces and
several experiments must be performed. This can be very effectively done using the computa-
tional framework presented herein, as the numerical results reveal that three, or even two cycles,
are sufficient to provide an accurate representation of self-excited lift and pitching moment. In
the present experiments the self-excited drag is so small that no clear repeating pattern is recog-
nized. For the simulations however, we see harmonic components also in the drag, suggesting
that we for such small forces may actually produce more reliable and realistic results than the
experiments.

This work shows that the ability of the ALE-VMS method to effectively perform bluff body
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Figure 6: Total forces, vertical mode, h = 15 mm, U = 4 m/s, f = 1.1 Hz.

aerodynamic computations in moving domains with high accuracy may support the design pro-
cess for a new generation of long-span suspension bridges. It can also be helpful to verify
scalability of wind tunnel experiments.
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Figure 7: Velocity streamlines near maximum and minimum vortex fluctuations at t = 4.125 s (top) and t = 4.175
s (bottom), corresponding to point a and b in Fig. 6, respectively.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fo
rc

e
[N

/m
]

Time [s]

Dse
Lse
Mse/1m
Dse, filtered
Lse, filtered
Mse/1m, filtered

Figure 8: Raw and filtered self-excited forces, vertical mode, h = 15 mm, U = 4 m/s, f = 1.1 Hz.

14



183

Tore A. Helgedagsrud et al.

-10
0

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Vertical position, h(t)t [s]

-0.1
0

0.1
Drag coefficient, CD,se

-0.1
0

0.1
Lift coefficient, CL,se

-0.02
0

0.02
Moment coefficient, CM,se

h(t)[mm]

Wind tunnel Simulation
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Figure 10: Total forces, pitching mode, θ = 2°, u = 4 m/s, f = 1.1 Hz.

Figure 11: Velocity streamlines near maximum and minimum vortex fluctuations at t = 2.984 s (top) and t =
3.484 s (bottom), corresponding to point c and d in Fig. 10, respectively.
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Abstract 

Obstructive sleep apnea syndrome affects a large part of the population. In the current study, 
modeling and simulation of the response of the soft palate in the upper airway is addressed. A 
3D patient specific finite element model is developed based on CT images. The quantitative 
histology study of  (Ettema and Kuehn, Journal of Speech, Language, and Hearing Research: 
37 1994) is used as a basis for soft tissue organization and modeling. The tissue is simplified 
to consist of three types, each with their specific constitutive models and corresponding 
parameters: muscle and connective tissue (three cases including the Holzapfel type anisotropic 
model and Neo-Hookean model), adipose tissue (accounting for fiber dispersion according to 
Holzapfel model), and glandular tissue (Neo-Hookean model). The influence of different 
boundary conditions is also investigated, comparing response obtained with a cantilever plate 
model and a plate constrained on three sides (corresponding to the actual anatomy). 
Comparison of homogenous and layered tissue response predictions is provided. Finally, using 
the patient specific 3D model, the influence of gravity is examined. The results show that 
anatomically representative boundary conditions should be accounted for, and that a detailed 
layered material model may make the simulation more physiological. 

Keywords: Soft palate; Biomechanics; Anisotropy; Nonhomogeneous; 3D modeling; Tissue 
composition 

 

1 Introduction 

The soft palate is a complex soft tissue structure located at the back of the mouth that prevents 
food and fluids from entering the nasal cavity during swallowing and guides the airflow 
through either the mouth or the nose during breathing. In addition, the anatomy and the 
biomechanical behavior of the soft palate play a key role in understanding Obstructive Sleeping 
Apnea (OSA) (Balsevičius et al. 2015; Cho et al. 2013). During the upper airway obstruction 
process with mouth closed, the soft palate comes into contact with the posterior pharynx wall 
due to the pressure drop and this will close the upper airway and bring corresponding sleeping 
problems to the patients. Therefore, detailed mechanical modeling of the soft palate in the 
upper airway (see Fig. 1) may improve our understanding of OSA. 

Tissue composition based nonlinear fem simulation of the soft palate using patient  specific 
3d geometry
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Fig. 1  CT image of the upper airway. The markers ‘a’ and ‘b’ denote the side between the soft 
palate and the hard palate and the bottom edge of the soft palate tip, respectively. 

    Upper airway models have been used to investigate the air flow features including the 
pressure distribution and velocity variation using computational fluid dynamics (CFD) 
simulations (Wang and Elghobashi 2014; Zhao et al. 2013a) or fluid-solid interaction (FSI) 
simulations (Pirnar et al. 2015; Zhao et al. 2013b).  Additionally, the soft palate’s response to 
the airway’s pressure field has been investigated. Berry et al. (1999) presented an approximate 
2D cantilever model of the soft palate and the collapse shape of the soft palate was obtained. 
Malhotra et al. (2002) employed a 2D planar model to investigate the closing pressure of the 
soft palate. In their finite element (FE) model, based on clinical results, a fitted Young’s 
modulus value of soft palate was obtained. Huang et al. (2007) further developed a partial three 
dimensional upper airway model including the soft palate in which the midsagittal profile of 
the soft palate was used. Sun et al. (2007) presented the movement of soft palate during 
breathing with a simplified 3D soft palate geometry model. All the above research works for 
the soft palate are based on 2D and simplified 3D models. Therefore, it motivates to create a 
more accurate anatomic and physiologic model of the soft palate to study pharyngeal collapse, 
which is one of the key physiological factors for OSA. 

    Material and geometrical nonlinearities, non-uniform and time varying pressure distribution 
have to be taken into account in numerical analysis of the global response of the soft palate. 
FSI procedures using detailed 3D geometries of the upper airway may be successful to obtain 
a physiological air pressure field. However, this is computationally expensive. Wang et al. 
(2012) developed anatomically accurate FSI models of the upper airway and soft palate. The 
deformations of the soft palate obtained in their study were somewhat small and the soft palate 
was modeled as a homogeneous linear elastic material.  

   Previous numerical studies of the soft palate have focused on 2D and 3D models with linear 
elastic homogeneous materials. Linear elasticity may be sufficient under particular conditions 
(Pirnar et al. 2015; Wang et al. 2012). However, in order to investigate pharyngeal collapse 
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due to the soft palate, analyses of large deformations need to be addressed and thus material 
nonlinearities accounted for. Additionally, Ettema and Kuehn (1994) showed that the structure 
of soft palate resembles a composite material. Hence, the material properties of its different 
constituents need to be considered.  

    Muscle activation has an influence on the biomechanical behavior of the soft palate and the 
neuromuscular response of the soft palate to the airway narrowing was observed by Mortimore 
et al. (1995). However, during sleep, the OSA patients’ neuromuscular response is much 
smaller than that of normal people (Patil et al. 2007). This neuromuscular compensation 
defectiveness during sleep for the obstructive sleep apnea patients is further validated by the 
study of McGinley et al. (2008). A comparison study between the OSA patients group and 
control normal group showed that the neuromuscular response is smaller in the patient group 
than for the normal group. Therefore, it may be sufficient to consider only the passive condition 
for numerical modeling of OSA. 

    Medical imaging technologies, such as computed tomography (CT) or magnetic resonance 
(MR) are valuable tools in order to reconstruct the soft palate geometries. These techniques 
have been used to create upper airway models (Mihaescu et al. 2008; Mylavarapu et al. 2009; 
Sera et al. 2015; Sung et al. 2006), but soft palate models reconstructed from medical images 
are scarce (see (Wang et al. 2012)). Therefore, in this study, we present a nonlinear FE model 
of the soft palate reconstructed from CT images and taking into account material nonlinearities 
(i.e. hyperelasticity and anisotropy) and heterogeneities. This model is used to investigate the 
global response of the soft plate of a specific patient suffering from OSA. Our goals are: to 
provide a guide on how to assign different material properties to the different constituents of 
the soft palate, to investigate the importance of boundary conditions and anisotropy in such 
models and to quantify the influence of gravity on the global response of the soft palate. The 
predicted OSA closing pressures are compared to measured clinical patient data from the 
literature. 

    The paper is organized as follows. First, the histology of the soft palate is described, 
providing a guide to assign material models to different tissues and also pointing out the 
simplification when one assumes a homogeneous material. Then, simplified 3D and anatomical 
3D shape models are presented with corresponding finite element meshes and alternative 
constitutive models to be employed in the simulations. In addition, the influence of different 
boundary conditions are provided here. Results from simplified 3D simulations and patient 
specific 3D simulations (with different boundary conditions and material models) are then 
provided, followed by a discussion and concluding remarks. 

 

2 Materials and methods 

2.1 Histology 

The histology study of the soft palate shows that a typical adult soft palate consists of several 
major tissue layers including: the oral aspect adipose tissue, two middle muscle layers, a super 
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anterior veli palatini tendon layer and an inferior glandular tissue layer (Kuehn and Kahane 
1990). A further quantitative histology study of the human adult soft palate presented the tissue 
composition (Ettema and Kuehn 1994). According to their study, the main composition of the 
soft palate includes the adipose tissue, the glandular tissue, the muscle tissue and the connective 
tissue. Therefore, we can divide the soft palate into three layers (Fig. 2): the adipose tissue top 
layer, the muscle and connective tissue middle layer and the glandular tissue dominant bottom 
layer. Other material constituents, contributing with much lower percentages to the soft palate 
tissue, were lumped into the glandular tissue layer and given the same material properties as 
for the glandular tissue. 

 

Fig. 2  Tissue composition layers division based on the quantitative histology study of the 
human adult soft palate (adapted from Figure 10 in the reference paper (Ettema and Kuehn 
1994) ). In this reference figure, the percentage composition of each tissue ingredient of soft 
palate is displayed clearly by dividing the soft palate into 10 sections from the anterior side to 
the posterior side. 

    To the authors’ knowledge, a detailed tissue composition based 3D nonlinear finite element 
method (FEM) simulation of the soft palate has not been presented yet. In this study, according 
to the quantitative histology study for tissue composition, the soft palate is divided into three 
tissue layers and we will assign a specific material model to each layer. The detailed description 
will be presented in Section 2.5.  

2.2 Simplified 3D geometry 

A simplified geometry of the soft palate was obtained based on the CT images of a 68-year-
old male patient and his apnea-hypopnea index (AHI) was found to be 22.8. This academic use 
of the CT images was approved by the Norwegian Regional Committee for Medical Research 
Ethics (REK) and was registered in Clinicaltrials.gov. (NCT01282125). During CT scan, the 
patient’s body position was calibrated by a medical doctor trying to keep the airway axis normal 
to the CT scan plane.  As shown in Fig. 3, the length, width and the inclination angle were 
measured manually using the commercial software Mimics. From these measurements, a 
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simplified geometry was generated by extruding the sagittal midsection profile of the soft 
palate, see Fig. 4.  

      

           (a) Dimensions of the soft palate                     (b) Inclination angle of the soft palate 

 

(c) Width of the air way 

Fig. 3  Soft palate’s CT images from a male patient. The length and the thickness of the soft 
palate were measured on the medical images using the commercial software Mimics. In 
addition, the inclination angle and the width were measured to be 31.22o degree and 22.76mm, 
respectively. 

             

Fig. 4  Simplified 3D geometry of soft palate (left) and the sagittal midsection profile (right).  

2.3 3D patient specific geometry 
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In this section, we present the 3D patient specific finite element model (Fig. 5) obtained from 
corresponding computed tomography (CT) images of the patient. 

    First the DICOM file (CT images file) was imported into the commercial software Mimics 
for visualization. Through some basic operations like segmentation and mask editing, the soft 
palate was then isolated with some parts of the pharynx wall. The meshing capabilities of 
Mimics can be used to generate a finite element mesh. In our case, this leads to an irregular 
mesh and some numerical difficulties in the finite element analyses. In order to obtain a 
smoother geometry, we exported planar polylines representing the airway for 44 parallel slices 
every 0.7 mm in the commercial software Mimics. The polylines were imported into 
ABAQUS\CAE and the final geometry was generated and meshed through some smooth 
editing operations.   

 

Fig. 5  3D geometry reconstruction of the soft palate with respect to the specific patient’s CT 
images. The markers ‘a’ and ‘b’ denote the side between the soft palate and the hard palate and 
the bottom edge of the soft palate tip, respectively. 

   The 3D model includes the airway in the soft palate region and a part of the pharynx wall to 
account for the airway’s obstruction when the soft palate inclines backward toward the pharynx 
wall. On the other hand, the geometric boundary between the soft palate and tongue was 
detected manually according to the CT images. Note that the tongue’s influence on the soft 
palate’s biomechanical behavior is neglected in this study.  

  2.4 Homogeneous tissue assumption material models  

We assigned homogenous material properties to our simplified model. In addition, we tested 
two material constitutive models: an isotropic hyperelastic material model for comparison with 
different boundary conditions and a transversely isotropic material model to investigate the 
influence of anisotropy on the global response.  
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   For the isotropic case, we used a Neo-Hookean material model defined by the following 
strain-energy function: 

2
1 1isochoric volumetric

1isochoric
volumetric

1( , ) ( 3) ( 1)I J c I J
D
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Here, J  is the determinant of the deformation gradient, 2/3
1 1 1, tr( )I J I I  C , C  is the right 

Cauchy-Green tensor. c  and 1D  are material parameters derived from the Young’s modulus 
E  and Poisson ratio υ  provided in (Berry et al. 1999) with the following relations: 
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   For the transversely isotropic case, we used the following Holzapfel type strain energy 
function: 
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Here, 4 0 0 0 0:I    a Ca C a a  with 0a  a unit vector defining the fiber orientation in the 

undeformed configuration. 1 2,k k  are material parameters. 

2.5 Histology based nonhomogeneous material models           

In order to treat the soft palate as a nonhomogeneous composite material, based on the 
quantitative histology study of the human adult soft palate in section 2.1, we divided the patient 
specific 3D geometry model (Fig. 5) into three layers. The different components (i.e. adipose, 
muscle+connective and glandular tissues) material properties were assigned to specific layers 
of the soft palate model. In order to simplify the calculation, the soft palate model was divided 
into two parts: the anterior and the posterior parts, each with three tissue layers (Fig. 6). The 
discrete stepwise tissue distribution in Fig. 2 was smoothed. The connective tissue was lumped 
with the muscle tissue and the anisotropy was taken into consideration.  
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Fig. 6  Schematic of tissue layers based on the quantitative histology study of the human soft 
palate in the midsection view. The percentage composition of each tissue ingredient was 
calculated according to Fig. 2 based on the corresponding quantitative histology study (Ettema 
and Kuehn 1994).  

Muscle and connective tissue 

In this study, the passive condition of the muscle tissue is considered to investigate the global 
response of the soft palate for the OSA patient. The same material property was set to the 
muscle tissue and the connective tissue. According to the histology study of the soft palate 
(Kuehn and Kahane 1990), there are two middle layers mainly consisting of transverse muscle 
tissue of the levator veli palatini and one longitudinal musculus uvulae fiber layer. Since the 
longitudinal musculus uvulae mainly controls the motion of uvula in active condition and its 
percentage composition is smaller than that of the middle transverse levator veli palatini, in 
this study, we consider only the fiber families in the transverse direction.   

    Unfortunately, the local mechanical data for soft palate muscle tissue is still not presented in 
the literature. However, mechanical test data of muscle tissue in other parts of the human body 
is available. The test data of the passive human thigh muscle and brachialis muscle are 
presented in (Affagard et al. 2015) and (Gennisson et al. 2010). Trabelsi et al. (2010) presented 
a test of the upper airway trachea muscle. In their experiments, two fiber families were present 
and the one in the longitudinal direction contributes to movements of the trachea during 
swallowing. This is similar to the levator veli palatini that contracts and elevates the soft palate 
during swallowing (Matsuo and Palmer 2008). In detail, the muscle types and the fitted 
constitutive models for the above three kinds of human muscle tissues are summarized in Table 
1. The original data of brachialis muscle provided in the reference paper is the shear modulus. 
Here, we fitted it to the Neo-Hookean model with an assumed Poisson’s ratio of 0.49. 
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Table 1  Human muscle tissue locations and the corresponding constitutive material models 
previously reported in the literature 

  

  Based on the obtained parameters of the above fitted constitutive models, uniaxial stretch and 
stress relationships can be calculated as shown in Fig. 7. The results show different mechanical 
behaviors for the three human muscle tissues, and the trachea smooth muscle is softer than the 
skeletal muscles. Therefore, we employ three cases of the muscle tissue to investigate the 
global response of the soft palate: case 1, case 2 and case 3 correspond to the thigh muscle 
tissue material property, brachialis muscle tissue material property and trachea muscle tissue 
material property, respectively. Note that the incompressibility and the anisotropy were 
considered in case 3 with the Holzapfel type model (Eq. (3)) and the fiber orientation was set 
to be in the transverse direction.  

 

Fig.7  Uniaxial stretch-stress relationships of the human muscle tissues reported in Table 1. 

 

Positions Constitutive models Reference papers  Model 
parameters 

Thigh muscle tissue Neo-Hookean model 
(Eq. (1)) 

(Affagard et al. 2015) c =0.0116MPa, 

1D =11.9MPa-1 

Brachialis muscle 
tissue 

Neo-Hookean model 
(Eq. (1)) 

(Gennisson et al. 
2010) 

c =0.0074MPa, 

1D =2.72MPa-1 

Trachea muscle 
tissue 

Holzapfel type model 
(Eq. (3)) 

(Trabelsi et al. 2010) c =0.000877MPa, 
k1=0.000154MPa, 
k2=34.157 
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Adipose tissue    

The adipose tissue’s main constituent is lipid filled cells called adipocytes. Mechanical data on 
adipose tissue of the human soft palate are not available. However, data on the mechanical 
behavior of adipose tissue in other parts of the human body have been reported (Affagard et al. 
2015; Samani and Plewes 2004; Sommer et al. 2013). The types and corresponding constitutive 
models are summarized in Table 2. 

Table 2  Human adipose tissue locations and the corresponding constitutive material models 
previously reported in the literature 

Positions Constitutive models Reference 
papers  

Model 
parameters 

Abdominal 
adipose tissue 

Holzapfel model   (Eq. (4)) 

 

(Sommer et al. 
2013) 

c =0.0003MPa, 
k1=0.0008MPa, 
k2=47.3,       
κ=0.09 

Thigh adipose 
tissue 

Neo-Hookean model (Eq. (1)) (Affagard et al. 
2015) 

c =0.00064MPa, 

1D =29.4MPa-1 

Female breast 
adipose tissue 

Polynomial model 

(
2

1 2 1 2
1

( , ) ( 3) ( 3)i j
ij

i j
I I c I I

 

   ) 

(Samani and 
Plewes 2004) 

10c =0.00031MPa, 

01c =0.0003MPa, 

11c =0.00225MPa, 

20c =0.0038MPa, 

02c =0.00472MPa 

   

   Based on the obtained parameters of the above fitted constitutive models, uniaxial stretch and 
stress relationships can be calculated as shown in Fig. 8. The stretch level in the 3D patient 
specific soft palate model was estimated to be close to 1.05. As can be seen in Fig. 8, when the 
stretch is smaller than 1.05, the difference between these three kinds of adipose tissues is small. 
Moreover, we performed a comparison  of global response using the above constitutive 
material models. The results indicated that the difference in closing pressure between the 
simulations using the stiffest material property (the abdominal adipose tissue) and the softest 
material property (the thigh adipose tissue) is smaller than 10%. 
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Fig. 8  Uniaxial stretch-stress relationships of the human adipose tissues reported in Table 2  

   Therefore, we choose one adipose tissue data set to simulate the soft palate. The study of 
Sommer et al. (2013) is comprehensive and based on a thorough analysis of abdominal adipose 
tissue. We used the following strain energy function proposed in their study in the analyses of 
our soft palate model. 

21
1 4 1 1 42

2

( , ) ( 3) (exp{ [ (1 3 ) 1] } 1)
2

kcI I I k I I
k

                                  (4)     

Here, κ is an anisotropy degree parameter and is used to account for fiber dispersion (Gasser 
et al. 2006). The corresponding material parameters are shown in Table 2. The mean fiber 
dispersion direction for the adipose tissue was set to be parallel to the transverse direction. In 
addition, as the test assumed incompressible material, the adipose tissue was modeled as an 
incompressible material in our study. 

Glandular tissue   

We assumed the glandular tissue to be isotropic and the Neo-Hookean model described in Eq. 
(1) was chosen to define its material property. Material properties for in vivo human breast 
glandular tissue can be found in (Li et al. 2015) and (Jiang et al. 2015).  In addition, Cheng et 
al. (2011) presented in vivo magnetic resonance elastography measurements of the human soft 
palate and the shear modulus of the human soft palate was found to be 0.00253MPa. The 
corresponding Young’s modulus and material parameters c  and 1D  can be obtained assuming 
a Poisson ratio of 0.49 (Zhu et al. 2012).  As Table 3 shows, the difference of the Young’s 
modulus between the human breast glandular tissue and the soft palate is small. This motivates 
us to use the data of the whole soft palate to define the material properties of the glandular 
tissue dominant layer. 
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Table 3  The in vivo material properties of the human breast glandular tissue and soft palate 
previously reported in the literature 

 Young’s 
modulus 
(MPa) 

Poisson’s ratio c  (MPa) 1D  (MPa-1) 

Human soft palate 
(Cheng et al. 2011) 

0.007539 0.49(Zhu et al. 2012) 

 

0.001265 15.917 

Breast glandular tissue 
(Li et al. 2015) 

0.006593 0.49 0.001106 18.201 

Breast glandular tissue 
(Jiang et al. 2015) 

0.006 0.5 0.001 - 

 

    In addition, in the 3D patient specific geometry model, part of the pharynx wall is included. 
Because of its influence on the global response of the soft palate is very slight, we assume its 
material property to be same as that of the soft palate presented in Table 3. 

2.6 Boundary conditions 

The simplified 3D model of the soft palate was created to test the different boundary conditions. 
Two types of boundary conditions were tested. First, according to the previous 2D model of 
the soft palate proposed by Berry et al. (1999), only the nodes connected to the hard palate 
were constrained in all directions. This corresponds to a cantilever model. However, according 
to the anatomy of the soft palate, the lateral sides are connected to the surrounding soft tissue. 
This means that a cantilever model may not be physiological. Therefore, we tested a second set 
of boundary conditions where the lateral sides (see Fig. 4) were also constrained. We call it full 
boundary conditions. 

    Finally, we applied a uniform pressure field corresponding to the pressure difference 
between the lower and upper sides of the soft palate (Fig. 4). This pressure drop is called the 
negative pressure in this study: 

negative upper lowerP P P                                                    (5) 

   When the negative pressure develops, the soft palate will have a posterior oblique 
deformation. If the negative pressure is large enough, the soft palate will stick to the pharynx 
wall and OSA occurs. We call this critical negative pressure the closing pressure. The specific 
value for the closing pressure will vary from different patients. According to Han et al. (2002), 
the closing pressures of OSA patients were estimated to be -4~-8 cm H2O. In addition, the 
average closing pressure in normal adults was found to be -13 cm H2O (Schwartz et al. 1988). 
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The negative pressure was applied on the upper surface for the simplified model and on the 
internal surface of the soft tissue in contact with the airflow for the 3D patient specific geometry 
model. 

2.7 Finite element mesh 

The simplified FE model was meshed with eight noded hybrid solid elements (C3D8H 
ABAQUS type) and the 3D patient specific FE model with four noded hybrid tetrahedral 
elements (C3D4H ABAQUS type). Mesh convergence studies were performed on both models.  
A -5 cm H2O negative pressure was applied in both the simplified model and the 3D patient 
specific model. The Neo-Hookean model with the data of the soft palate (Table 3) was assigned 
to the simplified model and the layered material model with the thigh muscle tissue’s data was 
used for the 3D patient specific model. 

   The displacement magnitude of a point in the mid-section of the soft palate was chosen as a 
critical parameter and compared for different mesh densities (Fig. 9). For the simplified model, 
four mesh densities were tested with 10.660, 30.818, 54.280 and 77.688 elements, 
corresponding to Mesh 1, Mesh 2, Mesh 3, and Mesh 4, respectively. The difference for the 
critical parameter between Mesh 3 and Mesh 4 was 0.17%. For the patient specific model, four 
mesh densities were also tested with 131.403, 313.258, 463.856 and 560.221 elements, 
corresponding to Mesh 1, Mesh 2, Mesh 3, and Mesh 4, respectively. The difference for the 
critical parameter between Mesh 3 and Mesh 4 was 0.4%.  

Therefore, considering the simulation accuracy and computational time efficiency, we used a 
mesh composed of 54.280 elements and a mesh composed of 463.856 elements for the 
simplified model and the patient specific model, respectively, in the remaining of this paper. 

      

                     (a) Simplified model                               (b) 3D patient specific model 

Fig. 9  Mesh size convergence analyses for the simplified model (a) and 3D patient specific 
geometry model (b). 

 

3 Results 

3.1 Simplified 3D models, homogeneous material, and effect of boundary conditions 
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First, we compare the global response of the simplified 3D model subjected to the negative 
pressure using the two types of boundary conditions presented in Section 2.6. In this 
comparison, the soft palate is modeled as a homogeneous material using the Neo-Hookean 
strain energy function (Eq. (1)) and the material parameters presented in Table 3. The loading 
negative pressure was set to be -0.5 cm H2O (much less negative than the physiological closing 
pressure). Using the cantilever boundary conditions, the displacement of the tip’s posterior 
surface was found to be 20.55mm (Fig. 10), which is much larger than the CT measured value 
4.84 mm (Fig. 3(a)). On the other hand, when the lateral sides of the soft palate are also 
constrained, the displacement was found to be 0.26mm. Therefore, the cantilever model 
overestimates the displacement of the soft palate.  

         

         (a) Cantilever boundary conditions                   (b) full boundary conditions  

Fig. 10  Displacement magnitudes for different boundary conditions with the simplified soft 
palate model.  

     Second, we compare the global response of the simplified model when the soft palate is 
modeled as a homogeneous material using a Neo-Hookean material model (Eq. (1)) and a 
hyperelastic transversely isotropic material model (Eq. (3)).  As the fiber stiffness contributes 
mainly when the deformations are large, in this comparison, we set the negative pressure value 
to be -5 cm H2O. Moreover, the fiber direction was defined parallel to the transverse direction 
(Fig. 4) according to the histology study of soft palate (Kuehn and Kahane 1990). The 
mentioned parameters of the transversely isotropic model for case 3 of the muscle tissue in 
Section 2.5 was used: c =0.000877MPa, k1=0.000154MPa, k2=34.157. For the Neo-Hookean 
isotropic model, the parameter c was set with the same value ( c =0.000877MPa) and the 
Poisson ratio was set to be 0.49. In this comparison, the full boundary conditions were used. 

     According to our calculation results (Fig. 11), the displacement of the soft palate is smaller 
when anisotropy is taken into account, i.e. 3.18mm versus 3.57mm. Therefore, it is reasonable 
to consider the anisotropic property in the large deformation calculation of soft palate. 
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         (a) Isotropic constitutive model                      (b) anisotropic constitutive model 

Fig. 11  Displacement magnitudes for the simplified soft palate model using isotropic and 
anisotropic constitutive models.  

3.2 Finite element analyses of the patient specific model with layered tissue properties of 
the soft palate  

Based on the simulation results obtained from the simplified model, we chose to constrain the 
lateral sides of the soft palate. In addition, the pharynx wall was also constrained considering 
it is attached to the cervical vertebra. Therefore, the boundary conditions of our patient specific 
3D model were confirmed as Fig. 12. The material models were assigned based on different 
tissue layers. Note that we tested three cases for the muscle tissue layer’s material property. 

 

Fig. 12  Boundary conditions for the 3D patient specific  model: the external side of the pharynx 
wall, the lateral sides and the side connected to the hard palate are constrained in all directions. 
The negative pressure is set on the tissue-airway contact surface. 
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    The collapse of the soft palate in the upper airway can be observed directly in the 3D patient 
specific geometry as shown in Fig. 13. Additionally, we used the norm of the displacement of 
point A to present the inclination displacement of the posterior surface of the soft palate tip, 
see Fig. 14 (note that the point A is different from the point 2 in Fig. 9(b)).  As can be seen 
from Fig. 15, the norm of the displacement of Point A exhibits a nonlinear behavior. Fig. 15 
also shows that the soft palate closing pressure in case 1 is -7.9 cm H2O, -6.7 cm H2O in case 
2 and -4.4 cm H2O in case 3. This means that case 1 with the stiffest thigh muscle material 
property has a -3.52 cm H2O (79.8%) lower closing pressure than the softest case 3 with the 
trachea muscle tissue’s property. Therefore, the closing pressures obtained in the above cases 
are less negative than the normal adults’ closing pressure -13 cm H2O (Schwartz et al. 1988) 
and correspond to the clinical research for the OSA patients (Han et al. 2002). Here, the closing 
pressure is the pressure at which the soft palate posterior surface and the pharynx wall are in 
contact. 

 

Fig. 13  Collapsed deformation of the 3D patient specific geometry tissue composition based 
soft palate model (view from the nasopharynx cavity).  
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Fig. 14  Definition of point A and of the norm of its displacement in the 3D patient specific 
geometry model in the sagittal midsection plane. Point A is defined to be the first point of the 
soft palate posterior surface to be in contact with the pharynx wall in the sagittal midsection 
plane. The displacement of point A is used to represent the inclination displacement of soft 
palate tip’s posterior surface.  

 

Fig. 15  Negative pressure versus the norm of the displacement of Point A for the 3D patient 
specific tissue composition based model including three cases for the muscle tissue properties. 
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 3.3 Comparison between the reference 2D model from Malhotra et al. and our 3D patient 
specific model using an isotropic homogeneous constitutive model 

In this section, we compare our 3D patient specific model with the 2D model presented by 
Malhotra et al. (2002). In their study, a 2D model of the soft palate for normal adult was created 
using a linear constitutive model with a Young’s modulus of 0.006MPa to estimate the soft 
palate’s deformations for different negative pressures in the passive condition. Moreover, the 
Young’s modulus was obtained by fitting the FEM calculation results to clinical data.  

     In this comparison, the material of our 3D patient specific model is first modeled with a 
Hookean model using a Young’s modulus of 0.006MPa and a Poisson’s ratio 0.49. Second, 
using the same Young’s modulus and Poisson ratio, we also model the material with the Neo-
Hookean model from Eq. (1) and the corresponding material parameters c  and 1D  derived 
from Eq. (2). 

    According to Malhotra et al., the closing pressure of their 2D model with the Hookean linear 
elastic material for a male adult is -5 cm H2O. On the other hand, in our study, for the 3D 
model, the closing pressure value is -4.39mm H2O (Fig. 16), which is 12.2% less negative than 
that of their 2D model. This is reasonable, as the patient suffers OSA. Meanwhile, as can be 
seen from Fig. 16, we observe very similar results concerning the norm of displacement of 
Point A (see Fig. 14) when using a Hookean elastic material or a Neo-Hookean hyperelastic 
material with our 3D patient specific model. In addition, the relation between the norm of the 
displacement of Point A and pressure (Fig. 16) seems to be almost linear in these cases.  

 

Fig. 16  Negative pressure versus the norm of the displacement of Point A for the 3D patient 
specific shape model with the isotropic elastic Hookean model and Neo-Hookean hyperelastic 
model. 
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3.4 Influence of gravity 

To the best of our knowledge, the gravity’s influence on soft palate’s biomechanical behavior 
has not been addressed yet. Based on the 3D patient specific geometry tissue composition 
model, we investigated the gravity’s influence on the global response of the soft palate. Two 
common body positions were investigated: the lying down and the seated positions (Fig. 17). 
The tissue’s density was set to be 1110kg/m3 (van der Velden et al. 2016)( CES-Edupack. 
2011). Since the CT images were recorded with a supine position for the patient, we have 
considered the lying down position gravity in the above simulation process. Then, we tested 
the other case that corresponds to the seated position. An inverse lying down direction gravity 
coupling with the seated direction gravity were applied to the model in an initial load step 
followed by a second load step where the negative pressure was ramped. This leads to an initial 
negative displacement of point A compared to the lying down case for zero pressure in Fig. 18. 
As our simulation results show, the gravity brings different global responses of the soft palate 
for the tested two body positions. Additionally, for the seated position, a more negative closing 
pressure is obtained compared with the lying down position. Here, in order to investigate the 
influence of the gravity on the OSA patient, we used the softest muscle tissue property with 
the data of the trachea muscle tissue.  

 

Fig. 17  Gravity’s directions applied to the soft palate in the sagittal midsection view 
corresponding to two positions. 
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Fig. 18  Negative pressure versus the displacement of Point A for the gravity’s influence 
including two human body positions. The negative displacement means the soft palate has an 
anterior oblique deformation. 

 

4 Discussion  

In the present work, we employ a 3D refined mesh FE model of the human soft palate with a 
patient specific geometry and inhomogeneous material properties. The geometry is obtained 
from CT images, taken from one male patient, processed with the commercial software 
Mimics. The material properties are assigned according to histology provided by Ettema and 
Kuehn (1994). Herein, three material layers are considered: the muscle and connective tissue 
layer, the adipose tissue layer and the glandular tissue dominant layer. The anisotropy of the 
muscle and connective tissue layer is taken into account (case 3). Comparing the tissue 
composition based inhomogeneous calculation results (Fig. 15) with the isotropic 
homogeneous calculation results (Fig. 16), nonlinear behavior occurs in the tissue composition 
based model. 

    In addition, we use a simplified 3D model to investigate the influence of the boundary 
conditions on the global response of the soft palate. Our results show that when the soft palate 
is modeled as a cantilever plate, the displacement of the soft palate tip is overestimated (Fig. 
10). Therefore, we conclude the influence of the soft tissues surrounding the lateral sides of the 
soft palate must be accounted for in the FE analysis. Moreover, our simplified model shows 
that the anisotropy arising from the muscle and connective tissue may have an influence on the 
global response of the soft palate.     
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    In this study, as the corresponding experimental data of the soft palate is not available, we 
used data retrieved from other parts of the human body to define the material properties of the 
muscle tissue and adipose tissue. Considering the stretch levels obtained in the soft palate at 
closing pressure, the difference between the three adipose models is small. For the three muscle 
models, the difference is larger. However, the closing pressures obtained for this specific OSA 
patient agree with the clinical research for all muscle model cases employed. In future studies 
local material experimental tests of the soft palate’s muscle tissue and adipose tissue will 
contribute to acquiring more accurate calculation results. Additionally, we only considered the 
passive properties of the materials, i.e. muscle activation is not accounted for. We make this 
assumption based on the following: the presence of neuromuscular compensation defectiveness 
during sleep for the patient (McGinley et al. 2008). Nevertheless, the influence arising from 
the muscle activation should be investigated in future work.  

     The histology study of the soft palate (Kuehn and Kahane 1990) shows that two muscle 
fiber layers are imbedded in the soft palate tissue and are mainly distributed in the transverse 
direction. In our simulation process, the fiber orientation was set in the transverse direction to 
investigate the influence of the fiber stiffness on the soft palate’s biomechanical behavior. In 
the real case, the fiber may not be strictly distributed in the transverse direction. This needs to 
be further investigated. In addition, for simplicity, we assumed the muscle tissue and 
connective tissue have the same material property. More experimental mechanical tests on the 
different ingredients of the soft palate are needed in order to refine our model. 

    We defined the pressure drop between the lower surface and upper surface of the soft palate 
(Fig. 4) as the negative pressure (Eq. (5)). In order to simplify the calculation, we applied the 
negative pressure as a uniformly distributed load. However, this is not the case in reality. 
Therefore, fluid-structure interaction analysis may be employed in order to predict a more 
realistic pressure distribution for the large deformation problems. This will be a task in further 
studies of the soft palate’s biomechanical response. Moreover, in our study, we neglected the 
influence of the tongue on the deformation of the soft palate. According to the results in 
(Kirkness et al. 2005), a surface tension should be considered for the upper airway tissues. 
Hence, how this surface tension from the tongue influences the deformation of the soft palate 
remains to be investigated in further work. 

   The gravity’s influence on two human body positions is estimated. The lying down position 
seems to increase the motion of the soft palate towards the pharynx wall and the seated position 
may prevent the soft palate from collapsing. Therefore, considering the gravity influence on 
the soft palate’s global response, we can conclude that the lying down position will make the 
obstructive situation in the patient’s upper airway worse.  

    Finally, note that the specific patient CT images were obtained from the patient with his 
mouth closed. With mouth open, the midsection profile and the position of soft palate with 
respect to the pharynx wall may be different. Hence, the mouth open case needs to be 
investigated in the future research of the soft palate. 
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5 Conclusion 

Based on our 3D simplified model and 3D patient specific geometry model with 
inhomogeneous material properties of the soft palate, we have the following concluding 
remarks: 

1. A cantilever model, where only the soft palate section attached to the hard palate is 
constrained, overestimates the global deformation of the soft palate subjected to 
negative pressure and the influence of the lateral tissues needs to be accounted for. 

2. As can be seen from Figs. 15 and 16, when the soft palate undergoes large deformations, 
the material nonlinearities affect the mechanical behavior.  

3. According to clinical research of normal adults (Schwartz et al. 1988), the closing 
pressure of this specific patient is less negative than that of the normal people (-13 cm 
H2O), corresponding to the patient’s OSA diagnosis. 

4. The influence of gravity seems important with respect to the soft palate deformations. 
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Abstract. A constitutive model for the kinetic swelling of cationic hydrogels is outlined
and implemented as a user subroutine for the commercial finite element software Abaqus.
Experimental data previously presented in the literature on the swelling of acrylamide-
based hydrogels with different fractions of cationic monomers are used as a benchmark
to optimize the material parameters of the model. A good quantitative fit between the
experimental data and the calculated model response is demonstrated for the equilib-
rium swelling behaviour. In addition, the model is shown to capture the experimentally
observed swelling kinetics in a semi-quantitative manner.

1 INTRODUCTION

Hydrogels are polymer networks swollen in an aqueous solution. Such gels commonly
appear in nature (e.g. human cartilage), are widely used in commercial products (e.g.
disposable diapers and contact lenses), and have a tremendous potential for applications
like smart valves [2], tissue engineering [5], drug delivery systems [4, 13], and biological
sensors [16]. For many of these applications, the capability of hydrogels to swell or shrink
as a response to stimuli (e.g. changes in temperature, mechanical forces, pH, salinity level,
electric field, specific molecules recognized by included capture moieties) is exploited. To
improve our understanding of the process of hydrogel swelling and capability to predict
the response of a hydrogel to a change in its environment, modelling and simulation of
hydrogel swelling are of interest.

In recent years, a significant effort has been put into developing constitutive models
for finite element simulations that account for the specific features of hydrogel swelling.
These efforts have contributed to improved hyperelastic models that describe the equilib-
rium swelling behaviour of hydrogels [14, 15, 12, 7], and more complex time-dependent

1

Finite element simulations of the swelling of cationic hydrogels



216

Arne Ilseng, Victorien Prot, Bjørn Skallerud and Bjørn T. Stokke

models that also describe the transient nature of swelling [11, 19, 17, 6, 3]. However,
most of the work dealing with the modelling of hydrogel swelling present in the literature
perform purely qualitative evaluations of the models capability of capturing important
features of the swelling process. Consequently, there is a lack of studies that aims at
establishing representative material parameters and doing quantitative comparisons be-
tween experimental measurements and simulation results. The focus of this contribution
is therefore to use reported quantitative data on the swelling of cationic gels [16] to obtain
material parameters representative for the tested hydrogels and to compare the numerical
and experimental results.

The present study is organized as follows: In the following section, some important
features of the experimental set-up used by Tierney et al. [16] are presented. In Sec-
tion 3 a constitutive model for the transient behaviour of cationic hydrogels is outlined.
Thereafter, in Section 4, the finite element model used to represent the experimental set-
up is presented, and Section 5 discusses the fitting of the material parameters used in
the model. Section 6 presents the results from both equilibrium and transient analyses
and compare them with the benchmark experimental data. In the final section, some
concluding remarks are given.

2 EXPERIMENTAL DATA

In a previous study by Tierney et al. [16], quantitative experimental data for the
swelling of acrylamide-based hydrogels with different fractions of cationic monomers (DMA-
PAA) were presented. The level of DMAPAA was varied between two and seven mole
percent relative to the acrylamide content. An illustration of the experimental set-up that
was applied is shown in Figure 1. Using an optical fibre, a light signal was sent into a
hemi-ellipsoidal gel fixed at the tip of the fibre. The reflected waves were then used to
measure the optical length from the optical fibre - hydrogel interface to the hydrogel -
external solution interface utilizing interferometry. To determine the actual swelling of
the gel, the physical change in gel length must be calculated from the measured change
in optical length. The relation between the measured optical length Lopt and the physical
length Lphys of the gel can be found from the relation [16]

Lphys =
Lopt

ngel

(1)

where ngel represents the refractive index of the gel. In the following, the data on optical
length change presented by Tierney et al. [16] is converted to changes in physical gel
length by using a value of 1.34 for ngel.

2
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Figure 1: Illustration of the experimental set-up used to measure gel swelling
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Figure 2: Illustration of the split in reference, intermediate, and current configuration

3 CONSTITUTIVE FORMULATION

3.1 Kinematics

Let Ω0 and Ω be the reference (dry state) and current configurations, respectively. The
deformation map ϕ(X) : Ω0 → R3 transforms a material point X ∈ Ω0 into the related
current position x = ϕ(X) ∈ Ω. Therefore, the deformation gradient F is defined as
F = ∂ϕ(X)/∂X = ∂x/∂X, with the volume ratio J = detF > 0. For further use, we
introduce an intermediate configuration Ω1, the deformation gradient of the intermediate
configuration Ω1 relative to the dry configuration Ω0 named F0, and the deformation
gradient of the current configuration Ω relative to the intermediate configuration Ω1 named
F1, as illustrated in Figure 2. This leads to the following relations

F = F1F0, J0 = detF0, J1 = detF1, J = J0J1 (2)

In the present study, all finite element simulations starts in the intermediate configura-
tion Ω1 where the gel is assumed stress free and in a state of homogeneous swelling such
that F0 = λ01 where J0 = λ3

0. The value of λ0 is found by numerically solving σ = 0
(where σ is the Cauchy stress tensor) for the given material parameters of the hydrogel
and the composition of the external solution in which the gel is equilibrated.

The right Cauchy Green deformation tensor C is defined as

3
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C = FTF (3)

3.2 Cationic gel behaviour

To model the behaviour of cationic gels it is first necessary to establish some relations
regarding the chemical potential of the diffusible species and the different ways to express
their concentrations. The chemical potential for the different mobile species (H+,+,− see
Figure 3), indicated by the subscript, is given by [14, 11]

µ+ = kBT ln

(

c̄+

cref+

)

(4)

µ− = kBT ln

(

c̄−

cref−

)

(5)

µH+ = kBT ln

(

c̄H+

crefH+

)

(6)

where kB is the Boltzmann constant, T the absolute temperature, c̄α and crefα are the
concentration in the external solution and the reference concentration of given species α,
respectively. The chemical potential µS of the solvent at the equilibrium state is found as

µS = −kBTvS
∑

α�=S

c̄α (7)

with vS the volume per solvent molecule. Note that here v = vS, where v is the volume
per monomer (see Eq.(15)) [14]. The relation between the nominal concentration Cα(X)
in Ω0 and the true concentration cα(x) in Ω (see Figure 2) of given species α inside the
network is

Cα = Jcα (8)

while the relation between the volumetric concentration cα and molar concentration [α]
can be written

cα = NA[α] (9)

whereNA is Avogadro’s number. We assume the individual polymer and solvent molecules
to be incompressible and the volume fraction of the mobile ions to be sufficiently low to
neglect their contributions to the volume of the gel. Consequently, the volume ratio J
reads:

J = 1 + vsCs (10)

4
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Note that for the dry network J = 1. For vSCS � 1 Eq.(10) reduces to

J � vSCS (11)

In a cationic polymer network the actual charge density is governed by the equilibrium

A+H2O � AH+ +OH− (12)

which can be rewritten as

AH+ � A+H+ (13)

yielding positively charged monomer groups upon association. The relation in Eq.(13)
can be expressed through Ka as

Ka =
[H+][A]

[AH+]
(14)

The conservation of ionizable groups in the cationic network yields

CA(X) + CAH+(X) =
f

v
(15)

where f is the fraction of monomers with ionizable groups and v is the volume per
monomer. In addition, it is required that electroneutrality is maintained inside and out-
side the the gel. In the external solution, this condition is expressed as

c̄H+ + c̄+ = c̄− (16)

and inside the cationic network as

CH+(X) + C+(X) + CAH+(X) = C−(X) (17)

3.3 Material model

In order to describe the mechanical behaviour of the cationic gels studied by Tierney
et al. [16], we use a free energy function U consisting of four parts

U = Ustr + Umix + Uion + Uas (18)

Ustr represents the free energy of stretching per volume of the polymer chains and is given
as [9, 11, 12]

Ustr =
1

2
NkBT (I1 − 3− 2ln(J)) , with I1 = trC (19)

where N is the network crosslink density. Umix represents the free energy of mixing of the
polymer and the solvent [18, 9]

Umix =
kBT

vs

(

vsCsln

(

vsCs

1 + vsCs

)

+ χ

(

vsCs

1 + vsCs

))

(20)

5
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Figure 3: Illustration of a cationic gel in an external solution

which by using Eq.(10) becomes

Umix =
kBT

vs

(

(J − 1)ln

(

1− 1

J

)

+ χ

(

1− 1

J

))

(21)

where χ is the Flory-Huggins parameter. The free energy of mixing of the mobile ions
Uion is given by Hong et al. [10]

Uion = kBT
∑

α�=s

Cα

(

ln
Cα

vsCsc
ref
α

− 1

)

(22)

which using Eq.(11) can be written as

Uion = kBT
∑

α�=s

Cα

(

ln
Cα

Jcrefα

− 1

)

(23)

The free energy of association Uas can be expressed as

Uas = kBT

(

CAH+ ln

(

CAH+

CAH+ + CA

)

+ CAln

(

CA

CAH+ + CA

))

+ γCAH+ (24)

with γ the molar heat of association. Finally, the free energy of the gel is a function of
C, CH+ , C+, C−

U = U(C, CH+ , C+, C−) (25)

6
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Following Marcombe et al. [14] and using Eq.(25), the conditions for ionic equilibrium
give the following relations

c+ = c̄+
cH+

c̄H+

, (26)

c− = c̄−
c̄H+

cH+

, (27)

and crefH+e
γ

kBT =
cH+( f

vJ
− (c− − cH+ − c+))

c− − cH+ − c+
(28)

Eqs.(26) and (27) are known as the Donnan equations. Using Eqs.(8), (9), (14), (15), and
(17) the right hand side of Eq.(28) can be identified as NAKa

NAKa =
cH+( f

vJ
− (c− − cH+ − c+))

c− − cH+ − c+
(29)

Clearly, NAKa = crefH+e
γ

kBT and an expression for the molar heat of association γ can be
identified as

γ = kBT ln
NAKa

crefH+

(30)

Eqs.(26), (27), and (29) lead to a system of equations that can be solved for cH+ , c+ and c−
when the concentrations c̄H+ , c̄+ and c̄− in the external solution are known. Subsequently,
CAH+ and CA can be determined using Eqs.(17) and (15) and relation (8).

In order to implement the constitutive material model into the commercial finite ele-
ment code Abaqus [1] via the user subroutine UMAT, we use a Legendre transformation
of the free energy density function U (see [14, 10])

Û(C, c̄H+ , c̄+, c̄−) = U(C, CH+ , C+, C−)− C−(µ− + µ+)− C+(µ+ − µ−)− µSCS (31)

which can be used to solve the equilibrium with prescribed concentrations c̄H+ , c̄+ and
c̄− in the external solution.

The second Piola-Kirchhoff stress tenor S and the Cauchy stress tenor σ are derived
from the potential function Û using

S = 2
∂Û

∂C
, σ =

1

J
FTSF (32)

3.4 Kinetic behaviour

The material model presented in Section 3.3 may be used to model the equilibrium
swelling of a cationic hydrogel immersed in an external solution with given c̄H+ , c̄H+

and c̄− levels assuming that the solvent molecules have a chemical potential µS given by
relation (7). However, in order to simulate the transient swelling process of hydrogels,
the migration of solvent molecules into the hydrogel network must be accounted for. In

7
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this work, we assume that the diffusion coefficient of the solvent molecules D is isotropic
and independent of the deformation gradient F and the concentration CS [11]. The flux
vector j(X, t) is the number of molecules per unit time crossing per unit area the current
state Ω and is expressed as [8]

jk = − cSD

kBT

∂µS

∂xk

, with cS =
CS

J
(33)

The governing equation of diffusion is obtained by assuming the conservation of the solvent
molecules and reads [17]

∫

V

1

J

∂CS

∂t
dV +

∫

S

jkdS = 0 (34)

Following the methodology of Tho et al. [17], we assume that CS is only a function of µS,
Ī1 and trσ, and can consequently rewrite the time derivative of CS by use of the chain
rule

∂CS

∂t
=

∂CS

∂µS

∂µS

∂t
+

∂CS

∂Ī1

∂Ī1
∂t

+
∂CS

∂trσ

∂trσ

∂t
(35)

Combining Eq.(34) and (35) we find that
∫

V

1

J

∂CS

∂µs

∂µs

∂t
dV +

∫

S

jkdS = −
∫

V

1

J

(

∂CS

∂Ī1

∂Ī1
∂t

+
∂CS

∂trσ

∂trσ

∂t

)

dV (36)

In order to implement Eq.(36) in Abaqus [1], an analogy with heat transfer is utilized so
that the built-in coupled temperature-displacement elements can be adopted. The right-
hand term of Eq.(36) is implemented as an internal heat source via the user subroutine
HETVAL, and µS, v

∂CS

∂µs
, 1

J
, and vcsD are identified as the temperature, the specific heat,

the mass density and the conductivity, respectively. The deformation gradient F and the
chemical potential µS are solved for by Abaqus, D is a prescribed variable, while the rest
of the values are calculated as internal variables. A further discussion on the similarities
between heat transfer and diffusion of solvent molecules in hydrogels are provided by Toh
et al. [17].

4 FINITE ELEMENT MODEL

A finite element model of the hemi-ellipsoidal gel used in the study by Tierney et al.
[16] (see Figure 1) was defined in the commercial finite element software Abaqus [1]. The
axisymmetric properties of the problem were utilized to build a highly efficient axisym-
metric model meshing only a quarter of an ellipse. An illustration of the axisymmetric
model and the mesh used is shown in Figure 4. The bonding to the tip of the optical
fibre was included by defining a rigid constraint to the nodes at the bottom edge of the
gel. The radius of the gel was set to D/2=62.5 m, while the initial length of the gel
L was set according to the initial length measured for each gel in the experiments of

8
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Figure 4: Illustration of axisymmetric finite element model

equilibrium swelling due to changing salinity levels in Tierney et al. [16]. Approximately
300 quadratic axisymmetric coupled temperature-displacement elements with reduced in-
tegration (CAX8RT in Abaqus) were used to mesh the ellipse, with the temperature part
of the elements representing the chemical potential in the gel. For the equilibrium sim-
ulations the chemical potential was changed homogeneously in the whole model, while a
stepwise change in the chemical potential was applied to the outer boundary of the gel
in the kinetics simulations. The length change obtained in the model was calculated by
extracting the position of Node 1 throughout the simulations.

5 MATERIAL PARAMETERS

The constitutive model outlined in Section 3 was implemented in Fortran as a user
subroutine for the commercial finite element software Abaqus [1]. Material parameters
for hydrogels with different molfractions of DMAPAA were found by comparing simulation
results to experimental data on equilibrium swelling for salinity levels between 0.01 and 0.3
M. The value of Nv, where 1/Nv represents the number of monomers per polymer chain,
was set to 0.035 for all DMAPAA levels, as it gave a reasonable fit between experimental
data and simulation results. Assuming a volume per molecule of v = 10−28 m3 [11], this
value of Nv leads to a stiffness of the dry gel network, NkBT , of approximately 1.4 MPa
at room temperature (293 K). For all DMAPAA levels, a pKa value of 8.6 was assumed
[16] and the model parameter Ka in Eq. (14) could be found through Ka = 10−pKa. The
model parameter representing the fraction of ionizable groups f was set according to the
level of DMAPAA in each gel.

The Flory-Huggins parameter χ is in this study suggested to have a linear dependence
on the salt concentration c0 through: χ(c0) = χac0+χb. The value of χb was fixed to 0.4
for all gels while the value of χa was optimized for each DMAPAA level by minimizing

9
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during time and the modelled diffusion behaviour ensures a time-dependent swelling.
A comparison between experimental data and simulation results is shown in Figure 7.

It can be seen that the model is unable to represent the correct level of equilibrium swelling
for each step change of salinity, however, the total accumulated swelling as the salinity
level reach 0.074 M is well captured. This fact can be fully explained from the fit of the
equilibrium response for the 3 mol% material presented in Figure 6b where it can be seen
that the finite element model predicts a too stiff response for the equilibrium swelling in
the salinity range where the experiments on swelling kinetics are performed. Therefore, if
experimental data on the kinetics of swelling were available for a combination of DMAPAA
level and salinity range where a better reproduction of the equilibrium swelling response
is obtained, an improved match between the experimental and numerical results for the
equilibrium swelling levels would be expected.

Figure 7 present results from the model using a diffusion parameter D between 2·10−3

and 10·10−3 mm2/s. As expected, an increase in the value of the diffusion parameter
yields a faster convergence towards the predicted equilibrium state. As the equilibrium
behaviour is not captured with the present material parameters, it is hard to find a precise
optimized value for the diffusion parameter, however, it can be seen from the comparison
with the experimental results that a diffusion parameter of approximately 6·10−3 mm2/s
(represented by the solid line) seems to yield a good representation of the experimental
swelling kinetics.

7 CONCLUDING REMARKS

A constitutive model for the swelling of cationic gels is presented and the results from fi-
nite element simulations of gel swelling are compared with quantitative experimental data.
A linear relation between the Flory-Huggins parameter and the salinity concentration is
suggested. Material parameters were found that could give a quantitative description of
the materials for equilibrium swelling. This shows that the model is capable of describing
the dominating features of the swelling process of cationic hydrogels.

In addition, a framework for capturing the kinetics of gel swelling building on the
mathematical similarities between solvent diffusion and heat transfer was presented. This
transient model was shown to yield reasonable results when compared to the benchmark
experimental data.

For further work, the capabilities of the model to describe the equilibrium swelling
behaviour of hydrogels due to changes in pH as well as salinity level should be explored.
In addition, by obtaining more experimental data on the transient swelling behaviour of
the gels, a further validation of the kinetic part of the model can be performed and a
more precise diffusion parameter can be defined for the hydrogels at question.
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Abstract. Interactions between floating bodies and waves are found in several engineer-
ing applications like oil platforms or floating breakwaters. Floating bodies are strongly
influenced by the free surface and the fluid structure interaction. The modelling of floating
bodies in waves needs to consider rigid body dynamics, turbulent and viscous flow around
the floating body among others. To resolve these problems, the flow variables need to be
solved with high accuracy and detail. A CFD model which solves the Reynold-Averaged
Navier-Stokes Equations is suitable for the analysis of floating bodies in waves. In this pa-
per, the open-source CFD model REEF3D with a 6 degrees of freedom algorithm is used
to simulate the interaction of a floating barge in waves. The translational and rotational
motion of the barge in different directions and around different axes are calculated in two
dimensions. The numerical results are compared to experimental data for validation of
the model. Three-dimensional simulations with different geometries are carried out and
the motion of the barge analysed.

1 INTRODUCTION

Fluid-structure interaction (FSI) is an extensively studied field in engineering. In marine
engineering there are floating, moored structures like wave energy conversion devices, oil

1
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platforms or wind turbines. In civil engineering, nearby the coast, there are also floating
structures like piers or breakwaters. Breakwaters are needed for coast and harbour defence
against the action of the sea. The climate change, is creating a need for new solutions
to control the increase of sea water level and wave height during storms. Here, floating
breakwaters are a viable option compared to the traditional ways, especially, for areas
with a great water depth. For the design of the structures, new models or tools that
are able to calculate displacements, motions and forces on the structure with a higher
accuracy are needed.
Analytical methods were used to resolve these problems in the past but they don’t take
into account parameters like fluid viscosity or non-linear effects. Thus, these are limited
tools to solve problems of this nature. Since the last decades, numerical simulation with
Computational Fluid Dynamics (CFD) software is been used. Floating structures present
several challenges caused by the non-linearity of the free surface and the complexity of
the problems to solve like turbulence, wave breaking or motion of the body. Navier-
Stokes (NS) or Reynolds-averaged Navier-Stokes equations (RANS) are used by several
models using the finite difference method or the finite volume method with techniques
like Level set function and Volume of fluid to obtain the free surface. The free surface
can be computed as a single-flow [1] neglecting the effect of the air or a two-phase flow
including the effect of it. First studies used a single-phase flow, the Arbitrary Lagrangian-
Eulerian (ALE) Method [2], where the mesh moves with the boundary and interface all
the time. However, this method it’s not satisfactory for problems where the free surface
is not smooth and continuous or has large deformations. Another approach on the ALE
method is the Immersed Boundary (IB), introduced by Peskin [3]. On a fixed Cartesian
mesh the flow equations are solved and the effect of the boundary is computed with an
imaginary force field. With the level set function, the interface between water and air, in
the case, becomes the zero-contour of the level set function.
The 6DOF (six degrees of freedom) are composed by 3 displacements and 3 rotations.
Displacements are surge, sway and heave in X, Y and Z direction, respectively. Rotations
are roll, pitch and yaw around X, Y and Z axis respectively. In this paper a free floating
body will be simulated. Firstly, validation of the code is realised with three motions in
two dimensions: surge, heave and pitch. Three different cases in three dimensions are
simulated as further analysis. All the cases are simulated with REEF3D [4], an open
source CFD code developed at the Department of Civil and Transport Engineering at
Norwegian University of Science and Technology (NTNU), Norway. The software has been
used in several applications being validated in [5], wave forces and free surface analysis
around horizontal cylinders in tandem[6], waves forces and wave elevation around vertical
cylinders [7]. Firstly, the methodology including governing equations of the model is
explained. Secondly, the experiment configuration, validation and simulations. Lastly,
conclusions of the paper.

2
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2 NUMERICAL MODEL

2.1 Governing equations

Continuity and incompressible Reynolds-Averaged Navier-Stokes (RANS) equations are
the governing equations of the numerical model:

∂ui

∂xi

= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ
+

∂p

∂xi

+
∂

∂xj

[
ν

(
∂ui

∂xj

+
∂uj

∂xi

)
− uiuj

]
+ gi (2)

where u is the velocity over time t, x is the spatial geometrical scale, ρ is water density, ν
is kinematic viscosity, p is pressure, uiuj represents the Reynold stresses and g is gravity.
The spatial domain is discretize with a Cartesian grid for the easiness when defining the
geometry and the numerical algorithms. The spatial domain is a numerical wave tank
(NWT) which is divided in three zones. In the first zone with a wavelength length, the
waves are generated. The second zone is the wave tank where the problem is solved. In the
last zone which is two wavelengths long, the waves are dissipated. A relaxation method
for the wave generation and numerical beach is used for the generation and dissipation
of waves [8]. For the time domain, the explicit third-order Total Variation Diminish-
ing (TVD) Runge-Kutta scheme is used. The equations of the third-order Runge-Kutta
scheme for the generic variable ϕ are based on [9].

2.2 Level set function

The free surface is obtained with the level set method as a two-phase system. the zero-
contour of the level set function is set between fluids where the zero level set of a signed
distance function, ϕ(x⃗, t) [10], is used to represent the interface between air and water.
The two interfaces are distinguished by the change of sign. This results in:

ϕ(x⃗, t)




> 0 if x⃗ ϵ phase 1

= 0 if x⃗ ϵ Γ

< 0 if x⃗ ϵ phase 2

(3)

The level set function is coupled to the flow field with a pure convection equation:

∂ϕ

∂t
+ uj

∂ϕ

∂xj

= 0 (4)
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When the level set function evolves, the level set function can loose its signed distance
property. A solution is to reinitialize the level set function after every time-step. The
reinitialization is based on the solution of a partial differential equation [11]:

∂ϕ

∂t
+ S(ϕ)

(����
∂ϕ

∂xj

����− 1

)
= 0 (5)

The PDEs in Eqs. 4 and 5 are solved with the fifth-order accurate Hamilton-Jacobi
version of the WENO scheme [12] for the spatial discretization and the third-order TVD
Runge-Kutta scheme [9] for the discretization in time.

2.3 6DOF algorithm

The FSI calculation for the floating body is carried out in the following way. A triangular
surface mesh without connectivity is created to define the geometry of the body in STere-
oLitography (STL) format. A ray-tracing algorithm, calculating the shortest distance to
the closest triangle for the grid point, is used to determine the intersections of the surface
mesh with the underlying Cartesian grid. The level set method is used to define the
boundaries. The standard reinitialize algorithm is used to obtain signed distance proper-
ties for the level set function in the vicinity of the solid body. The forces on the surface Ω
are determined for each direction i separately with the pressure p and the viscous stress
tensor τ :

Fi,e =

∫

Ω

(−nip+ ni · τ)dΩ (6)

The distance of the centre of gravity from the origin of the body grid can be determined
with:

rcg =
1

m

∫

V

rρadV (7)

where r is the distance from each surface cell to the origin of the body-fitted coordinate
system. Assuming that the origin of the body-fitted coordinate system is at the centre of
gravity of the floating body, r is the distance of each surface cell to the centre of gravity.
The moment can be calculated with the following equation:

Li,e =

∫

Ω

r × (nip+ ni · τ)dΩ (8)

The calculation of the discrete surface area is done with a Dirac delta function:

4
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dΩ =

∫
δ(ϕ)|∇ϕ|dx (9)

The location and orientation of the floating body are given by the position vector and the
Euler angles:

η = (η1, η2) = (xcg, ycg, zcg, ϕ, θ, ψ) (10)

The calculation of the moments of inertia can be simplified with two different coordinate
systems, one inertial for the fluid and another non-inertial for the floating body. Forces
and moments can be calculated in the inertial coordinate system and when the origin of
the non-inertial coordinate system coincides with the centre of gravity, the moments of
inertia are calculated with a diagonal matrix:

I =



Ix 0 0
0 Iy 0
0 0 Iz


 =



mr2x 0 0
0 mr2y 0
0 0 mr2z


 (11)

where rx, ry and rz are the distance between the point and the centre of gravity in each
direction x, y, z.
After, the forces and moments can be expressed in the non-inertial coordinate system
with a transformation matrix J−1

1 with three rotations around each axis:

afb =




cψ cθ sψ cθ −sθ
−sψ cϕ + sϕ sθ cψ cψ cϕ + sϕ sθ sψ sϕ cθ
sθsψ + cϕ sθ cψ −sϕ cψ + cϕ sθ sψ cθ sϕ


 ae = J−1

1 ae (12)

where sin has been denoted as s and cos as c.
afb is the vector in the reference frame of the floating body and ae is the vector in the
reference frame of the inertial system.

The dynamic rigid body equations can be solved with the forces X, Y, Z; momentums K,
M, N and moments of inertia:

Fi = J−1
1 Fi,e = [X, Y, Z]

Li = J−1
1 Li,e = [K,M,N ]

(13)

with:

5
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[m(u̇− νr + ωq)] = X

[m(ν̇ − ωr + νq)] = Y

[m(ω̇ − νr + ωq)] = Z

[m(ω̇ − νr + ωq)] = Z

[Ix(ṗ+ (Iz − Iy)qr] = K

[Iy(q̇ + (Ix − Iz)rp] = M

[Iz(ṙ + (Iy − Ix)pq] = N

(14)

where u, v, w the linear velocities and p, q, r the angular velocities obtained before. Then
u̇, v̇, ẇ, ṗ, q̇ and ṙ can be calculated in an explicit manner.
Linear and angular velocities φ̇, position or orientation vector φ of the floating body can
be calculated with a second-order Adams-Bashforth scheme for the new time-step:

φ̇n+1 = φ̇t +
∆t

2

(
3φ̈n+1 − φ̈n

)

φn+1 = φn+
∆t

2

(
3φ̇n+1 − φ̇n

) (15)

The floating body dynamics are solved in a explicit way. The dynamic rigid body equa-
tions are solved in the floating body reference frame. Translations and orientations are
also calculated. The transformation is done with the following matrix J2, where sin has
been denoted as s, cos as c and tan as t:

η̇2 =



1 sϕ tθ cϕ tθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ


ν2 = J2ν2 (16)

The boundary conditions for the velocities on the solid-fluid interface result from the
motion of the solid body in respect to its centre of gravity:

ui = η̇1 + η̇2 × r (17)

Pressure oscillations near the solid body occurs because of solid cells turns into fluid cells
and vice versa. The field extension method [13][14][15] is implemented and adapted to the
ghost cell immersed boundary method [4]. For non-moving boundaries, a zero-gradient
boundary condition is used for the pressure. The following boundary condition for the
gradient of the pressure is used to maintain a physical pressure gradient near the floating
body:

∂p

∂xi

= −1

ρ

Dui

Dt
(18)
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To obtain ui, eq. 17 is differentiated with respect to time and used for the ghost cell
values for the pressure:

Dui

Dt
=

∂

∂t
(η̇1 + η̇2 × r) (19)

To avoid problems caused when a cell becomes a fluid cell and have non-physical values for
velocities and pressure, velocities from eq. 17 are used and the pressure is found through
interpolation from the fluid.

3 VALIDATION

3.1 Freely floating body in two-dimension simulation

A floating rigid body is simulated in two dimensions under the effect of waves. The body
has three degrees of freedom in the simulation: surge, heave and pitch. The floating
body consists of a rectangular barge with a length of l=0.30 m and a height of h=0.20
m following Ren[16]. The breadth of the barge is equal to the total width of the tank.
The water depth is d=0.4 m. The density is ρ=500 kg/m3. The initial position is defined
by the centroid of the barge at x=7.0 m, z=0.4 m. Results obtained are compared with
the experiment. The simulation is carried out in a tank which is 20 m long and a height
of 0.8m. The barge is positioned at 7 m from the start of the tank in order to diminish
the effect of wave reflection. Waves are 2nd order Stokes type, with wave period T=1.2
s, wave height H=0.04 m and wavelength L=1.93625 m. Different grids are used in the
case: 0.01 m and 0.005 m with a total cells of 2000x150 and 4000x300, respectively. The
total computational time is 12 s with a time-step size of 0.05 s.
In Fig. 1a the wave elevation is presented with a good correspondence with experiment
data. Experiment data matches the simulations after t/T=6.4. The heave results pre-
sented in Fig. 1b show a good agreement between both grid sizes and experiment results.
The numerical model result are accurate in relation to the height reached by the barge
except the second and third crest waves. The troughs of the numerical model result are
slightly smaller than the experiment with the exception of the last wave. In Fig. 1c, the
rotation of the box around global axis Y is presented. There is a deviation from the coarser
grid of 0.01 m to the finer grid of 0.005 m. Results from simulation matches experiment
data really well, especially for the 0.005 m grid. In Fig. 1d, the surge motion is shown.
Both grid sizes present a negative part in the start of the simulation meaning that the
box is coming nearer the start of the tank. The surge presents an oscillatory movement
due to the non-linear 2nd order Stokes wave theory used. After the initial negative part,
all grids start to move towards the end of the tank. Results with grid size 0.005 m match
experiment data really well except the first and second troughs. The grid size of 0.01 m
present a shorter movement. The ratio of movement of both grid sizes agrees with the
experiment.

7
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Figure 1: Wave elevation, heave, pitch and surge motion and experiment data.
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3.2 Freely floating body in three-dimension simulation

In this section, a three-dimension simulation of the barge with the same wave conditions
as the case presented in section 3.1 is carried out. The length of the NWT is 20.0 m and
the height 0.8 m. The width of the tank varies defining three cases shown in Table 1.

Case A Case B Case C

Tank width (m) 0.2 0.3 0.5
Centre of gravity Y axis (m) 0.1 0.15 0.25

Table 1: Tank width and position of the barge in Y axis

The breadth of the barge is b=0.1 m for all the cases. The length and height remain
from section 3.1 as l=0.30 m and h=0.20 m, respectively. The position of the barge is
defined by its centroid at x=7.0 m and z=0.4 m. The Y-coordinate of the barge is set in
the middle of the tank for all cases, shown in Table 1. The density ρ=500.0 kg/m3 and
water level height d=0.4 m are kept as the two-dimension case 3.1. The wave conditions
are the same as the two dimension case. The grid used is 0.01 m for all cases. Total
cells are 2000x20x80, 2000x30x80 and 2000x50x80 for case A, B and C, respectively. The
grid of 0.01 m is chosen among others for the accuracy-computational time result, seen
in the results in section 3.1. Turbulence and water flow in the space between the barge
and the tank walls will affect the free floating motion. Results between the cases will be
compared.
In Fig. 2a, the wave elevation is presented. The wave height match among cases confirm-
ing that all cases have the same wave conditions. A slight difference is observable in case
A in the last two troughs. In Fig. 2b the heave motion of the barge is presented. All
cases have a little heave motion in the start of the simulation between t/T=0 and t/T=2.
It shall be noted that the starting heave is also presented in Fig. 1b with a smaller mag-
nitude. Heave motion is similar between all the cases. Case A shows in general smaller
crest than other cases. Case C has a change in the slope around t/T=10 when the body
is moving down. Heave motion is similar for the cases so the space between the barge and
the tank walls doesn’t affect largely this motion. Pitch motion is shown in Fig. 2c. Case
A starts with a negative rotation compared to the other two. In this case, the pitch starts
irregularly until t/T=5 when it follows the motion of the other cases. This difference is
due to the smaller tank width in case A than the others. The flow passing in the gap
affects the rotation of the barge. Case B and C have a similar motion in the start of the
simulation. However, case B has a smaller pitch motion. It is noticeable that in cases A
and C with the smallest and biggest tank width, the pitch motion almost concurs after
t/T=6. In Fig. 2d, surge is presented. All cases start with a negative surge motion
where the barge is coming closer to the wave generation zone because of the drift. This
is notable for case B where the positive surge doesn’t start until t/T=5. After, it starts
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moving with a slope analogous to case A and C. Surge of case A and C are similar with
a movement along X axis.
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Figure 2: Comparison of wave elevation, heave, pitch and surge motion with grid size dx=0.01 m for
different tank widths.

In Fig. 3 the motion the box is presented with a time-step of t/T=2 starting at t/T=4
with the first wave. In the Fig. each line presents a case and each row the same time-step.
All the Figs. are taken from the same position. This allow to check the motions of the
barge over time for a case and compare among cases. Besides the horizontal X velocity is
shown along with the free surface. In Figs. 3c, 3f and 3i, it is noticeable the difference in
surge motion between case B and case A and C.
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(a) Case A. t/T=4 (b) Case A. t/T=6 (c) Case A. t/T=8

(d) Case B. t/T=4 (e) Case B. t/T=6 (f) Case B. t/T=8

(g) Case C. t/T=4 (h) Case C. t/T=6 (i) Case C. t/T=8

Figure 3: Free surface, motion of the barge and velocity at t/T=4, 6, 8 for cases A, B and C.

4 CONCLUSIONS

The 6DOF algorithm implemented in REEF3D has been analysed, validated and tested
for a free floating rectangular barge. A two dimension case has been studied with two grid
sizes. It has been noted that a grid size of 0.01 m presents good results in comparison to
the finer grid of 0.005 m, so three dimension simulations have been performed with the
0.01 m grid size. Results for the two dimension case match very well the experimental data
for the different motions validating the 6DOF algorithm for two dimensions modelling.
Further analysis in three dimension have been performed with the same experiment set
up. The breadth of the barge has been changed as well as the width of the tank setting
three different cases. The motion of the barge affected by the flow and turbulence in the
gap between the tank walls and the barge have been studied.
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Abstract. In this work the geometrically exact three-dimensional beam theory has been
used as basis for development of a family of isoparametric higher order large deformation
curved beam elements. Geometrically exact three-dimensional beam theory has no restric-
tions with respect to the magnitude of displacements, rotations and deformations. While
reduced integration may be used to alleviate transverse shear and membrane locking in
linear and quadratic C0-continuous Lagrange elements, this does not automatically extend
to higher order elements. In this study we demonstrate that uniform reduced numerical
quadrature rules may be used to obtain locking-free isoparametric large deformation ge-
ometrically exact curved beam elements of arbitrary order. A set of carefully selected
numerical examples serves to illustrate and assess the performance of the various geo-
metrically exact elements and compare them with one of the most popular finite element
formulations for solving nonlinear beam problems based on the corotational formulation.

1

A comparative study of beam element formulations for nonlinear analysis:  Corotational vs 
geometrically exact formulations



246

Kjell M. Mathisen et al.

1 INTRODUCTION

The finite element (FE) method has been widely used in nonlinear analysis of three-
dimensional (3D) curved beam-like structural systems subjected to large displacements
and large strains for several decades. Numerous approaches have been proposed, but
the vast majority of them have been limited to considering the beam element reference
geometry being a straight line. In this work we aim to extend the geometrically exact
(GE) beam model (see Simo [27] and Simo and Vu-Quoc [28, 29]) based on Reissner’s
3D beam theory [24], to model arbitrary shaped curved beam geometry. Several authors,
e.g., Stolarski and Belytschko [30] and Ibrahimbegović [16], have observed that increasing
the accuracy of the approximated curved beam geometry entails a significant increase in
accuracy. The curved 3D GE beam formulation presented herein is able to accommodate
large displacements, finite rotations and finite strains. In contrast to the corotational
(CR)-type of beam elements (see, e.g., Battini and Pacoste [3, 4], Crisfield [9], Felippa
and Haugen [11], and Mathisen and Bergan [20]), it can be easily extended to higher-order
beam elements. Saje [26] extended the GE beam model to higher-order two-dimensional
(2D) curved beams and Ibrahimbegović [16] to 3D curved beams. However, the latter work
was restricted to quadratic hierarchical displacement interpolation. To our knowledge the
current work represent the first attempt to extend the GE beam model to an arbitrary
order of interpolation. Also our extension of the linearly interpolated straight beam
formulation proposed by Simo and Vu-Quoc [28] follows more closely the CR approach
since we derive the energy-conjugate strains from a polar decomposition of the deformation
tensor rather than defining stress resultants and couples a priori and achieving energy-
conjugate strain measures through the variational formulation which was employed in the
original work.

In this context, our aim is to develop a family of GE 3D beam elements free of locking
for the analysis of geometrically nonlinear finite deformation curved beam-like structural
systems. In order to do that, we propose an extension of the GE beam model presented
in [27, 28, 29], to higher-order Lagrangian-based discretization of both the geometry, dis-
placement, and the rotational fields. To alleviate locking, we have proposed and validated
quadrature rules based on uniform reduced integration of the translational and rotational
part of the beam model for arbitrary order of interpolation.

This paper is outlined as follows. In Section 2, the GE beam model due to Simo [27]
and Simo and Vu-Quoc [28, 29] is presented. Section 3 highlights locking effects in beams
together with a presentation of the various enhancements used to alleviate locking. In
Section 4, the various proposed GE elements are tested and compared with several 2-noded
beam elements based on the CR formulation proposed by Battini and Pacoste [3, 4] on a
selection of beam problems. Finally, in Section 5 we summarize and draw conclusions.
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2 A GEOMETRICALLY EXACT BEAM MODEL

In this section we consider the continuum basis for a GE beam theory that is optimally
suited for computational solution by the FE method. GE beam theory is sometimes
referred to as the Reissner’s beam theory [24], but strictly speaking, the latter is only
exact for a planar beam [23]. The theory presented herein is based on the pioneering
work of Simo [27] and Simo and Vu-Quoc [28, 29], that in [29] introduced the still-used
terminology GE beam model to indicate that Reissner’s theory was recast in a form
which is valid for finite rotations. The GE beam model has later been revisited and
further developed by numerous authors over more than two decades, e.g., Cardona and
Géradin [7] and Ibrahimbegović [16], in which the latter extended the theory to handle
curved reference geometry. Beam models of this type have been coined geometrically exact
because they account, without approximation, for the total deformation and strains.

2.1 Beam geometry in 3D space

The beam is viewed as a 3D body, whose material placement can be described by the
line of centroids B0 ⊂ R3, that has attached at each point a planar non-deformable cross
section A0 in the reference configuration. A local curvilinear coordinate system is chosen
to parameterize this line through an arc-length coordinate S along B0 in the reference
configuration. Let {ii(S, t)}i=1,2,3 represent a local Cartesian moving frame whose origin
is fixed at the centroid at all times, i1(S, t) remains perpendicular to A and {iα(S, t)}α=2,3

span the cross section of the beam in the current configuration. Henceforth, we use the
summation convention with Latin indices ranging from 1 to 3 and with Greek indices
ranging from 2 to 3. In the reference configuration the orthonormal basis vectors are
denoted i0i (S) = ii(S, 0) and the associated set of cross section coordinates x0

α (see Fig. 1).
Let X(S) and x(S, t) define the position of B0 and B in the 3D space in the reference
and current configuration, respectively:

x(S, t) = X(S) + u(S, t), (1)

where u(S, t) denote the displacement of B0 at any time t. We assume that the length of
the line of centroids B0 and B is L0 and L, respectively.

Without loss of generality, we assume that; (1) the beam has uniform cross sections,
i.e., cross-sectional properties remain constant along the entire length of the beam, (2)
the beam reference configuration is stress- and strain-free, and (3) the cross sections are
initially normal to B0, hence:

i01(S) =
dX(S)

dS
= X ′(S), (2)

where prime denotes the derivative with respect to the arc-length coordinate S.
In accordance with standard hypothesis for beams, we further assume that:
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i03
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I2, X2, x2

I3, X3, x3

I1, X1, x1

X,Λ0

u,Λ

A0

A

Figure 1: Definition of the various frames and configurations for the GE beam model.

(i) The cross sections remain plane and undeformed in the current configuration, i.e.,
warping effects are not accounted for.

(ii) The cross sections that initially are normal to B0 do not necessarily remain normal
to the deformed line of centroids B in the current configuration, i.e., transverse
shear deformations are accounted for; hence i1(S, t) remain normal to A but not
necessarily tangent to B.

The orientation of the moving local Cartesian frame ii(S, t) along S ∈ [0, L], and
through time t ∈ [0, T ] is governed by the orthogonal two-point tensor Λ(S, t) such that

ii(S, t) = Λ(S, t)i0i (S) ⇒ Λ(S, t) = ii ⊗ i0i ; ‖ ii ‖=‖ i0i ‖= 1 ⇒ ΛTΛ = ΛΛT = I, (3)

where I denote the identity tensor. Defining the reference and current configurations with
respect to a global Cartesian frame Ii, the above transformation reads:

ii(S, t) = Λ(S, t)Λ0(S)Ii ⇒ Λ0(S) = i0i ⊗ Ii, (4)

where Λ0(S) defines the orientation of the local Cartesian frame i0i (S) in the reference
configuration. The current configuration C of the 3D beam at any time t will then be
uniquely determined by the current position and the rotation of the centroid of the cross
section, i.e., the origin of the moving frame:

C = {ϕ = (x,Λ) : [0, L]× [0, T ] −→ R3 × SO(3)}, (5)
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where SO(3) represents the special orthogonal (Lie) group, i.e., the group of all rotations
about the origin of R3 under the operation of composition. As a consequence, the 3D
kinematic description of the beam is reduced to a 1D kinematic description with the arc-
length coordinate S as the only parameter. With these definitions, the 3D beam geometry
in the current configuration may be defined as

x3D(S, x0
α, t) = x(S, t) + p(S, x0

α, t), (6)

where
p(S, x0

α, t) = Λ(S, t)p0(S, x
0
α) = Λ(S, t)x0

αi
0
α(S). (7)

p and p0 denote the cross section position vector along B, i.e., the position of a point P
relative to the centroid within a cross section, in the current and reference configuration,
respectively. Herein, we only consider quasi-static analysis of beam problems. However,
the kinematic description presented in this section is identical for static and dynamic
problems. For that reason, ”time” and ”pseudo-time” as well as ”time step”, ”incremental
step” and ”load step” are used as equivalents throughout this work.

2.2 Parameterization of finite 3D rotations

The principal difficulty by representing 3D finite rotations by an orthogonal tensor Λ
is due to the fact that SO(3) is not a linear (vector) space, but rather a manifold, hence
consistent linearization and update procedures are no longer straightforward. In the
context of time-independent (static) analysis, Ibrahimbegović [17] overcame this problem
by reparameterizing the configuration space of the beam by making use of the so-called
rotation vector θ, defined by

θ = θe, (8)

where e is a unit vector defining the axis of rotation and θ =
√

θ21 + θ22 + θ23 is the
magnitude of the rotation vector. The relation between Λ and θ is governed by the
Rodriguez formula which represents a closed form solution of the exponential mapping

Λ = exp[˜θ] = I +
sin θ

θ
˜θ +

1− cos θ

θ2
˜θ˜θ, (9)

where ˜θ denote the skew-symmetric tensor for which θ is the axial vector, i.e.:

θ = [θ1, θ2, θ3] ⇒ ˜θ = skew[θ] =





0 −θ3 θ2
θ3 0 −θ1
−θ2 θ1 0



 . (10)

With such a parameterization, the configuration space C becomes a linear space:

C = {ϕ = (x,Λ) : [0, L]× [0, T ] −→ R3 × R3}. (11)

5
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The admissible variation δΛ of the orthogonal tensor of finite rotations can be con-
structed by making use of the exponential mapping

δΛ = ˜δwΛ = Λ˜δψ. (12)

Physically, ˜δw and ˜δψ represent infinitesimal spatial and material rotations superposed
onto the existing rotation Λ. The spatial spin variables, δw, are also related to the
variation of the rotational vector through (see [17])

δw = Ts (θ) δθ, (13)

where

Ts (θ) = I +
1− cos θ

θ2
˜θ +

θ − sin θ

θ3
˜θ˜θ. (14)

If the rotational vector is used as parameterization, the rotations become additive and
are updated at each iteration. However, the relation in Eq. (13) cease to be bijection
for θ = 2nπ. Consequently, with the parameterization using the rotational vector, the
angle of rotation is limited to 2π. In large deformation analysis, and especially in dynamic
large deformation analysis, angles of rotation can become much larger than 2π. In order to
overcome this limitation, Cardona and Géradin [7] and Ibrahimbegović et al. [17] proposed
to apply Eq. (13) only within an increment and introduced the concept of incremental
rotation vector, based on the following update procedure:

(i) At the beginning at the time step (n + 1), i.e., for iteration i = 0, the incremental
rotation vector is set to zero:

θ0
n+1 = 0. (15)

(ii) At the ith iteration the incremental rotation vector is updated additively

θi
n+1 = θi−1

n+1 +∆θ, (16)

where ∆θ represents the iterative change of the incremental rotation vector.

(iii) The corresponding orthogonal tensor Λ is updated using exponential mapping

Λi
n+1 = exp[˜θi

n+1]Λn. (17)

Hence, additive updates still apply within each time step and the amplitude of the rota-
tions are thus just limited within each time step. Alternatively, if the spatial spin variables
are used to parameterize the finite rotations, the update is performed according to

Λi
n+1 = exp[˜∆w]Λi−1

n+1, (18)

where ∆w denote the corresponding iterative change of the spatial spin variables.
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2.3 Strain measures

In contrast to previous works [7, 16, 17, 23, 24, 27, 28, 29], where energy-conjugate
strain measures were based on stress resultants defined a priori, Auricchio et al. [1] derived
a GE beam model in which proper strain measures at any point of the beam in C were
obtained by a polar decomposition of the deformation gradient F . With the definition of
the 3D geometry in C, see Eq. (6), the deformation gradient may be expressed as

F =
∂x3D

∂x0
i

⊗ i0i =
(

x′ +Λ′x0
αi

0
α

)⊗ i01 + iα ⊗ i0α. (19)

Utilizing Eq. (12), the derivative of the rotation tensor Λ with respect to S may be
expressed as

Λ′ = κ̃Λ ⇔ κ̃ = Λ′ΛT , (20)

where κ̃ = κ̃(S) is a skew-symmetric tensor represented by the axial vector κ denoting the
spatial rotational (torsional and bending) strains, i.e., the spatial curvature. Furthermore,
adding and subtracting the tensor i1 ⊗ i01 to the right-hand-side and recognizing that
ii ⊗ i0i = Λ, we may rewrite Eq. (19) and make a material polar decomposition of F

F = Λ
{

I +
[

ΛT (x′ − i1) +ΛT κ̃x0
αi

0
α

]⊗ i01
}

= ΛU . (21)

In Eq. (21), U defines the right (current local) stretch tensor from which we may derive
the Biot strain measure B (often referred to as the Jaumann strains), that are objective
corotated engineering strains independent of rigid body displacements

B = ΛTF − I = U − I = ε⊗ i1 with ε = ΛT (γ + κ̃p) = Γ+ ˜Kp0, (22)

where ε represents a generalized convected strain measure, γ the translational (axial
and transverse shear) spatial strains and κ the rotational (torsional and bending) spatial
curvature strain vector. The corresponding convected material strains are represented by
upper case letters Γ and K. The relationship between the material and spatial forms
may then be expressed as

Γ = ΛTγ with γ = x′ − i1,

K = ΛTκ with κ = Ts(θ)θ
′.

(23)

A physical interpretation of the spatial strain measures is that the components of γ
represent the true axial and transverse shear strain measures with respect to the current
moving frame ii(S, t), e.g., γ1 represents the elongation of an infinitesimal fiber in the
direction normal to the cross section while γ2 and γ3 are the corresponding transverse
shear strains. Similarly, the three components of κ, represents the true torsional (κ1) and
bending strain measures (κ2 and κ3) with respect to the moving frame.

7
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2.4 Stress resultants, constitutive equations and balance laws

Work conjugate with the strain measures in Eq. (23), we define material and spatial
stress resultants and couples, N ,M and n,m, where the latter are obtained by a push-
forward of the convected resultants and couples:

n = ΛN and m = ΛM . (24)

The first component of the force resultants n,N denotes the axial force in the direction
of i1, i

0
1, while component 2 and 3 denote the transverse shear forces in the directions of

iα, i
0
α, respectively. Similarly, the first component of the stress couples m,M denotes the

torsional moment about the axis of i1, i
0
1, while component 2 and 3 denote the bending

moments about the axes of iα, i
0
α, respectively. For a hyperelastic material the convected

resultants may be obtained from a strain energy function Ψ(Γ, K) through the relations

N =
∂Ψ(Γ, K)

∂Γ
and M =

∂Ψ(Γ, K)

∂K
. (25)

In our study we assume that we have a linear isotropic relation between stresses and
strains. This results in a St. Venant–Kirchhoff-type constitutive relation that may be
expressed in terms of E and G, denoting the Young’s and the shear modulus, respectively.
The corresponding resultant constitutive laws reads

N =





N 1

N2

N3



 =





EA0 0 0
0 GĀ02 0
0 0 GĀ03









Γ1

Γ2

Γ3



 = CNΓ with
N i = N · i0i
Γi = Γ · i0i , (26)

and

M =





M1

M2

M3



 =





GIT 0 0
0 EI33 −EI32
0 −EI23 EI22









K1

K2

K3



 = CMK with
M i = M · i0i
Ki = K · i0i ,

(27)
where GĀ0α denotes the reduced cross section shear area in the direction of i0α, IT the
torsional stiffness and Iαβ =

∫

A0
x0
αx

0
βdA the cross section second moment of area.

The corresponding relation between the spatial stress resultants and couples and the
energy conjugate strains γ and κ, is obtained by combining Eqs. (23), (24), (26) and (27)

n = ΛCNΛ
Tγ and m = ΛCMΛTκ. (28)

As shown by Reissner [23, 24], Simo [27] and Simo and Vu-Quoc [28, 29], the beam
balance equations can be obtained without any simplifying hypothesis regarding geometry,
and size of displacements and rotations, hence, this theory is referred to as GE. If we
consider n̄ and m̄ to be the externally applied force and moment per unit length the

8



253

Kjell M. Mathisen et al.

time-independent linear and angular momentum balance (strong form) equations for the
GE beam model reads:

n′ + n̄ = 0 and m′ + x′ × n+ m̄ = 0. (29)

A unique strong form solution must satisfy the balance equations stated in Eq. (29)
supplemented with the boundary conditions:

x = x̄ on Bϕ
x and Λ = Λ̄ on Bϕ

Λ,

n = n̄ on Bσ
n and m = m̄ on Bσ

m,
(30)

where Bϕ
x , Bϕ

Λ, Bσ
n and Bσ

m denote the part of the beam where displacements, rotations,
stress resultants and couples are prescribed, respectively.

2.5 Variational equations

The variational or weak form of the static equilibrium equations states that the solution
to the beam problem (29) with the associated boundary conditions (30) is the motion
ϕ = (x,Λ) ∈ S that satisfies the principle of virtual work, which states that

δW = δW int + δW ext, (31)

for all admissible virtual variations δϕ = (δx, δw). The internal virtual work carried out
by the spatial stress resultants and couples over the associated admissible variations in
the current configuration is given by (for more details see, e.g., Cardona and Géradin [7]
or Helgedagsrud et al. [12]):

δW int = δW int(ϕ, δϕ) =

∫

L

{(δx′ + x′ × δw) · n+ δw′ ·m}d�. (32)

The external virtual work due to the distributed externally applied force and moment per
unit length may be expressed as:

δW ext = δW ext(δϕ) = −
∫

L

{δx · n̄+ δw · m̄}d�. (33)

Combining the internal and external virtual work terms, we obtain the following spatial
form of the variational formulation of the GE beam model: Find ϕ = (x,Λ) ∈ S, such
that ∀δϕ = (δx, δw) ∈ V :

∫

L

{(δx′ + x′ × δw) · n+ δw′ ·m}d� =
∫

L

{δx · n̄+ δw · m̄}d�. (34)

In the formulation, S and V are suitably defined trial and test function spaces for the
GE beam problem. Strictly speaking, the space of kinematically admissible variations for

9
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the GE beam model is the tangent space at ϕ to the abstract configuration manifold C,
which is denoted TϕC. Hence, in general δϕ must be a member of the tangent space TϕC.
However, as pointed out in Section 2.2, when δw is an infinitesimal rotation superposed
on the finite rotation Λ and the update is performed as an exponential map, the space of
admissible variations is defined as:

V = {δϕ = (δx, δw) : [0, L]×[0, T ] ∈ R3×R3|δx = 0 on Bϕ
x and δw = 0 on Bϕ

Λ}. (35)

2.6 Linearized variational equations

The virtual work equations for the finite deformation GE beam model are in general
highly nonlinear. For this reason the problem is reduced to a set of nonlinear algebraic
equations, whose solution is obtained utilizing an incremental-iterative Newton–Raphson
approach. In order to obtain the consistent tangent of Newton’s method, i.e., the tangent
granting quadratic convergence rate, a consistent linearization of the associated variational
equations must be performed. The incremental virtual work results in two contributions
to the tangent stiffness, the material and geometrical part. With the expressions for the
incremental and linearized virtual spatial strain measures at hand the material part is
obtained by keeping the geometry constant varying the material resultants

∫

L

{(δx′ + x′ × δw) ·ΛCNΛ
T (∆x′ + x′ ×∆w) + (δw′) ·ΛCMΛT∆w′}d�, (36)

whereas the geometric part is obtained keeping the material properties constant while
varying the geometry

∫

L

{[(δx′ + x′ × δw)×∆w − δw ×∆x′] · n+ (δw′ ×∆w) ·m}d�. (37)

2.7 Discrete formulation

In this work we assume that standard Lagrangian basis functions are used to discretize
both the geometry in the reference and the current configuration,X and x, and the virtual
and incremental displacement and rotational fields, δϕ = (δx, δw) and ∆ϕ = (∆x,∆w),
of each individual element of the centroidal line B0:

Xh =
nn
∑

A=1

RAXA, xh =
nn
∑

A=1

RAxA, δxh =
nn
∑

A=1

RAδxA,

δwh =
nn
∑

A=1

RAδwA, ∆xh =
nn
∑

A=1

RA∆xA and ∆wh =
nn
∑

A=1

RA∆wA,

(38)

where nn is the number of nodes associated with the element, RA is the standard La-
grangian basis function accompanying node A, whereas XA, xA, δxA, δwA, ∆xA and
∆wA are the corresponding reference and current coordinate, virtual and incremental
displacement and rotation parameter, respectively.

10



255

Kjell M. Mathisen et al.

The Galerkin formulation of Eq. (34) is obtained by restricting the trial and test func-
tion sets to their finite dimensional counterpart comprised of Lagrange suitable basis
functions as: Find ϕh = (xh,Λh) ∈ Sh, such that ∀δϕh = (δxh, δwh) ∈ Vh:

∫

L

{[δ(xh)′ + (xh)′ × δwh] · nh + δ(wh)′ ·mh}d� =
∫

L

{δxh · n̄+ δwh · m̄}d�, (39)

where nh and mh, are the current spatial stress resultants and couples derived from the
discretized solution ϕh = (xh,Λh). The matrix counterpart of the discrete form of the
variational equations may be written on compact form as:

nn
∑

A=1

δdA(F
int
A − Fext

A ) = 0, (40)

where dA = [xA,wA]
T denotes the vectors of nodal displacement and rotation unknowns,

and Fint
A and Fext

A the vectors of internal and external nodal forces related to node A,
respectively:

Fint
A =

∫

L

BT
Ard� with BA =

[

R′
AI3 0

RAx̃
′ R′

AI3

]

and r =

{

nh

mh

}

, (41)

and

Fext
A =

∫

L

RAI6r̄d� with r̄ =

{

n̄
m̄

}

, (42)

where Ik = �1, 1, . . . , 1� is a diagonal unit matrix of dimension k, and x̃′ is a skew-
symmetric matrix whose axial vector is x′.

Similarly, the incremental solution, ∆ϕh = (∆xh,∆wh) ∈ Vh, of the Galerkin formula-
tion associated with the linearized form of Eqs. (36) and (37) is found from its associated
discrete approximation that on matrix form can be written:

nn
∑

A=1

nn
∑

B=1

δdA{(Fint
A − Fext

A ) + (Km
AB −Kg

AB)∆dB} = 0. (43)

The material and geometric stiffness matrices,Km
AB andKg

AB, are obtained by substituting
the discrete approximation counterparts of the virtual and incremental displacements from
Eq.(38) into Eqs. (36) and (37):

Km
AB =

∫

L

BT
ACBBd� with C =

[

CN 0
0 CM

]

, (44)

11
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and with some manipulations (see, e.g., Simo and Vu-Quoc [28, 29])

Kg
AB =

∫

L
GT

AHGBd� with GA =





R′
AI3 0
0 R′

AI3
0 RAI3





and H =





0 0 −ñh

0 0 −m̃h

ñh 0 (nh ⊗ x′ − x′nhI3)



 .

(45)

We recall again that in the expression for H, ñh and m̃h are the skew-symmetric matrices
whose axial vectors are nh and mh, respectively.

It is noted that the final form of the tangent stiffness Kt = Km + Kg, in general, is
nonsymmetric. Since symmetry of the material part follows from the symmetry of the
constitutive matrix C, the lack of symmetry stems from the geometric part. As pointed
out by Simo and Vu-Quoc [28, 29], for conservative loading at an equilibrium state the
tangent stiffness is symmetric. However, in general, at non-equilibrated configurations,
the tangent stiffness is nonsymmetric. The reason for that is that the configuration space,
TϕC, is a manifold. Our numerical studies has revealed that replacing the nonsymmetric
geometric stiffness by its symmetric counterpart will not jeopardize the quadratic conver-
gence rate expected in the Newton iterations.

Parameterizing the finite rotations with the incremental rotation vector, θ (see Section
2.2), rather than the spatial spin tensor, w, yields similar expressions for the tangent
stiffness matrices and the out of balance force vector, and may be found in Ibrahimbegović
et al. [17].

3 LOCKING EFFECTS IN BEAMS

It is well-known that purely displacement-based isoparametric, especially low-order,
elements are often affected by spurious strains and stresses which lead to an overestima-
tion of the stiffness. As a consequence, the primary variables like displacements will be
underestimated. In the context of curved beam elements, this implies that both spurious
transverse shear and axial (membrane) strains may develop in bending dominated prob-
lems, consequently the element will have no ability to capture the state of (transverse)
shear-free or inextensional bending. The corresponding locking phenomena denoted trans-
verse shear and membrane locking, in general reduces the accuracy and slows down the
convergence as the ratio between thickness to length (for straight members) or thickness
to radius of curvature (for curved beams) approaches zero. From the definition of the
translational spatial strains (23) for the GE elements we observe that γh is obtained by
subtracting the normal to the cross section ih1 from the arc-length derivative of the dis-
crete line of centroids Bh in the current configuration. In the following, we investigate
whether γh, i.e., the axial and the transverse shear strains vanish when the element is
subjected to a state of pure bending. Without loss of generality we consider an initially

12
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M
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=

 

Figure 2: Initial and deformed configuration of a cantilever subjected to a concentrated end moment.

2D straight beam of length L with a rectangular cross section (A = bh, with b = 1 and
h = 10−ρ) clamped at one end and subjected to a concentrated moment M at the free
end (see Fig. 2). We assume that L = 1, ρ = 3, E = 24× 109 and M = πEI/2L = π, for
which the closed form solution is represented by a quarter of a circle. Fig. 3

C0

C

shows the
resulting distribution of axial and transverse shear strains obtained when the cantilever is
discretized with a single GE element of order p = 1, 2, 3 and 4, respectively. We observe
that all elements sample the exact solution (γ = 0) at the Gauss points (ng = p) corre-
sponding to uniform reduced integration (URI). We also observe that the amplitudes of
the spurious membrane and shear strains reduces dramatically as the order of the inter-
polant is increased. The ability of the curved Lagrange C0 isoparametric beam elements
to alleviate spurious transverse shear and axial strains with URI was first explored and
reported by Stolarski and Belytschko [30] for quadratic and cubic interpolated elements.

In order to evaluate an elements propensity of locking, Hughes [13] introduced an
heuristic approach, the so-called constraint count method. This method relies on the con-
straint ratio, r, which is defined as the ratio of the total number of equilibrium equations
(neq) to the total number of constraint equations (nc):

r =
neq

nc

. (46)

In order to investigate whether an element is prone to locking, the constraint ratio, r,
of the continuous problem is compared with the constraint ratio, rh, of the discretized
problem in the limit of infinite number of elements, ne → ∞:

rh = lim
ne→∞

ne
u

ne
c

. (47)

Here ne
u denotes the number of unknowns added to the system by adding one more element

to a uniform mesh of an infinite number of elements, while ne
c is the corresponding number

of constraints added by this element. Thus, ne
c is related to the number of quadrature

points, ng, where the constraints are to be evaluated.
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Figure 3: Discrete translational strain fields obtained when the cantilever beam subjected to a concen-
trated end moment is discretized with one single GE element of order p = 1, 2, 3 and 4, respectively: a)
Solutions for p = 1 and 2, denoted GEQ1 and GEQ2, respectively, and b) solutions for p = 3 and 4,
denoted GEQ3 and GEQ4, respectively.

For an element with rh < r, and especially with rh < 1 (which implies that there are
more constraints added than unknowns), the propensity of locking is high. In contrast
when rh > r, this indicate that there are too few constraints to approximate the constraint
accurately. Consequently, the optimal element satisfy the criterion rh = r.

As pointed out in [30], when investigating the locking behavior of curved C0 beams
for higher-order elements there exists an interrelationship between transverse shear and
membrane locking. Thus, transverse shear and membrane locking must be considered
simultaneously. Again, for simplicity, we consider a 2D GE element, for which we have
three unknowns per node and two constraints per Gauss point. The optimal constraint
ratio for the 2D continuous problem is

r2D =
3

2
. (48)

For the discrete problem the discrete constraint ratio reads:

rh2D =
3p

2ng

. (49)

Thus, applying URI with ng = p yields an optimal constraint ratio for the GE elements.
Applying URI to the GE elements implies that the rank of the global tangent stiffness is
equal to the total number of unknowns, and thus guarantee rank-sufficiency and elements
without any zero-energy modes which need to be stabilized.

Even though URI works well independent of the slenderness ratio for elements of poly-
nomial order two and higher, it is well known that the numerical solution gets progressively
stiffer for lower order Timoshenko beam (TB) elements compared to the exact one as the
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slenderness increases. In order to get an element that is free of locking MacNeal [18, 19]
proposed the residual bending flexibility (RBF) approach, a device in which the transverse
shear stiffness is enhanced by using a substitute reduced shear modulus such that the el-
ement reproduces nodally exact solutions independent of the slenderness ratio for a tip
loaded straight cantilever beam in the linear regime. In [21], Prathap has shown why the
RBF correction yields a correct rate of convergence for linearly interpolated TB elements.

4 NUMERICAL RESULTS

The purpose of the numerical tests is to study the accuracy, performance, robustness
and convergence of the GE elements and compare them with 2-noded Euler-Bernoulli
(EB) and TB elements based on the CR formulation for the various elements presented
in Tab. 1.

All CR elements are based on the formulation proposed by Battini and Pacoste [3, 4].
The EB elements use linear interpolation of the axial displacement and axial rotation
about the local beam axis while bending deformations are based on Hermitian cubic
shape functions. While the CEBL element is based on classical linear beam theory with
only linear terms in the strain expressions, the CEBN element is based on a second order
approximation of the Green-Lagrange strains enhanced with a shallow arch definition of
the local axial strains to avoid membrane locking. The CEBLS and CEBNS elements
are the corresponding EB elements based on the modified Hermitian shape functions
accounting for transverse shear deformations. The CR TB elements CTBN and CTBNr
are using standard linear interpolation of local displacements and rotations. Except for

Formulation Beam theory nn p
Strain Transverse Element

measure shear name

Corotational
2 1/3

Engineering
No CEBL

Euler- Yes CEBLS
Bernoulli Green- No CEBN

Lagrange Yes CEBNS

Timoshenko 2 1 Engineering1 Yes
CTBN
CTBNr2

2 1

Yes

GEQ1
GEQ1r2

Geometrically Reissner 3 2 Biot GEQ2
exact (Timoshenko) 4 3 (Jaumann) GEQ3

5 4 GEQ4
9 8 GEQ8

Table 1: Various element types compared. 1Element account for the nonlinear Wagner term in the strain
expression. 2Element has been enhanced with RBF.
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the nonlinear Wagner term [31], the strain expression is purely linear for both elements.
They utilizes URI to avoid locking and the CTBNr element is further enhanced with RBF
to converge to the EB element solution as the slenderness increases.

For each of the various formulations and discretizations considered, the relative error
in tip displacement eu and tip rotation eθ are chosen as measures of accuracy

eu =
|uref − uh|

|uref | and eθ =
|θref − θh|

|θref | . (50)

The relative error is computed from Eq. (50), where uref and θref are reference solutions
obtained with a very fine mesh of eight order GE beam elements.

Since the EB beam elements based on the modified Hermitian shape functions account-
ing for transverse shear deformations converge to the standard Hermitian interpolated
element as the slenderness increases, the comparison between the various TB element for-
mulations are made with the corresponding EB elements accounting for transverse shear
deformations. The results obtained for both the linear and the nonlinear EB beam el-
ements accounting for transverse shear almost coincide with those based on the Navier
hypothesis for all example problems studied in this paper.

While a few more Newton iterations are needed in the initial than in the final steps for
most problems studied, quadratic convergence is obtained in approximately 5 iterations
for each step for all discretizations and formulations with a rather tight energy convergence
criterion εE = 10−9. This also demonstrate that the linearization of the various formula-
tions are consistent. It should also be mentioned that the accuracy and convergence (in
the Newton iterations) is independent of the parameterization of the finite rotations.

4.1 Cantilever beam subjected to tip loading

The first example, depicted in Fig. 4, is a straight cantilever beam clamped at one end
and subjected to two conservative point loads initially acting in the direction of the local
cross-sectional axes at the free end. This example is selected to assess the accuracy and
robustness of the various beam formulations under combined bending, shear and torsion
when the initial configuration is a straight line. The slenderness ratio for this problem is
ρy = L/b = 20 and ρz = L/h = 40 for bending in the xy− and xz−plane, respectively.
The two tip loads are applied over 10 equally sized load increments for all discretizations
of the various beam formulations.

L
b

PzPy

x
y

z

h

E = 2.1× 1011

ν = 0.3
L = 10
b = 0.5
h = 0.25
Py = 2× 107

Pz = 1× 107

Figure 4: Tip loaded cantilever beam: Geometry, loading, boundary conditions and material data.
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Figure 5: Tip loaded cantilever beam: Relative error in tip displacement and rotation for the various
formulations for medium to fine meshes (8–128 free nodes): a) Displacement and b) rotation for all CR-
and linear GE-elements, c) displacement and d) rotation for the best CR- and GE-elements of order
p = 1, 2, 3 and 4.

Fig. 5 shows convergence plots for medium to fine meshes with 8 to 128 free nodes.
Firstly, in Figs. 5a and 5b we compare the various EB and linearly interpolated TB
elements. It is seen that by adding RBF the error is reduced by a factor of 2 for both the
CR and the GE TB elements. We also observe from these figures that for all discretizations
with TB elements the accuracy obtained with the CR and the GE formulations are close
for the tip displacement and almost coincide for the tip rotation. When comparing the
EB and the linearly interpolated TB elements, while the error in tip rotation is almost
one order lower for the nonlinear EB element, the accuracy of the tip displacement is of
the same order as the linearly interpolated TB elements. We also observe that both the
error in tip displacement and rotation is reduced one order when comparing the linear
and nonlinear EB elements. Finally, independent of formulation, the convergence order
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Figure 6: Tip loaded cantilever beam: Relative error in tip displacement and rotation for the various
formulations for coarse meshes (1–8 free nodes): a) Displacement and b) rotation for the best CR- and
GE-elements of order p = 1, 2, 3 and 4.

of all 2-noded elements coincide. Next, in Figs. 5c and 5d we compare the best 2-noded
elements, i.e. the nonlinear EB and the linearly interpolated TB elements with RBF, with
the GE elements of order p = 2, 3 and 4. First, we observe as expected that the rate of
convergence increases monotonically with polynomial order for both the tip displacement
and rotation. We also observe that there is a shift in accuracy of approximately one order
when polynomial order is increased.

Fig. 6 shows convergence plots for coarse meshes with 1 to 8 free nodes. We observe
that the nonlinear EB element is superior to all other elements for very coarse meshes
with 2 to 4 free nodes. However, as the mesh is refined the accuracy of the GE elements
of order p = 2, 3, 4 is superior to all 2-noded elements.

4.2 Three leg right angle tip loaded space beam

The second example, depicted in Fig. 7, consists of three straight beams, connected at
right angles in the reference configuration, such that the beam axis of the three legs are
parallel to the x−, y− and z−axis, respectively. The structure is clamped at one end and
subjected to two conservative point loads Px = Pz = P , initially acting in the direction of
the negative x− and z−axes at the free end. This example was proposed in [25] and has
later been revisited in [10], and serves to benchmark nonlinear beam formulations under
combined bending, shear and torsion for non-smooth, three-dimensional geometries. The
slenderness ratio for this problem is ρy = ρz = 10. The two tip loads are applied over 20
equally sized load increments for all discretizations of the various beam formulations.

In Fig. 8, the displacement and rotation of the tip is plotted versus the load P when
each of the three legs are discretized with a uniform mesh of 8 CTBNr and 1024 GEQ8
elements, respectively. We observe that we are not able to distinguish between the results
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E = 106
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b = h = 0.1
Px = Pz = P = 10

Figure 7: Three leg right angle tip loaded space beam: Geometry, loading, boundary conditions and
material data.

obtained with the coarser mesh with 8 CTBNr elements and the reference mesh with 1024
GEQ8 elements.

Analogous to the first example, a convergence plot is given in Fig. 9 to compare the
accuracy of the various formulations for meshes with 2 to 32 free nodes per leg. From
Figs. 9a and 9b, we observe that the linearly interpolated TB elements enhanced with
RBF outperforms the standard formulation. We also observe that the results obtained
with the linear EB element CEBLS is indistinguishable from the CR linearly interpolated
TB element with added RBF (CTBNr) for all discretizations for both the tip displacement
and tip rotation. From the same figures we also observe that independent of formulation
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Figure 8: Three leg right angle tip loaded space beam: Tip displacement and rotation versus applied
load P : a) Displacement and b) rotation for a uniform mesh of 8 CTBNr and 1024 GEQ8 elements per
leg, respectively.
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Figure 9: Three leg right angle tip loaded space beam: Relative error in tip displacement and rotation
for the various formulations for meshes with 2–32 free nodes per leg: a) Displacement and b) rotation for
CR- and linear GE-elements, c) displacement and d) rotation for the best CR- and GE-elements of order
p = 1, 2, 3 and 4.

the tip displacement for the nonlinear EB element CEBNS is one order more accurate
compared with the best linearly interpolated TB elements.

When comparing the best 2-noded elements with GE elements of higher order (p = 2, 3
and 4), we observe analogous to the previous example that the rate of convergence for
all 2-noded elements coincide while for the higher order GE elements it increases with
polynomial order. Also for the GE elements the accuracy is shifted approximately one
order as the polynomial order is increased. Again, except for very coarse meshes all higher
order GE elements outperform all the 2-noded elements both in terms of accuracy and
convergence rate.
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Figure 10: Tip loaded 45◦ circular cantilever beam: Geometry, loading, boundary conditions and
material data.

4.3 Tip loaded 45◦ circular cantilever beam

In the next example, depicted in Fig. 10, we consider a beam that is curved in its stress-
free reference configuration. In particular, 1/8 of a circle with radius R forms the line of
centroids that is located in the xy−plane in the reference configuration. The curved beam
is clamped at one end and subjected to a conservative point load acting in the direction
of the z−axis in the free end. This problem is a well-established benchmark problem for
nonlinear analysis of spatial beams. It was first proposed in [2] and has later been used
by a number of authors [5, 6, 7, 9, 10, 15, 25, 28].

Step Iter CEBNS CTBNr GEQ1r GEQ2 GEQ3 GEQ4

1

0 4.695× 102 4.695× 102 4.695× 102 4.698× 102 4.698× 102 4.698× 102

1 8.246× 104 8.239× 104 8.246× 104 8.378× 104 8.379× 104 8.379× 104

2 1.048× 100 3.918× 10−1 2.028× 102 3.188× 10−1 3.182× 10−1 3.182× 10−1

3 1.131× 10−3 9.872× 10−4 5.292× 10−1 9.649× 10−4 9.644× 10−4 9.645× 10−4

4 1.441× 10−8 1.173× 10−11 6.471× 10−2 1.646× 10−7 1.642× 10−7 1.643× 10−7

5 8.382× 10−17 3.646× 10−22 3.492× 10−5 1.192× 10−14 1.187× 10−14 1.189× 10−14

6 4.949× 10−10

7 3.572× 10−21

12

0 7.585× 101 7.599× 101 7.597× 101 7.585× 101 7.586× 101 7.586× 101

1 2.932× 102 2.946× 102 2.946× 102 2.983× 102 2.983× 102 2.983× 102

2 1.693× 10−1 1.695× 10−1 1.700× 10−1 1.710× 10−1 1.710× 10−1 1.710× 10−1

3 1.840× 10−3 1.847× 10−3 1.853× 10−3 1.886× 10−3 1.886× 10−3 1.886× 10−3

4 3.729× 10−11 3.343× 10−11 2.459× 10−11 2.554× 10−11 2.554× 10−11 2.554× 10−11

5 1.818× 10−22 2.053× 10−22 5.954× 10−22 4.082× 10−22 6.091× 10−22 8.916× 10−22

Table 2: Tip loaded 45◦ circular cantilever beam: Convergence rates, in the Newton iterations, for the
first and final step.
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Figure 11: Tip loaded 45◦ circular cantilever beam: Tip displacement and rotation versus applied
load P : a) Displacement and b) rotation for a uniform mesh of 8 CTBNr and 1024 GEQ8 elements,
respectively.

The tip load is applied over 12 equally sized load increments for all discretizations of
the various beam formulations. Tab. 2 shows the convergence rates in terms of energy
for the first and last step for the various elements. As shown in Tab. 2, except for
the linear interpolated GE element that needs 7 iterations in the initial step, quadratic
convergence in the Newton iterations is obtained in 5 iterations for each step for all
discretizations and formulations with a rather tight convergence criterion in energy of
εE = 10−8. All formulations converge to the following displacement and rotation of the
loaded end, u = 59.9984 and θ = 1.16093. In order to keep the number of unknowns equal
for all elements, a uniform mesh of twelve 2-noded elements, six quadratic, four cubic and
three quartic elements is used.

In Fig. 11, the normalized displacement and rotation of the tip is plotted versus the
load P when the beam is discretized with a uniform mesh of 8 CTBNr and 1024 GEQ4
elements, respectively. As in the previous example, we observe that we are not able to
distinguish between the results obtained with the coarser mesh with 8 CTBNr elements
and the reference mesh with 1024 GEQ4 elements.

Fig. 12 shows convergence plots for meshes with 2 to 16 free nodes. From Figs. 12b,
we observe that independent of formulation the tip rotation for the nonlinear EB element
CEBNS is almost one order more accurate compared with the best linearly interpolated
TB elements. However, in contrast, from Figs. 12a, we observe that the tip displacement
of the CEBNS is less accurate compared with the best linearly interpolated TB elements.

When comparing the best 2-noded elements with GE elements of higher order (p = 2, 3
and 4), we observe analogous to the previous example that the rate of convergence for
all 2-noded elements coincide while for the higher order GE elements it increases with
polynomial order. Also for the GE elements the accuracy is shifted approximately one
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Figure 12: Tip loaded 45◦ circular cantilever beam: Relative error in tip displacement and rotation for
the various formulations for meshes with 2–16 free nodes: a) Displacement and b) rotation for the best
CR- and GE-elements of order p = 1, 2, 3 and 4.

order as the polynomial order is increased. Again, except for the coarsest mesh with 2 free
nodes all higher order GE elements outperform all the 2-noded elements both in terms
of accuracy and convergence rate. In order to get equal accuracy in tip displacement
we need two cubic (36 DOFs), five quadratic (60 DOFS) and 15 linear (90 DOFS) GE
elements, 20 TB (120 DOFS) and as much as 30 EB (180 DOFS) CR elements to match
the accuracy obtained with one single quartic GE element (24 DOFS). Similarly, as much
as three cubic, 11 quadratic, 200 linear GE elements, 200 TB and 100 EB CR elements, is
needed to obtain similar accuracy in tip displacement as one quartic GE element. Thus,
the accuracy obtained for each DOF invested is much higher for the higher order GE
elements compared to all 2-noded elements.

4.4 Tip loaded 90◦ circular arch

Fig. 13 shows geometry, boundary conditions, loading and material properties for a
planar 90◦ circular arch subjected to a tip shear load P . This problem has also been
studied by several other researchers, e.g. Bauer et al. [5], however they studied the
problem in the linear regime for which there exist a closed form solution, as shown in [5].

Even though the slenderness for this problem, defined as: R/h = 1000, is high, the
comparison between the various TB element formulations are made with the corresponding
EB elements accounting for transverse shear deformations. The tip load is applied over
10 equally sized load increments for all discretizations of the various beam formulations.
All formulations converge to the following displacement and rotation of the loaded end,
u = 0.90777806 and θ = 0.99420425. In Fig. 13, the red curve depicts the final converged
configuration.

Fig. 14 shows convergence plots for meshes with 6 to 96 free nodes. When comparing
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Figure 13: Tip loaded 90◦ circular cantilever beam: Geometry, loading, boundary conditions and
material data.

the best 2-noded elements with GE elements of higher order (p = 2, 3 and 4), we observe
analogous to the previous example that the rate of convergence for all 2-noded elements
coincide while except for the cubic element that exhibit the same convergence as the
quadratic element for the higher order GE elements it increases with polynomial order.
Furthermore the accuracy is shifted approximately half an order as the number of nodes
per element is increased. We also observe that the accuracy and the convergence rate of
all discretizations of the CR and the GE 2-noded TB elements, as well as the corotated
EB beam with engineering strain are indistinguishable, while the corotated EB beam with
Green-Lagrange strain is more accurate both for the tip displacement and the tip rotation.
As pointed out in Section 3, both the 2-noded linearly interpolated TB elements based on
the GE and the CR formulation denoted GEQ1r and CTBNr have been enhanced with
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Figure 14: Tip loaded 90◦ circular cantilever beam: Relative error in tip displacement and rotation for
the various formulations for meshes with 6–96 free nodes: a) Displacement and b) rotation for the best
CR- and GE-elements of order p = 1, 2, 3 and 4.
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RBF to overcome transverse shear locking as the slenderness increases. The results shown
in Fig. 14 demonstrate that the RBF enhancement works very well also in the nonlinear
regime for curved geometries in the case of a tip loaded cantilever beam.

5 SUMMARY AND CONCLUDING REMARKS

In this study, we have extended the geometrically exact (GE) beam formulation to
an arbitrary order interpolation and compared it with 2-noded Euler-Bernoulli (EB) and
Timoshenko beam (TB) elements based on the corotational (CR) formulation, two of the
most popular approaches for discretizing nonlinear beams within the context of nonlinear
finite element analysis with large displacements and large rotations but small to moderate
strains. While these two families of methods have evolved during the last decades and each
of them exist with several different enhancements, we have extended the original imple-
mentation of the GE formulation as presented in Simo [27] and Simo and Vu-Quoc [28, 29],
and the CR formulation proposed by Battini and Pacoste [3, 4]. Both formulations may
be extended to non-linear material models (inelastic or plastic), interfacing with other
types of structural elements and extended to nonlinear dynamic analysis.

The higher order GE beam elements are the formulation of choice when performance
and accuracy are crucial. Despite their complexity, both theoretical and numerical, our
study reveals that for the same CPU cost, the elements provide significantly more ac-
curate results than any of the 2-noded CR elements. It turns out that the CPU cost
involved in the computation of the higher order GE elements is not significantly higher
due to increased number of integration points and DOFS per element. As shown in
Helgedagsrud et al. [12], the per-degree-of-freedom accuracy of GE beam elements may
be even further improved by replacing the Lagrangian FE functions with isogeometric
analysis (IGA) based on non-uniform rational B-splines (NURBS) [8, 14, 22].

In spite that we have used a symmetrized tangent stiffness for all GE elements and
nonsymmetric tangent stiffness for all CR elements, they all exhibit a quadratic rate of
convergence in the Newton iterations. Our numerical study also demonstrates that the
accuracy, the number of Newton iterations, and the computational cost is independent of
the parameterization of the finite rotations for both formulations.

Another observation is that it is highly recommended to enhance the linearly interpo-
lated 2-noded TB elements with residual bending flexibility whether it is based on the GE
or the CR formulation. Furthermore, we cannot claim the superiority of one approach
over the other when we restrict our study to 2-noded TB elements. However, among
the 2-noded elements, the nonlinear 2-noded cubic interpolated EB element based on the
CR approach enhanced with the shallow arch terms exhibit superior accuracy. Modifying
the Hermitian shape functions to account for transverse shear deformations, this element
allows for a significant reduction of elements used to discretize the structure compared to
all other 2-noded elements studied.
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Abstract. With the shenfun Python module (github.com/spectralDNS/shenfun) an ef-
fort is made towards automating the implementation of the spectral Galerkin method for
simple tensor product domains, consisting of (currently) one non-periodic and any number
of periodic directions. The user interface to shenfun is intentionally made very similar to
FEniCS (fenicsproject.org). Partial Differential Equations are represented through weak
variational forms and solved using efficient direct solvers where available. MPI decomposi-
tion is achieved through the mpi4py-fft module (bitbucket.org/mpi4py/mpi4py-fft), and
all developed solvers may, with no additional effort, be run on supercomputers using thou-
sands of processors. Complete solvers are shown for the linear Poisson and biharmonic
problems, as well as the nonlinear and time-dependent Ginzburg-Landau equation.

1 Introduction

The spectral Galerkin method, see, e.g., Shen [12] or Kopriva [5], combines spectral
basis functions with the Galerkin method and allows for highly accurate solutions on
simple, tensor product domains. Due to its accuracy and efficiency, the method is often
favoured in studies of sensitive fundamental physical phenomena, where numerical errors
needs to be avoided.

In this paper we will describe the shenfun Python module. The purpose of shenfun
is to simplify the implementation of the spectral Galerkin method, to make it easily
accessible to researchers, and to make it easier to solve advanced PDEs on supercomputers,
with MPI, in simple tensor product domains. The package can solve equations for tensor
product spaces consisting of any number of periodic directions, but, at the moment of
writing, only one non-periodic direction. This configuration may sound trivial, but it
occurs surprisingly often in physics, for example in plane shear flows like the channel or
pipe. And these simple configurations are used heavily to enhance our understanding of

Shenfun – automatic the spectral galerkin method
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fundamental physical processes, like turbulence, or transition to turbulence, turbulent
mixing, and turbulent combustion.

The shenfun package is heavily influenced by the FEniCS project [7], that has made it
trivial to solve PDEs in arbitrary complex domains with the finite element method (FEM).
FEM also makes use of the Galerin method to set up variational forms. However, where
FEM uses basis functions with only local support, the spectral Galerkin method uses basis
functions with global support. The local support is one of the many nice features of the
FEM, which makes it particularly attractive for unstructured and complex geometries.
Spectral methods, on the other hand, are less flexible, but represent the gems of numerical
methods, and, whenever possible, when the domain is simple and the solution is smooth,
delivers the most accurate approximations.

There are many tools available for working with spectral methods. For MATLAB there
is the elegant chebfun package [13], with an extensive list of application for, e.g., PDEs,
ODEs or eigenvalue problems. However, being implemented in MATLAB, there is no
feasible extension to DNS and supercomputers through MPI. Numpy and Scipy have
modules for orthogonal polynomials (Jacobi, Chebyshev, Legendre, Hermite), and for
Fourier transforms, which are both utilized by shenfun. The orthogonal module makes
it easier to work with Chebyshev and Legendre polynomials, as it delivers, for example,
quadrature points and weights for different quadrature rules (e.g., Chebyshev-Gauss,
Legendre-Gauss).

To the author’s knowledge, all research codes developed for studying turbulent flows
through Direct Numerical Simulations (DNS) on supercomputers have been written in
low-level languages like Fortran, C or C++, see, e.g., [2, 4, 6], or [1] for a list of high
performance channel flow solvers. The codes are highly tuned and tailored to a specific
target, and, being low-level, the codes are not easily accessible to a non-expert programmer.
Mortensen and Langtangen [8] describe how a DNS solver can be written in Python in 100
lines of script-like code, and also show that the code, when optimized in the background
using Cython, runs as fast as an identical C++ implementation on thousands of processors
with MPI. Shenfun takes it one step further and aims at providing a generic toolbox for
creating high performance, parallel solvers of any PDE, in a very high-level language.
And without compromising much on computational efficiency. The key to developing
such a high-level code in Python is efficient use of Numpy [10], with broadcasting and
vectorization, and MPI for Python [9], that wraps almost the entire MPI library, and
that can transfer Numpy arrays between thousands of processors at the same speed as a
low-level C or Fortran code. Similarly, we utilize the pyFFTW module [11], that wraps
most of the FFTW library [3] and makes the FFT as fast when called from Python as it
is when used in low-level codes.

This paper is organised as follows: in Section 2 the spectral Galerkin method is intro-
duced. In Section 3 the basics of the shenfun package is described and implementations
are shown for simple 1D Poisson and biharmonic problems. In Section 4 we move to
higher dimensions and tensor product spaces before we, in Sections 5 and 6 end with
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some extended functionality and an implementation for the time dependent nonlinear
Ginzburg-Landau equation in 2D.

2 Spectral Galerkin Method

The spectral Galerkin method can most easily be described by considering a simple
PDE, like the Poisson equation, in a 1D domain Ω

− u′′(x) = f(x), x ∈ Ω, (1)

with appropriate boundary conditions (Dirichlet, Neumann or periodic). To solve this
equation, we can define a test function v(x) that satisfies the boundary conditions, and
that comes with an accompanying weight function w(x). Assuming also that we work with
complex valued functions, a weighted continuous inner product of the two functions u and
v can be defined as

(u, v)w =
∫

Ω
u(x)v(x)w(x)dx, (2)

where v is the complex conjugate of v. The weighted inner product can now be used to
create variational forms. If we multiply Eq. (1) with vw and integrate over the domain we
obtain the variational form of the PDE

(−u′′, v)w = (f, v)w. (3)

The variational form can be solved numerically if u and v are approximated using a finite
number (N) of test functions {vl(x)}N−1

l=0 , and a solution

u(x) =
N−1∑
l=0

ûlvl(x), (4)

where û = {ûl}N−1
l=0 are the expansion coefficients, that are also recognised as the unknowns

in the modal spectral Galerkin method.
If v is chosen from a Fourier or Legendre basis, then the weight function used in the

inner product is simply constant, and we may integrate (3) further using integration
by parts. However, for a Chebyshev basis the weight function will be 1/

√
1 − x2 and

integration by parts is thus usually avoided. The weighted continuous inner product may,
depending on the function that is to be integrated, be difficult or costly to evaluate. As
such, we will in this work use the weighted discrete inner product instead, where the
integral is approximated using quadrature

(u, v)N
w =

N−1∑
j=0

u(xj)v(xj)wj ≈
∫

Ω
u(x)v(x)w(x)dx. (5)

Here {wj}N−1
j=0 represents the quadrature weights and {xj}N−1

j=0 are the quadrature points
for the integration.
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The test functions v will be chosen based in part on boundary conditions. However,
regardless of which space the test functions are chosen from, the procedure for solving a
PDE with the spectral Galerkin method is always the same:

• Choose a basis satisfying boundary conditions.

• Derive variational forms from PDEs using weighted inner products.

• Assemble and solve linear systems of equations for expansion coefficients.

In other words it is very much like a finite element method. The major difference is that
the basis functions are global, i.e., they all span the entire domain, whereas in FEM the
test functions only have local support.

3 Shenfun

shenfun is a Python module package containing tools for working with the spectral
Galerkin method. Shenfun implements classes for several bases with different boundary
conditions, and within each class there are methods for transforms between spectral and
real space, inner products, and for computing matrices arising from bilinear forms in the
spectral Galerkin method. The Python module is organized as shown in Figure 1.

The shenfun language is very simple and closely follows that of FEniCS. A simple form
implementation provides operators div, grad, curl and Dx, that act on three different
types of basis functions, the TestFunction, TrialFunction and Function. Their usage
is very similar to that from FEniCS, but not as general, nor flexible, since we are only
conserned with simple tensor product grids and smooth solutions. The usage of these
operators and basis functions will become clear in the following subchapters, where we
will also describe the inner and project functions, with functionality as suggested by
their names.

3.1 Classes for basis functions

The following bases are defined in submodules

• shenfun.chebyshev.bases

– Basis - Regular Chebyshev
– ShenDirichletBasis - Dirichlet boundary conditions
– ShenNeumannBasis - Neumann boundary conditions (homogeneous)
– ShenBiharmonicBasis - Homogeneous Dirichlet and Neumann boundary condi-

tions

• shenfun.legendre.bases
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Figure 1: Directory tree of shenfun Python module.

– Basis - Regular Legendre
– ShenDirichletBasis - Dirichlet boundary conditions
– ShenNeumannBasis - Neumann boundary conditions (homogeneous)
– ShenBiharmonicBasis - Homogeneous Dirichlet and Neumann boundary condi-

tions

• shenfun.fourier.bases

– R2CBasis - Real to complex Fourier transforms
– C2CBasis - Complex to complex transforms

All bases have methods for transforms and inner products on single- or multidimensional
Numpy data arrays. The following code shows how to create a Fourier basis and subse-
quently perform a forward and an inverse discrete Fourier transform on a random array.
The uc array is only used to test that the transform cycle returns the original data.
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>>> from shenfun import *
>>> import numpy as np
>>> N = 16
>>> FFT = fourier.bases.R2CBasis(N, plan=True)
>>> u = np.random.random(N)
>>> uc = u.copy()
>>> u_hat = FFT.forward(u)
>>> u = FFT.backward(u_hat)
>>> assert np.allclose(u, uc)

3.2 Classes for matrices

Matrices that arise with the spectral Galerkin method using Fourier or Shen’s modified
basis functions (see, e.g., Eqs (23), (24)), are typically sparse and diagonal in structure. The
sparse structure allows for a very compact storage, and shenfun has its own Matrix-class
that is subclassing a Python dictionary, where keys are diagonal offsets, and values are
the values along the diagonal. Some of the more important methods of the SparseMatrix
class are shown below:

class SparseMatrix(dict):
def __init__(self, d, shape):

dict.__init__(self, d)
self.shape = shape

def diags(self, format=’dia’):
"""Return Scipy sparse matrix"""

def matvec(self, u, x, format=’dia’, axis=0):
"""Return Matrix vector product self*u in x"""

def solve(self, b, u=None, axis=0):
"""Return solution u to self*u = b"""

For example, we may declare a tridiagonal matrix of shape N x N as

>>> N = 4
>>> d = {-1: 1, 0: -2, 1: 1}
>>> A = SparseMatrix(d, (N, N))

or similarly as
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>>> d = {-1: np.ones(N-1), 0: -2*np.ones(N)}
>>> d[1] = d[-1] # Symmetric, reuse np.ones array
>>> A = SparseMatrix(d, (N, N))
>>> A
{-1: array([ 1., 1., 1.]),

0: array([-2., -2., -2., -2.]),
1: array([ 1., 1., 1.])}

The matrix is a subclassed dictionary. If you want a regular Scipy sparse matrix instead,
with all of its associated methods (solve, matrix-vector, etc.), then it is just a matter of

>>> A.diags()
<4x4 sparse matrix of type ’<class ’numpy.float64’>’

with 10 stored elements (3 diagonals) in DIAgonal format>
>>> A.diags().toarray()
array([[-2., 1., 0., 0.],

[ 1., -2., 1., 0.],
[ 0., 1., -2., 1.],
[ 0., 0., 1., -2.]])

3.3 Variational forms in 1D

Weak variational forms are created using test and trial functions, as shown in Section 2.
Test and trial functions can be created for any basis in shenfun, as shown below for a
Chebyshev Dirichlet basis with 8 quadrature points

>>> from shenfun.chebyshev.bases import ShenDirichletBasis
>>> from shenfun import inner, TestFunction, TrialFunction
>>> N = 8
>>> SD = ShenDirichletBasis(N, plan=True)
>>> u = TrialFunction(SD)
>>> v = TestFunction(SD)

A matrix that is the result of a bilinear form has its own subclass of SparseMatrix, called
a SpectralMatrix. A SpectralMatrix is created using inner products on test and trial
functions, for example the mass matrix:

>>> mass = inner(u, v)
>>> mass
{-2: array([-1.57079633]),

0: array([ 4.71238898, 3.1415
3.14159265, 3.14159265]),

2: array([-1.57079633])}
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This mass matrix will be the same as Eq. (2.5) of [12], and it will be an instance of the
SpectralMatrix class. You may notice that mass takes advantage of the fact that two
diagonals are constant and consequently only stores one single value.

The inner method may be used to compute any linear or bilinear form. For example
the stiffness matrix K

>>> K = inner(v, div(grad(u)))

Square matrices have implemented a solve method that is using fast O(N) direct LU
decomposition or similar, if available, and falls back on using Scipy’s solver in CSR format
if no better method is found implemented. For example, to solve the linear system Ku=b

>>> fj = np.random.random(N)
>>> b = inner(v, fj)
>>> u = np.zeros_like(b)
>>> u = K.solve(b, u)

All methods are designed to work along any dimension of a multidimensional array. Very
little differs in the users interface. Consider, for example, the previous example on a
three-dimensional cube

>>> fj = np.random.random((N, N, N))
>>> b = inner(v, fj)
>>> u = np.zeros_like(b)
>>> u = K.solve(b, u)

where K is exactly the same as before, from the 1D example. The matrix solve is applied
along the first dimension since this is the default behaviour.

The bases also have methods for transforming between spectral and real space. For
example, one may project a random vector to the SD space using

>>> fj = np.random.random(N)
>>> fk = np.zeros_like(fj)
>>> fk = SD.forward(fj, fk) # Gets expansion coefficients

and back to real physical space again

>>> fj = SD.backward(fk, fj)

Note that fj now will be different than the original fj since it now has homogeneous
boundary conditions. However, if we transfer back and forth one more time, starting from
fj which is in the Dirichlet function space, then we come back to the same array:
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>>> fj_copy = fj.copy()
>>> fk = SD.forward(fj, fk)
>>> fj = SD.backward(fk, fj)
>>> assert np.allclose(fj, fj_copy) # Is True

3.4 Poisson equation implemented in 1D

We have now shown the usage of shenfun for single, one-dimensional spaces. It does
not become really interesting before we start looking into tensor product grids in higher
dimensions, but before we go there we revisit the spectral Galerkin method for a 1D
Poisson problem, and show how the implementation of this problem can be performed
using shenfun.

Periodic boundary conditions. If the solution to Eq. (1) is periodic with periodic
length 2π, then we use Ω ∈ [0, 2π] and it will be natural to choose the test functions from
the space consisting of the Fourier basis functions, i.e., vl(x) = eilx. The mesh x = {xj}N−1

j=0
will be uniformly spaced

x = 2πj

N
j = 0, 1, . . . , N − 1, (6)

and we look for solutions of the form

u(xj) =
N/2−1∑

l=−N/2
ûle

ilxj j = 0, 1, . . . N − 1. (7)

Note that for Fourier basis functions it is customary (used by both MATLAB and Numpy)
to use the wavenumbermesh

l = −N/2, −N/2 + 1, . . . , N/2 − 1, (8)
where we have assumed that N is even. Also note that Eq. (7) naively would be computed
in O(N2) operations, but that it can be computed much faster O(N log N) using the
discrete inverse Fourier transform

u = F−1(û), (9)
where we use compact notation u = {u(xj)}N−1

j=0 .
To solve Eq. (1) with the discrete spectral Galerkin method, we create the basis

V p = span{eilx, for l ∈ l} and attempt to find u ∈ V p such that
(−u′′, v)N

w = (f, v)N
w , ∀ v ∈ V p. (10)

Inserting for Eq. (7) and using eimx as test function we obtain
−(

∑
l∈l

ûl(eilx)′′, eimx)N
w = (f(x), eimx)N

w ∀ m ∈ l (11)
∑
l∈l

l2(eilx, eimx)N
w ûl = (f(x), eimx)N

w ∀ m ∈ l. (12)
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Note that the discrete inner product (5) is used, and we also need to interpolate the
function f(x) onto the grid x. For Fourier it becomes very simple since the weight functions
are constant wj = 2π/N and we have for the left hand side simply a diagonal matrix

(eilx, eimx)N = 2πδml for l, m ∈ l × l, (13)

where δml is the kronecker delta function. For the right hand side we have

(f(x), eimx)N = 2π

N

N−1∑
j=0

f(xj)e−imxj for m ∈ l, (14)

= 2πFm(f(x)), (15)
= 2πf̂m, (16)

where F represents the discrete Fourier transform that is defined as

ûl = 1
N

N−1∑
j=0

u(xj)e−ilxj , for l ∈ l, (17)

or simply
û = F(u). (18)

Putting it all together we can set up the assembled linear system of equations for ûl in
(12) ∑

l∈l

2πl2δmlûl = 2πf̂m ∀ m ∈ l, (19)

which is trivially solved since it only involves a diagonal matrix (δml), and we obtain

ûl = 1
l2 f̂l ∀ l ∈ l \ {0}. (20)

So, even though we carefully followed the spectral Galerkin method, we have ended up
with the same result that would have been obtained with a Fourier collocation method,
where one simply takes the Fourier transform of the Poisson equation and differentiate
analytically.

With shenfun the periodic 1D Poisson equation can be trivially computed either with
the collocation approach or the spectral Galerkin method. The procedure for the spectral
Galerkin method will be shown first, before the entire problem is solved. All shenfun
demos in this paper will contain a similar preample section where some necessary Python
classes, modules and functions are imported. We import Numpy since shenfun arrays are
Numpy arrays, and we import from Sympy to construct some exact solution used to verify
the code. Note also the similarity to FEniCS with the import of methods and classes inner,
div, grad, TestFunction, TrialFunction. The Fourier spectral Galerkin method in
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turn requires that the FourierBasis is imported as well. The following code solves the
Poisson equation in 1D with shenfun:

from sympy import Symbol, cos
import numpy as np
from shenfun import inner, div, grad, TestFunction, TrialFunction
from shenfun.fourier.bases import FourierBasis

# Use Sympy to compute a rhs, given an analytical solution
x = Symbol("x")
ue = cos(4*x)
fe = ue.diff(x, 2)

# Create Fourier basis with N basis functions
N = 32
ST = FourierBasis(N, np.float, plan=True)
u = TrialFunction(ST)
v = TestFunction(ST)
X = ST.mesh(N)

# Get f and exact solution on quad points
fj = np.array([fe.subs(x, j) for j in X], dtype=np.float)
uj = np.array([ue.subs(x, i) for i in X], dtype=np.float)

# Assemble right and left hand sides
f_hat = inner(v, fj)
A = inner(v, div(grad(u)))

# Solve Poisson equation
u_hat = A.solve(f_hat)

# Transfer solution back to real space
uq = ST.backward(u_hat)
assert np.allclose(uj, uq)

Naturally, this simple problem could be solved easier with a Fourier collocation instead,
and a simple pure 1D Fourier problem does not illuminate the true advantages of shenfun,
that only will become evident when we look at higher dimensional problems with tensor
product spaces. To solve with collocation, we could simply do
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# Transform right hand side
f_hat = ST.forward(fj)

# Wavenumers
k = ST.wavenumbers(N)
k[0] = 1

# Solve Poisson equation (solution in f_hat)
f_hat /= k**2

Note that ST methods forward/backward correspond to forward and inverse discrete
Fourier transforms. Furthermore, since the input data fj is of type float (not complex),
the transforms make use of the symmetry of the Fourier transform of real data, that
ûk = ûN−k, and that k = 0, 1, . . . , N/2 (index set computed as k = ST.wavenumbers(N)).

Dirichlet boundary conditions. If the Poisson equation is subject to Dirichlet bound-
ary conditions on the edge of the domain Ω ∈ [−1, 1], then a natural choice is to use
Chebyshev or Legendre polynomials. Two test functions that strongly fixes the boundary
condition u(±1) = 0 are

vl(x) = Tl(x) − Tl+2(x), (21)

where Tl(x) is the l’th order Chebyshev polynomial of the first kind, or

vl(x) = Ll(x) − Ll+2(x), (22)

where Ll(x) is the l’th order Legendre polynomial. The test functions give rise to func-
tionspaces

V C = span{Tl − Tl+2, l ∈ lD}, (23)
V L = span{Ll − Ll+2, l ∈ lD}, (24)

where
lD = 0, 1, . . . , N − 3. (25)

The computational mesh and associated weights will be decided by the chosen quadrature
rule. Here we will go for Gauss quadrature, which leads to the following points and weights
for the Chebyshev basis

xC
j = cos

(2j + 1
2N

π
)

j = 0, 1, . . . , N − 1, (26)

wC
j = π

N
, (27)
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and

xL
j = zeros of LN(x) j = 0, 1, . . . , N − 1, (28)

wL
j = 2

(1 − x2
j)[L′

N(xj)]2
j = 0, 1, . . . , N − 1, (29)

for the Legendre basis.
We now follow the same procedure as in Section 3.4 and solve Eq. (1) with the spectral

Galerkin method. Consider first the Chebyshev basis and find u ∈ V C , such that

(−u′′, v)N
w = (f, v)N

w , ∀ v ∈ V C . (30)

We insert for v = vm and u =
∑

l∈lD

ûlvl and obtain

−(
∑

l∈lD

ûlv
′′
l , vm)N

w = (f, vm)N
w m ∈ lD, (31)

−(v′′
l , vm)N

w ûl = (f, vm)N
w m ∈ lD, (32)

where summation on repeated indices is implied. In Eq. (32) Aml = (v′′
l , vm)N

w are
the components of a sparse stiffness matrix, and we will use matrix notation A =
{Aml}m,l∈lD×lD to simplify. The right hand side can similarily be assembled to a vector
with components f̃m = (f, vm)N

w such that f̃ = {f̃m}m∈lD . Note that a tilde is used since
this is not a complete transform. We can now solve for the unknown û = {ûl}l∈lD vector

−Aû = f̃ , (33)
û = −A−1f̃ . (34)

Note that the matrix A is a special kind of upper triangular matrix, and that the solution
can be obtained very efficiently in approximately 4N arithmetic operations.

To get the solution back and forth between real and spectral space we require a
transformation pair similar to the Fourier transforms. We do this by projection. Start
with

u(x) =
∑

l∈lD

ûlvl(x) (35)

and take the inner product with vm

(u, vm)N
w = (

∑

l∈lD

ûlvl, vm)N
w . (36)

Introducing now the mass matrix Bml = (vl, vm)N
w and the Shen forward inner product

Sm(u) = (u, vm)N
w , Eq. (36) is rewritten as

Sm(u) = Bmlûl, (37)
û =B−1S(u), (38)
û =T (u), (39)
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where T (u) represents a forward transform of u. Note that S is introduced since the inner
product (u, vm)N

w may, just like the inner product with the Fourier basis, be computed
fast, with O(N log N) operations. And to this end, we need to make use of a discrete
cosine transform (DCT), instead of the Fourier transform. The details are left out from
this paper, though.

A simple Poisson problem with analytical solution sin(πx)(1−x2) is implemented below,
where we also verify that the correct solution is obtained.

from shenfun.chebyshev.bases import ShenDirichletBasis

# Use sympy to compute a rhs, given an analytical solution
ue = sin(np.pi*x)*(1-x**2)
fe = ue.diff(x, 2)

# Lambdify for faster evaluation
ul = lambdify(x, ue, ’numpy’)
fl = lambdify(x, fe, ’numpy’)

N = 32
SD = ShenDirichletBasis(N, plan=True)
X = SD.mesh(N)
u = TrialFunction(SD)
v = TestFunction(SD)
fj = fl(X)

# Compute right hand side of Poisson equation
f_hat = inner(v, fj)

# Get left hand side of Poisson equation and solve
A = inner(v, div(grad(u)))
f_hat = A.solve(f_hat)
uj = SD.backward(f_hat)

# Compare with analytical solution
ue = ul(X)
assert np.allclose(uj, ue)

Note that the inner product f_hat = inner(v, fj) is computed under the hood using
the fast DCT. The inverse transform uj = SD.backward(f_hat) is also computed using
a fast DCT, and we use the notation

u(xj) =
∑

l∈lD

ûlvl(xj) j = 0, 1, . . . , N − 1,

u = S−1(û). (40)
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To implement the same problem with the Legendre basis (22), all that is needed to
change is the first line in the Poisson solver to from shenfun.legendre.bases import
ShenDirichletBasis. Everything else is exactly the same. However, a fast inner product,
like in (40), is only implemented for the Chebyshev basis, since there are no known
O(N log N) algorithms for the Legendre basis, and the Legendre basis thus uses straight
forward O(N2) algorithms for its transforms.

4 Tensor product spaces

Now that we know how to solve problems in one dimension, it is time to move on to
more challenging tasks. Consider again the Poisson equation, but now in possibly more
than one dimension

− ∇2u(x) = f(x) for x ∈ Ω. (41)

Lets first consider 2 dimensions, with Dirichlet boundary conditions in the first direction
and with periodicity in the second. Let Ω be the domain [−1, 1] × [0, 2π], and W (x, y) =
V C(x) × V p(y) be the tensor product function space. We can solve this problem for some
suitable function f(x) in shenfun by constructing a few more classes than were required
in 1D

from shenfun import Function, TensorProductSpace
from mpi4py import MPI

Now the TensorProductSpace class is used to construct W , whereas Function is a subclass
of numpy.ndarray used to hold solution arrays. The MPI communicator, on the other
hand, is used for distributing the tensor product grids on a given number of processes

comm = MPI.COMM_WORLD
N = (32, 33)

K0 = ShenDirichletBasis(N[0])
K1 = FourierBasis(N[1], dtype=np.float)
W = TensorProductSpace(comm, (K0, K1))

# Alternatively, switch order for periodic in first direction instead
# W = TensorProductSpace(comm, (K1, K0), axes=(1, 0))

Under the hood, within the TensorProductSpace class, the mesh is distributed, both
in real, physical space, and in spectral space. In the real space the mesh is distributed
along the first index, whereas in spectral space the wavenumbermesh is distributed along
the second dimension. This is the default behaviour of TensorProductSpace. How-
ever, the distribution may also be configured specifically by the user, e.g., as shown
in the commented out text, where the Dirichlet basis is found along the second axis.
In this case the order of the axes to transform over has been flipped, such that in
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spectral space the data is distributed along the first dimension and aligned in the sec-
ond. This is required for solving the linear algebra system that arises for the Dirichlet
basis. The arrays created using Function are distributed, and no further attention
to MPI is required. However, note that arrays may have different type and shape in
real space and in spectral space. For this reason Function has a keyword argument
forward_output, that is used as w_hat = Function(W, forward_output=True) to cre-
ate an array consistent with the output of W.forward (solution in spectral space), and
w = Function(W, forward_output=False) to create an array consistent with the in-
put (solution in real space). Furthermore, we can use uh = np.zeros_like(w_hat) and
w_hat = Function(W, buffer=uh) to wrap a Function instance around a regular Numpy
array uh. Note that uh and w_hat now will share the same data, and modifying one will
naturally modify also the other.

The solution of a complete Poisson problem in 2D is shown below. Very similar code
is required to solve the Poisson problem with the Legendre basis. The main difference is
that for Legendre it is natural to integrate the weak form by parts and use matrices =
inner(grad(v), grad(u))

from shenfun.chebyshev.la import Helmholtz as Solver

# Create a solution that satisfies boundary conditions
x, y = symbols("x,y")
ue = (cos(4*y) + sin(2*x))*(1-x**2)
fe = ue.diff(x, 2) + ue.diff(y, 2)

# Lambdify for faster evaluation
ul = lambdify((x, y), ue, ’numpy’)
fl = lambdify((x, y), fe, ’numpy’)

X = T.local_mesh(True)
u = TrialFunction(T)
v = TestFunction(T)

# Get f on quad points
fj = fl(X[0], X[1])

# Compute right hand side of Poisson equation
f_hat = inner(v, fj)

# Get left hand side of Poisson equation
matrices = inner(v, div(grad(u)))

# Create Helmholtz linear algebra solver
H = Solver(**matrices)
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# Solve and transform to real space
u_hat = Function(T) # Solution spectral space
u_hat = H(u_hat, f_hat) # Solve
u = T.backward(u_hat)

The test functions and function spaces require a bit more attention. Test functions for
space W (x, y) = V C(x) × V p(y) are given as

φk(x, y) = vl(x)eimy, (42)

which introduces the sans serif tensor product wavenumber mesh k = lD × l

k = {(l, m)|l ∈ lD and m ∈ l}. (43)

Similarly there is a tensor product grid x = x × y, where y = {yk}M−1
k=0 = 2πk/M

x = {(xj, yk)|j = 0, 1, . . . , N − 1 and k = 0, 1, . . . , M − 1}. (44)

Note that for computing on the tensor product grids using Numpy arrays with vectorization,
the mesh and wavenumber components need to be represented as 2D arrays. As such we
create

x = (x,y) =
(

{xi}N−1
i=0 × IM , IN × {yj}M−1

j=0

)
, (45)

where IN is an N-length vector of ones. Similarly

k = (l,m) =
(

{l}N−1
l=0 × IM , IN × {m}M/2

m=0

)
. (46)

Such tensor product grids can be very efficiently stored with Numpy arrays, using no more
space than the two vectors used to create them. The key to this efficiency is broadcasting.
We store k as a list of two numpy arrays, l and m, corresponding to the two 1D wavenumber
meshes {l}N−1

l=0 and {m}M/2
m=0. However, l and m are now stored as 2D arrays of shape (N, 1)

and (1, M/2 + 1), respectively. And broadcasting takes care of the additional dimension,
such that the two arrays work just like if they were stored as (N, M/2 + 1) arrays. We can
look up l(l, m), just like a regular (N, M/2 + 1) array, but the storage required is still only
one single vector. The same goes for x, which is stored as a list of two arrays x, y of shape
(N, 1) and (1, M) respectively. This extends straightforward to even higher dimensions.

Assembling a weak form like (v, ∇2u)N
w leads to two non-diagonal matrices, both the

stiffness and mass matrix, since it expands like

(v, ∇2u)N
w =

(
v,

∂2u

∂x2 + ∂2u

∂y2

)N

w

. (47)
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Inserting for test function v = φk(= φl,m = vl(x)eimy) and trial function u = ∑
(q,r)∈k ûq,rφq,r,

we obtain

(v, ∇2u)N
w =


φl,m,

∂2

∂x2

∑

(q,r)∈k
ûq,rφq,r + ∂2

∂y2

∑

(q,r)∈k
ûq,rφq,r




N

w

, (48)

= 2π


 ∑

(q,r)∈k
Alqδrmûq,r −

∑

(q,r)∈k
r2Blqδrmûq,r


 , (49)

= 2π


 ∑

q∈lD

Alqûq,m − m2 ∑

q∈lD

Blqûq,m


 ∀(l, m) ∈ lD × l. (50)

As can be seen from Eq.(50), the linear system of equations is set up to act along the
Dirichlet direction, whereas for the periodic direction the matrices are diagonal and no
additional work is required. The system of equations correspond to a series of 1D Helmholtz
problems, that need to be solved once for each m ∈ l. This is what goes on under the
hood with the Helmholtz solver imported through from shenfun.chebyshev.la import
Helmholtz as Solver.

The right hand side of the Poisson problem is computed as

(v, f)N
w = 2π

∑
j

1
N

∑
k

f(xj, yk)eimyk

︸ ︷︷ ︸
Fm

vl(xj)wj

︸ ︷︷ ︸
Sl

∀(l, m) ∈ lD × l,

= 2πS(f) = 2πSl(Fm(f)). (51)

The TensorProductSpace class can take any number of Fourier bases. A 3 dimensional
tensor product space can be created as

N = (32, 33, 34)
K0 = ShenDirichletBasis(N[0])
K1 = C2CBasis(N[1])
K2 = R2CBasis(N[2])
W = TensorProductSpace(comm, (K0, K1, K2))

Here the default behaviour of TensorProductSpace is to distribute the first 2 indices in
real space using two subcommunicators, with a decomposition often referred to as pencil
decomposition. In spectral space the last two indices will be distributed. For example,
using 4 CPUs, a subprocessor mesh of size 2 × 2 will be created, and 2 subprocessors share
the first index and the other two share the second index. If the program is run with 3
processors, then only the first index will be distributed and the subprocessormesh will
be 3 × 1. It is also possible to configure TensorProductSpace to run with 4 CPUs and
a 4 × 1 subprocessormesh, or 40,000 CPUs with a 200 × 200 processormesh. The latter
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requires that the mesh is big enough, though, but otherwise it is just a matter of acquiring
computing power. The biggest simulations tested thus far used 64,000 CPUs.

Solving a biharmonic problem is just as easy as the Poisson problem. Consider the
fourth order biharmonic PDE in 3-dimensional space

∇4u(x) = f(x), x ∈ Ω (52)

u(x = ±1, y, z) = ∂u

∂x
(x = ±1, y, z) = 0 (53)

u(x, y + 2π, z) = u(x, y, z), (54)
u(x, y, z + 2π) = u(x, y, z). (55)

that is periodic in y− and z−directions and with clamped boundary conditions at x = ±1.
The problem may be solved using either one of these two bases:

V C = span{Tl − 2(l + 2)
l + 3 Tl+2 + l + 1

l + 3Tl+4, l ∈ lB}, (56)

V L = span{Ll − 2(2l + 5)
2l + 7 Ll+2 + 2l + 3

2l + 7 , l ∈ lB}, (57)

where lB = 0, 1, . . . , N − 5. A tensor product space may be constructed as W (x, y, z) =
V C(x) × V p(y) × V p(z), and the variational problem

(v, ∇4u)N
w = (v, f)N

w , (58)

where u and v are trial and test functions in W , may be implemented in shenfun as shown
below

from shenfun.chebyshev.bases import ShenBiharmonicBasis
from shenfun.chebyshev.la import Biharmonic as Solver

N = (32, 33, 34)
K0 = ShenBiharmonicBasis(N[0])
K1 = C2CBasis(N[1])
K2 = R2CBasis(N[2])
W = TensorProductSpace(comm, (K0, K1, K2))
u = TrialFunction(W)
v = TestFunction(W)
matrices = inner(v, div(grad(div(grad(u)))))
f_hat = inner(v, fj) # Some right hand side
# or for Legendre:
# matrices = inner(div(grad(v)), div(grad(u)))
B = Solver(**matrices)

# Solve and transform to real space
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u_hat = Function(T) # Solution spectral space
u_hat = B(u_hat, f_hat) # Solve
u = T.backward(u_hat)

5 Other functionality of shenfun

In addition to the div and grad operators, there is Dx for a partial derivative

from shenfun import Dx
v = TestFunction(W)
du = Dx(v, 0, 1)

where the first argument is the basis function, the second (integer) is the axis to take the
derivative over, and the third (integer) is the number of derivatives, e.g.,

∂2v

∂y2 = Dx(v, 1, 2).

The operator can be nested. To compute ∂2u
∂x∂y

one may do

v = TestFunction(W)
du = Dx(Dx(v, 0, 1), 1, 1)

The operators work on TestFunctions, TrialFunctions or Functions, where only the
last actually contain any data, because a Function is used to store the solution. Once a
solution has been found, one may also manipulate it further using project in combination
with operators on Functions. For example, to compute ∂u/∂x of the solution to the
biharmonic problem, one can do

u = T.backward(u_hat) # The original solution on space T
K0 = Basis(N[0])
W0 = TensorProductSpace(comm, (K0, K1, K2))
du_hat = project(Dx(u, 0, 1), W0, uh_hat=u_hat)
du = Function(W0)
du = W0.backward(du_hat, du)

Note that we are here using a regular Chebyshev space instead of the biharmonic, to avoid
enforcing erroneous boundary conditions on the solution. We could in this case also, with
advantage, have chosen a Dirichlet space, since the derivative of the biharmonic problem
is known to be zero on the edges of the domain (at x = ±1).

All problems considered thus far have been scalar valued. With shenfun there is also
some functionality for working with vector equations. To this end, there is a class called
VectorTensorProductSpace, and there is an additional operator, curl, that can only be
used on vectors:
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from shenfun import VectorTensorProductSpace, curl
T = TensorProductSpace(comm, (K0, K1, K2))
Tk = VectorTensorProductSpace([T, T, T])
v = TestFunction(Tk)
u_ = Function(Tk, False)
u_[:] = np.random.random(u_.shape)
u_hat = Tk.forward(u_)
w_hat = inner(v, curl(u_), uh_hat=u_hat)

Vector equations have very similar form as scalar equations, but at the moment of writing
the different equation components cannot be implicitly coupled.

6 Ginzburg-Landau equation

We end this paper with the implementation of the complex Ginzburg-Landau equation,
which is a nonlinear time dependent reaction-diffusion problem. The equation to solve is

∂u

∂t
= ∇2u + u − (1 + 1.5i)u|u|2, (59)

for the doubly periodic domain Ω = [−50, 50] × [−50, 50] and t ∈ [0, T ]. The initial
condition is chosen as one of the following

u0(x, 0) = (ix + y) exp −0.03(x2 + y2), (60)
u1(x, 0) = (x + y) exp −0.03(x2 + y2). (61)

This problem is solved with the spectral Galerkin method using Fourier bases in both
directions, and a tensor product space W (x, y) = V p(x) × V p(y), where V p is defined as in
Section 3.4, but here mapping the computational domain [−50, 50] to [0, 2π]. Considering
only the spatial discretization, the variational problem becomes: find u(x, y) in W , such
that

∂

∂t
(v, u)N = (v, ∇2u)N + (v, u − (1 + 1.5i)u|u|2)N for all v ∈ W, (62)

and we integrate the equations forward in time using an explicit, fourth order Runge-Kutta
method, that only requires as input a function that returns the right hand side of (62).
Note that all matrices involved with the Fourier method are diagonal, so there is no need
for linear algebra solvers, and the left hand side inner product equals (2π)2û.

The initial condition is created using Sympy

from sympy import symbols, exp, lambdify
x, y = symbols("x,y")
#ue = (1j*x + y)*exp(-0.03*(x**2+y**2))
ue = (x + y)*exp(-0.03*(x**2+y**2))
ul = lambdify((x, y), ue, ’numpy’)
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We create a regular tensor product space, choosing the fourier.bases.C2CBasis for both
directions if the initial condition is complex (60), whereas we may choose R2CBasis if the
initial condition is real (61). Since we are solving a nonlinear equation, the additional issue
of aliasing should be considered. Aliasing errors may be handled with different methods,
but here we will use the so-called 3/2-rule, that requires padded transforms. We create a
tensor product space Tp for padded transforms, using the padding_factor=3/2 keyword
below. Furthermore, some solution arrays, test and trial functions are also declared.

# Size of discretization
N = (201, 201)

# Create tensor product space
K0 = C2CBasis(N[0], domain=(-50., 50.))
K1 = C2CBasis(N[1], domain=(-50., 50.))
T = TensorProductSpace(comm, (K0, K1))

Kp0 = C2CBasis(N[0], domain=(-50., 50.), padding_factor=1.5)
Kp1 = C2CBasis(N[1], domain=(-50., 50.), padding_factor=1.5)
Tp = TensorProductSpace(comm, (Kp0, Kp1))

u = TrialFunction(T)
v = TestFunction(T)
X = T.local_mesh(True)
U = Function(T, False) # Solution
U_hat = Function(T) # Solution spectral space
Up = Function(Tp, False) # Padded solution for nonlinear term
dU_hat = Function(T) # right hand side
#initialize
U[:] = ul(*X)
U_hat = T.forward(U, U_hat)

Note that Tp can be used exactly like T, but that a backward transform creates an output
that is 3/2 as large in each direction. So a (100, 100) mesh results in a (150, 150) output
from a backwards transform. This transform is performed by creating a 3/2 times larger
padded array in spectral space ûp

kp , where kp = lp × lp and

lp = −3N/4, −3N/4 + 1, . . . , 3N/4 − 1. (63)

We then set ûp
k = ûk for k ∈ l × l, and for the remaining high frequencies ûp

k is set to 0.
We will solve the equation with a fourth order Runge-Kutta integrator. To this end we

need to declare some work arrays to hold intermediate solutions, and a function for the
right hand side of Eq. (62)
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U_hat0 = Function(T)
U_hat1 = Function(T)
w0 = Function(T)
a = [1./6., 1./3., 1./3., 1./6.] # Runge-Kutta parameter
b = [0.5, 0.5, 1.] # Runge-Kutta parameter
def compute_rhs(rhs, u_hat, U, Up, T, Tp, w0):

rhs.fill(0)
U = T.backward(u_hat, U)
rhs = inner(v, div(grad(U)), output_array=rhs, uh_hat=u_hat)
rhs += inner(v, U, output_array=w0, uh_hat=u_hat)
rhs /= (2*np.pi)**2 # (2pi)**2 represents scaling with inner(u, v)
Up = Tp.backward(u_hat, Up)
rhs -= Tp.forward((1+1.5j)*Up*abs(Up)**2, w0)
return rhs

Note the close similarity with (62) and the usage of the padded transform for the nonlinear
term. Finally, the Runge-Kutta method is implemented as

t = 0.0
dt = 0.025
end_time = 96.0
tstep = 0
while t < end_time-1e-8:

t += dt
tstep += 1
U_hat1[:] = U_hat0[:] = U_hat
for rk in range(4):

dU_hat = compute_rhs(dU_hat, U_hat, U, Up, T, Tp, w0)
if rk < 3:

U_hat[:] = U_hat0 + b[rk]*dt*dU_hat
U_hat1 += a[rk]*dt*dU_hat

U_hat[:] = U_hat1

The code that is described here will run in parallel for up to a maximum of min(N [0], N [1])
processors. But, being a 2D problem, a single processor is sufficient to solve the
problem in reasonable time. The real part of u(x, t) is shown in Figure 2 for times
t = 16 and t = 96, where the solution is initialized from (60). The results start-
ing from the real initial condition in (61) is shown for the same times in Figure 3.
There are apparently good agreements with figures published from using chebfun on
www.chebfun.org/examples/pde/GinzburgLandau.html. In particular, the figures in 2 are
identical by the eye norm. One interesting feature, though, is seen in the right plot of
Figure 3, where the results can be seen to have preserved symmetry, as they should. This
symmetry is lost with chebfun, as commented in the referenced webpage. An asymmetric
solution is also obtained with shenfun if no de-aliasing is applied. However, the simulations
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are very sensitive to roundoff, and it has also been observed that a de-aliased solution using
shenfun may loose symmetry simply if a different FFT algorithm is chosen on runtime by
FFTW.

Figure 2: Ginzburg-Landau solution (real) at times 16 and 96, from complex initial condition.

Figure 3: Ginzburg-Landau solution (real) at times 16 and 96 from real initial condition.

7 Conclusions

In this paper, the Python module shenfun has been described. Within this module
there are tools that greatly simplify the implementation of the spectral Galerkin method for
tensor product grids, and parallel solvers may be written with ease and comfort. Shenfun
provides a FEniCS like interface to the spectral Galerkin method, where equations are
cast on a weak form, and where the required script-like coding remains very similar to
the mathematics. We have verified and shown implementations for simple Poisson or
biharmonic problems, as well as the nonlinear complex Ginzburg-Landau equation. On
a final note, it should be mentioned that these tools have also been used to implement
various Navier Stokes solvers within the spectralDNS project (github.com/spectralDNS),
that has run on the Shaheen II supercomputer at KAUST, on meshes of size up to 20483.
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Abstract. Blind-tee pipes are often encountered in the process piping of the refinery plants.  
The objective of the present study is to investigate numerically whether the increment of blind-
tee length will improve the mixing of the fluids inside the pipe. Three dimensional (3D) 
computational fluid dynamic (CFD) laminar-flow simulations have been performed to study 
the internal flow physics inside pipes with blind-tee lengths varying from 1D to 5D. Here D is 
the diameter of the pipe. The investigated Reynolds number is 1000. First, 3D flow simulations 
in a straight pipe with 10D are performed, and the numerical results are compared with the 
analytical solution. The computed velocity profile in the straight pipe case is then used as the 
inlet velocity profile for the simulations of flow in the blind-tee pipes. Numerical results, such 
as streamlines and pressure contours, are computed and discussed. Flow circulations in the blind 
tee section are studied and show that good fluid mixing in the pipe (no stagnant fluid) is 
observed when the blind tee length is less than 2D. Stagnant flow circulation is observed 
towards the end of the blind-tee section when the blind tee length is more than 2D.

1 INTRODUCTION  

 The process piping in the refinery plant does not always have straight pipe geometry. The 
configuration of these pipelines are usually zigzag or snake-like. The pipe fittings or joints such 
as elbow pipe, blind-tee pipe, T-pipe, Y-pipe are commonly seen. One of the reasons why the 
pipelines are layered in these configurations is due to the limited space.  

 At the connections or joint parts of the pipelines, fluid flow will behave differently from the 
flow of fluid in a straight pipe. The physical flow inside these joints needs to be studied in order 
to ensure an appropriate flow engineering design. First, it should be investigated whether there 
will be any deposits inside the pipe joints which may affect the flow in the pipe. Second, it 
should be checked whether the flow (especially multiphase flow) is well mixed during and after 
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crossing the pipe fittings, so that the relevant sensors (such as particle-concentration sensors) 
can perform the measurement successfully. 

 According to the open literature, many experimental, analytical and numerical studies have 
been performed to investigate the flow inside straight pipes, curved pipes, 90o tee-junction pipes 
and T-junction pipes, see e.g. Hornbeck [1], Friedmann et al. [2], Shirayama and Kuwahar [3], 
Costa et al. [4], Vasava [5], Cade et al. [6] and Beneš et al. [7]. To the authors’ knowledge, the 
flow physics in blind-tee pipes have not yet been investigated in details. A typical blind-tee 
pipe is shown in Figure 1.  

Figure 1. A typical blind-tee pipe. 

 In the present study, the objective is to investigate the flow physics in the blind-tee pipes 
with the blind-tee section lengths varying from 0 to 5D using three-dimensional (3D) 
computational fluid dynamics (CFD) simulations. Here D is the pipe diameter. The fluid mixing 
condition in the blind-tee section will be studied. Through the present study, a critical length of 
blind-tee section should be determined in order to avoid fluid deposition in the blind-tee section. 
The investigated Reynolds number (Re = Uz,average D/ is 1000, which is in laminar flow regime.  
Here Uz,average is the average inlet flow velocity and  is the kinematic viscosity of the fluid. 
Since there is no available data for the flow in the blind-tee pipes, 3D flow in a straight pipe 
has been simulated and the numerical results are then verified against the analytical solutions 
given in Cengel and Cimbala (2014).  Subsequently, the pipe flow with the verified incoming 
velocity profile will be set at the inlet of the blind-tee pipes with various blind-tee section 
lengths. The effect of the blind-tee section length on the pipe flow characteristics in the blind-
tee sections will be investigated by studying the flow pattern and the pressure distribution along 
the pipes.

2 MATHEMATICAL FORMULATION 

2.1 Flow model 

 The equations to be solved are incompressible Navier-Stokes equations. The open source 
CFD code OpenFOAM is used here. OpenFOAM is mainly applied for solving problems in 
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continuum mechanics. It is developed based on the tensorial approach and object oriented 
techniques (Weller et al. [8]). The pimpleFOAM solver is employed in the present study. 
According to OpenFOAM [9], the pimpleFOAM is a large time-step transient solver which is 
suitable for incompressible Newtonian flow. This solver uses the merged PISO-SIMPLE 
algorithm which is known as PIMPLE algorithm. The spatial schemes for gradient, Laplacian 
and divergence are Gauss linear, Gauss linear corrected and Gauss linear schemes, respectively. 
All these schemes are in second order. The first-order Euler scheme is used for the time 
integration. Further details of these schemes are given in OpenFOAM [9]. 

2.2 Computational domain and boundary conditions 

 The computational domains and boundary conditions for the straight pipe and the blind-tee 
pipes are shown in Figure 2. 

(a) Straight pipe 

(b) Blind-tee pipe 

Figure 2. Computational domains and boundary conditions for the straight pipe and the blind-tee pipes. 

a) Inlet 

 A developed velocity profile with the initial average velocity equal to 1 m/s is computed 
analytically based on the classical formula given in Cengel and Cimbala [10] (i.e. Uz,average = 1 
m/s). The equation of the velocity profile is Uz (r) = 2Uz,average  (1 – r2/R2), where R is the radius 

blind-tee section 
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of the pipe and r is the radial distance from the centre of the pipe. The computed velocity profile 
is set at the inlet in order to save the simulation time and avoid using a very large computational 
domain. The pressure boundary condition at the inlet is set as zero normal gradient.  

b) Wall 

 On the internal walls of the pipe, a non-slip boundary condition is prescribed and the 
pressure boundary condition is set as zero normal gradient.  

c) Outlet 

 At the outlet, the velocity boundary condition is set as zero normal gradient and the pressure 
boundary condition is set to be zero. 

3 RESULTS AND DISCUSSION 

3.1 Straight pipe 

 Three-dimensional CFD simulations have been performed to compute the flow in a straight 
pipe with D = 1m and the pipe length (L) = 10D at Re = 1000, where Uz,average = 1 m/s and 
 m2/s. A grid convergence study is carried out with Mesh 1 = 36000 elements, Mesh 
2 = 55120 elements and Mesh 3= 71928 elements, as well as Maximum Courant number = 
0.125. Figure 3 show the present predicted Uz velocity profiles of Mesh 1, Mesh 2 and Mesh 3 
with respect to r = -0.5D to 0.5D at the location z = 5D. The computed analytical solution of 
the velocity profile has been used as the inlet velocity profile. The corresponding analytical 
solution of the velocity profile is also included in the figure for comparison. It appears that 
Mesh 1 with 36000 elements give sufficient numerical accuracy, and the predicted velocity 
profile is in good agreement with the analytical solution.  

Figure 3. Cross-sectional velocity profiles for the grid convergence study of the straight pipe case. 
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 A time-step convergence study has been performed for Mesh 1 (36000 elements) with three 
different Maximum Courant numbers, i.e. 0.125, 0.2, 0.3.  Figure 4 shows the results of the 
time-step convergence study. It appears that the simulation with the maximum Courant number 
= 0.3 is found to be sufficiently accurate as compared to the analytical solution. 

Figure 4. Cross-sectional velocity profiles for the time-step convergence study of the straight pipe case. 

 Overall, it appears that the mesh with 36000 elements (Mesh 1) with the maximum Courant 
number = 0.3 gives sufficient numerical accuracy and the predicted velocity profile is in good 
agreement with that of the analytical solution. 

3.2 Blind-tee pipes 

 The flow prediction for the straight pipe case discussed in Section 3.1 showing an approach 
to achieve a fully developed laminar pipe flow can be utilized for simulating flow physics in 
the blind-tee pipes.  The fully developed velocity profile at Re = 1000 which is obtained from 
the straight pipe case is set as the velocity profile at the inlet of the blind-tee pipes.  3D CFD 
simulations of flow in blind-tee pipes with 5 different blind-tee lengths (BTL=1D, 2D, 3D, 4D,
5D) are performed in the present study. The main objective is to investigate numerically how 
the increment of blind-tee length affects the fluid mixing inside the blind-tee pipes.  

 Grid resolution tests have been performed for all the cases. Here the case with BTL = 4D is 
chosen to show the comparison of the cross-sectional velocity profiles at Location A (y, z) = (0, 
5D) and Location B (y, z) = (0, 15D) obtained from the simulations with 184350 mesh elements 
and 269862 mesh elements, respectively, with a maximum Courant number = 0.3. Figure 5 
shows the locations where the cross-sectional velocity profiles are extracted for comparison.  
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Figure 5. Locations where the cross-sectional velocity profile is extracted for the case with BTL = 4D.

 Figure 6 shows the comparison of the instantaneous cross-sectional velocity profiles at 
Locations A and B (shown in Figure 5) for the simulations with 184350 mesh elements and 
269862 mesh elements. It is clearly seen that the cross-sectional velocity profiles for the 
simulations with 184350 mesh elements and 269862 mesh elements are close to each other. 
Therefore, the mesh with 184350 elements is considered to have sufficient grid resolution.  

Figure 6. Instantaneous cross-sectional velocity profiles for the grid resolution test of the blind-tee pipe with 
BTL = 4D.

z = 0D 

z = 20D 

z = 24D 

y = 10D 

y = 20D 

Y

ZX

outlet 

inlet 

blind-tee section 

Location A: z = 5D 

Location B: z = 15D 

z = 2.5D 
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 Figure 7 shows the comparison of the instantaneous cross-sectional velocity profiles at the 
selected locations (i.e., z = 2.5D, z = 5D, z = 15D and y = 10D shown in Figure 5) together with 
the velocity profile at the inlet (the analytical solution). It is clearly seen that the maximum 
velocity decreases when the fluid flows towards the blind-tee section. Flow circulation and 
vortices are generated due to the existence of the blind-tee section and the pipe bend (see Figure 
8(d) for the flow visualization). Therefore, the instantaneous cross-sectional velocity profile at 
y = 10D does not have a parabolic shape which is different from the velocity profiles at z = 
2.5D, z = 5D and z = 15D.

 
Figure 7. Instantaneous cross-sectional velocity profiles at locations z = 2.5D, z = 5D, z = 15D and y = 10D
for the blind-tee pipe with BTL = 4D.

 Three dimensional laminar flow simulations in blind-tee pipes with BTL=1D to 5D have 
been carried out at Re = 1000. The instantaneous streamlines of the in the blind-tee pipes with 
BTL = 1D to 5D are shown in Figure 8(a) to (e). The streamlines are colored by the Uz contour
ranges from -0.8 m/s to 2m/s. 

By plotting the streamlines of the fluid flow inside the investigated pipes, the behavior of 
how the fluid is flowing can be observed clearly. It can be seen that the streamlines coming 
from the inlet, show straight lines. When they reach the blind-tee section, some fluid flows 
towards the outlet and some fluid flows towards the blind-tee section. Since the end of the blind-
tee section is blanked-off, the fluid is trapped in this part. As the result, when the fluid flow hits 
the blanked-off side, it flows back and creates flow circulation. 
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Figure 8. Instantaneous streamline plots for the blind-tee pipes with BTL = 1D to 5D. The typical values of 
Uz at y = 5D range from -0.016 m/s to 0.197 m/s. 
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The flow circulation inside the blind-tee sections shows different sizes according to the 
length of the blind-tee section. For the blind-tee pipe with BTL = 1D, the flow circulation size 
is 1D. For the blind-tee pipe with BTL = 2D, the flow circulation size is 2D. When BTL is 
larger than 2D, a second flow circulation in the blind-tee section begins to appear. For the blind-
tee pipe with BTL = 3D, the size of the first flow circulation is 2D. The second flow circulation 
with a size of 0.5D is formed even though it appears to have a vague shape, see Figure 8(c). For 
the blind-tee pipe with BTL = 4D, it can be clearly seen that the two flow circulations occur. 
The first flow circulation size inside this particular blind-tee pipe is 2D. The second flow 
circulation has a size of 1.5D. The second flow circulation can be taken as a stagnant flow 
circulation, since the fluid exchange between this flow circulation and the flow in the main pipe 
is observed to be limited. Figure 8(e) shows that three flow circulations are created inside the 
blind-tee pipe with BTL = 5D. The size of the first two flow circulations are 2D and 1.5D, 
respectively. The third flow circulation starts to develop. However, the strength of the third 
flow circulation is obviously weak. It seems that the fluid there becomes almost fully stagnant.  

Generally, it can be concluded that the flow which is trapped inside the blind-tee section 
with BTL < 2D forms one flow circulation, while for BTL > 2D, more than two flow 
circulations are formed. It appears that the maximum capability of the first flow to create 
circulation inside the blind-tee section is only limited to the size of 2D. The size of the next 
flow circulation is 1.5D which is smaller than that of the first flow circulation. It means that the 
flow becomes weaker when it travels towards the end of the blind-tee section; and this is 
physically sound.

Figures 9(a) – 9(e) show the pressure contour in the five investigated blind-tee pipes. It can 
be clearly seen that the pressure in the blind-tee section increases as the length of the blind-tee 
section increases. It means that more stagnant fluid exists for the blind-tee pipes with longer 
blind-tee section. This observation is consistent with the flow characteristics observed in the 
streamlines plots Figure 8(a) - 8(e). 

 By summarizing the aforementioned findings for Re = 1000 in the present study, the blind-
tee section can improve the mixing of the multiphase fluid, provided that the length of the blind-
tee section should be less than 2D.  For BTL > 2D, stagnant flow circulation is observed and 
this will cause fluid deposition (i.e. bad fluid-mixing condition). 

4 CONCLUSION 

 Laminar flows in blind-tee pipes with the blind-tee section length varying from 1D to 5D at
Re = 1000 have been investigated using three-dimensional CFD simulations.  The main 
objective is to study the effect of the blind-tee section length on the fluid mixing condition in 
the blind-tee pipes. The flow physics are discussed by investigating the streamlines and the 
pressure contour in the blind-tee pipes.

 It is found that when the length of the blind-tee section is less than 2D, the fluid in the blind-
tee section has a good mixing condition. When the length of the blind-tee section is larger than 
2D, at least two flow circulations are formed in the blind-tee section. The second flow 
circulation has limited fluid exchange with the flow in the main pipe. The size of the second 
flow circulation is smaller than the size of the first flow circulation.  For the blind-tee pipes 
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with the blind-tee length larger than 4D, stagnant flow is observed towards the end of the blind-
tee section; and this will generally cause the fluid deposition. 

 Experimental data are required before a conclusion regarding the validity of this numerical 
approach can be given. In the meantime, this method should be useful as an engineering tool 
for understanding the flow physics in blind-tee pipes. 

(a)                                                                                  (b) 

      
(c)                                                                                 (d) 

                     
                                         (e)                                                                                 

Figure 9. Pressure contours for the blind-tee pipes with BTL = 1D to 5D.
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Abstract. In this paper, a numerical investigation is carried out to model sea bed
erosion around offshore pipelines deployed at the shoreline. The open-source CFD model
REEF3D is used for the numerical modeling. The model solves the Reynolds-averaged
Navier-Stokes equations to calculate the flow hydrodynamics. Turbulence around the
pipeline under the wave action is calculated using the k−ω model. The convective terms
of the governing equations are discretized using the fifth-order finite difference WENO
scheme. The free surface is captured with the level set method. The morphological
evolution of the erosion process is calculated based on the simulated hydrodynamics. A
fully coupled hydrodynamics-sediment model is used in the present study. For a more
realistic capturing of the sea bed deformation, the modified critical bed shear stress on a
sloping bed together with a sand slide algorithm is implemented in the model. The sea
bed elevations are captured based on the Exner formula. The numerical model is validated
against the experimental data for pipeline erosion under the influence of waves. A good
agreement between experimental data and simulated results is observed. The numerical
model is then utilised to simulate the erosion around offshore pipelines placed on different
sea bed materials namely silt, coarse sand and very coarse sand. The temporal variation of
the maximum erosion beneath the pipeline, erosion extent and the magnitude for different
sea bed materials are presented and discussed. It is found that the silt sea bed offers more
sea bed stability compared to the very coarse sand sea bed. Furthermore, the effect of
the Keulegan-Carpenter (KC) number on the maximum erosion beneath the pipeline is
also investigated. It is observed that the maximum erosion beneath the pipeline increases
with KC number.

1

A numerical investigation of erosion around offshore pipelines
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1 INTRODUCTION

The oil and gas from the offshore production facilities are generally transported through
subsea pipelines. The stability of these subsea pipelines is threatened due to the loss of
sea bed support. Since the pipelines on the shoreline in shallow water are exposed to
continuous wave action, the sea bed material is eroded, forming a bowl-shaped depres-
sion beneath the pipelines. When the extent of the scour becomes long enough along
the pipeline, the pipe sags, resulting in lateral instability and leakages in the pipeline.
Hence, a detailed study is necessary to investigate pipeline erosion for different types of
sea bed materials such as silt, coarse sand and very coarse sand as well as for different
wave conditions.
In current literature, there are several experimental studies, analytical and numerical
models to investigate sea bed erosion around pipelines e.g. [1] [2] [3] [4] [5]. These stud-
ies discuss the steady state and oscillatory flow hydrodynamics around pipelines using
different turbulence models e.g. k-ε, standard k-ω and Wilcox high-Reynolds-number
k-ω turbulence model. Finally, the maximum erosion and the temporal development of
pipeline erosion process under waves and current action are analysed. Recently, Fuhrman
et al. (2014) [6] developed a 2D numerical model for local scour around pipelines under
wave action. The flow field is solved using the k − ω turbulence model. A fully coupled
modeling approach is applied to simulate scour for different KC numbers. The simulated
results agree well with the experimental observations. Additionally, the wave-induced
backfilling process is also studied. The limitation of the model is that it overlooks the
discussion about nonlinear wave generation and free surface calculation. Liu et al. (2016)
[7] developed a 2D dimensional numerical model to predict local scour around pipelines.
Instead of being simplified to oscillatory flow, the wave motion is modeled using a fully
nonlinear wave model. The numerical investigations suggested the necessity of utilising
the free surface wave model rather than the simplified oscillatory flow model to study lo-
cal scour around pipelines. The study focuses more on erosion on sloping sea beds rather
than the different parameters affecting pipeline erosion such as the effect of the sea bed
material, the temporal evolution of the erosion process and the wave conditions.
The objective of the present paper is to develop a numerical model that is capable of pre-
dicting the temporal evolution of erosion below a pipeline for different sea bed materials.
The model calculates the wave hydrodynamics along with the k−ω model for turbulence.
The wave generation and absorption are carried out using the active wave generation and
absorption method. The free surface is obtained with the level set method. The simulated
flow field is linked with sediment transport algorithms where the updated morphology is
captured with the Exner formulation. A sand slide model is employed to update the bed
profile. The simulated scour profile is verified against experimental observations carried
out by Sumer and Fredsøe (1990) [2]. Finally, the study discusses the results for pipeline
erosion for different sea bed materials and wave conditions.

2
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2 NUMERICAL MODEL

2.1 Hydrodynamic Model

The open-source CFD model REEF3D [8] [9] is used for the numerical modeling of
the wave hydrodynamics and the erosion process. It solves the incompressible Reynolds-
Averaged Navier-Stokes (RANS) equations, along with the continuity equation to cal-
culate the velocity field in the numerical wave tank. The continuity and momentum
equations are shown below:

∂ui

∂xi

= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

[

(ν + νt)

(

∂ui

∂xj

+
∂uj

∂xi

)]

+ gi (2)

where ui is the velocity averaged over time t, p is the pressure, ρ is the density of water,
ν is the kinematic viscosity of the water, νt is the eddy viscosity, g is the gravitational
acceleration. The k-ω model [10] is used to calculate eddy viscosity by solving the two
variables namely, the turbulent kinetic energy (k) and the specific turbulent dissipation
(ω). Detailed description of the hydrodynamic and turbulence model can be found in [8].

2.2 Numerical schemes and solver

The model approximates spatial derivatives using advanced finite difference methods on
a Cartesian grid, where the convective terms of the momentum equations are discretized
with the fifth-order accurate Weighted Essential Non-Oscillatory (WENO) scheme devel-
oped by Jiang and Shu (1996) [11]. The convective terms of the turbulence model and
the level set function are discretized with the Hamilton-Jacobi formulation of the WENO
scheme proposed by Jiang and Shu (2000) [12]. A TVD third-order Runga-Kutta time
scheme [13] is used for time stepping of the governing equations. The hydrodynamic
time step for the transient flow field is calculated with adaptive time stepping [14]. The
pressure is solved using the projection method proposed by Chorin (1996) [15]. The pre-
conditioned conjugate gradient (PCG) solver from the high-performance solver package
HYPRE [16] with a semi-coarsening multi-grid solver PFMG, is implemented to solve
the Poison equation. An immersed boundary method with a local directional ghost cell
approach [17] is used to define boundary conditions for complex geometry.

2.3 Morphological model

The simulated flow field from the hydrodynamic model is used to calculate the sediment
transport process using the morphological model in REEF3D [18] [19] [20] [21]. The
morphological model is implemented as follows. The bed stress on the sea bed is calculated
using the hydraulically rough wall function. Hence, the shear velocity near the sea bed
boundary layer is determined using the velocity from the nearest cell by considering a
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logarithmic velocity profile near the sea bed. The bed shear stress (τ) is defined as
follows:

u

u∗ =
1

κ
ln

(

30z

ks

)

and τ = ρu∗2 (3)

where u is the velocity, u∗ is the shear velocity, κ = 0.4 is the von Karman constant, z
is the vertical height above the sea bed to the nearest cell center, ks is the Nikuradse’s
equivalent sand roughness, d50 is the median grain size. The bedload calculations are made
with the bedload formulation proposed by van Rijn (1984) [22]. The particle mobility is
calculated by subtracting the modified critical bed stresses [Eqs.6] from the actual bed
stresses [Eqs.3]

qb,i

d1.550

√

(ρs−ρw)g
ρw

= 0.053
(
τ−τc,i
τc,i

)2.1

((ρs/(ρw−1)g
ν2

)1/3)0.3
(4)

where, qb,i is the bedload transport, τc,i is the critical bed shear stress, ρs is the sediment
density, ρw the water density, g is the gravity, d50 is the median particle diameter, ν is
the kinematic viscosity of water.
The critical bed shear stress calculated using the Shields diagram approach might lead
to underestimation of the sediment transport because it does not account for the effects
of the sloping bed. This problem is handled with the modified critical shear formulation
on sloping beds proposed by Dey (2003) [23]. The effect of the sloping bed is accounted
for by considering the longitudinal bed slope θ, the transverse bed slope α, the angle of
repose ϕ and the drag and lift forces. The expression for the bed shear stress reduction
factor r is defined as follows:

r =
1

(

1− η tanϕ
)

tanϕ

{−(

sin θ + η tan2 ϕ
√

cos2 θ − sin2 α
)

+
[(

sin θ + η tan2 ϕ
√

cos2 θ − sin2 α
)2

+
(

1− η2 tan2 ϕ
)(

cos2 θ tan2 ϕ− sin2 α tan2 ϕ− sin2 θ − sin2 α
)]0.5}

(5)

where η is the ratio of the drag force to the inertia force. Finally, the modified critical bed
stress (τc) is calculated by multiplying the reduction factor r with the bed shear stresses
τ0 calculated from Eq. 3 as follows:

τc = r · τ0 (6)

The change in bed elevations is calculated with the Exner formula. The method is based
on the conservation of the sediment mass where the horizontal spatial variation in the
bedload is conserved with the spatial change in the vertical z-direction. The morphological
evolution occurs as a nonlinear propagation of the bed level deformations in the direction
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of the sediment transport. The formulation for the transient change in bed level is given
as follows:

∂zb
∂t

+
1

(1− n)

[ ∂qbi,x
∂x

]

+ E −D = 0 (7)

where z is the bed-level, qbi,x is the bedload in the x direction, n is the sediment porosity,
D is the deposition rate, expressed as volume of sediment grain settling and E is the
entrainment rate, sediment grains settling from the suspension.

3 NUMERICAL SETUP

The computational setup is practically the same as the one employed by Sumer and
Fredsøe (1990) [2]. The water depth is 0.4 m and the maximum velocities are um = 0.23
m/s. The sea bed material consists of coarse sand with d50 = 0.58 mm. The Shields
parameter for the sea bed material is θc = 0.11. The coarse sand sea bed is assumed to
be hydraulically rough. The roughness height ks is maintained at 3d50, which is a widely
accepted value for the Nikuradse roughness (ks) on a flat sea bed. The wave amplitude a
= 0.06 m and wave length λ = 5 m, are calculated based on the maximum velocities um

= 0.23 m/s and wave period T = 1.43 s. Accordingly, the KC number is calculated to be
KC = umT/D = 7. Here D is the diameter of the pipeline.
The numerical test for the sea bed erosion around the pipelines are conducted in a 2D
numerical wave tank. It is 2.54 m long and 1 m high including a 0.3 m sea bed with a water
depth of d = 0.4 m . The length of the NWT is assumed to be half of the wave length i.e.
l= λ/2. A pipeline of diameter D = 0.05 m is fixed on the sea bed. The 5th-order Stokes
waves are chosen based on incident wave characteristics. The active wave generation and
absorption method [24] is used for the wave generation in the numerical wave tank by
prescribing the wave elevation η and the wave velocities at the inlet. The reflected waves
from the end of the domain are managed using negative of corrected velocity uc, which is
described as follows:

uc =

√

g

d
.ηr (8)

where ηr is reflected wave amplitude which is defined as:

ηr = ηm − h (9)

where ηm is measured free surface elevation, h is the still water level in the tank. The free
surface is captured using the level set method [25]. It uses a continuous signed distance
function φ(x, t) to define the interface between two immiscible fluids, which is defined as
follows:

φ(�x, t)











> 0 if �x is in phase 1

= 0 if �x is at the interface

< 0 if �x is in phase 2

(10)
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Here φ (x,t) is calculated using convection equations with externally generated velocity
field uj from RANS equations.

∂φ

∂t
+ uj

∂φ

∂xj

= 0 (11)

4 GRID CONVERGENCE STUDY

The numerical tests are conducted in a 2D numerical wave tank (NWT). The purpose
of the tests is to determine the minimum grid size required to maintain wave quality. The
length of the NWT is equal to half of the wavelength i.e. L = 2.5 m. The active wave
absorption (AWA) is used for the wave generation in the NWT. One probe is fixed at the
center location of the tank where the pipeline is suppose to be fixed. Different grid sizes
dx = 0.04 m, 0.03 m, 0.02 m, and 0.01 m are tested. Results discuss the wave accuracy
of the wave by one-to-one comparisons between wave theory and numerically simulated
results. It is found that wave accuracy increases with finer grid size and the solution is
assumed to be converged at dx = 0.01 m.
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Figure 1: Comparison between simulated and theoratical free surafce elevation for the
grid convergence study. Black solid line: simulated; dotted line: theoretical
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5 RESULTS

5.1 Sea bed erosion around the pipeline

The first set of the numerical analysis investigates the erosion process beneath the
pipeline. The simulation is run as a fully coupled model until equilibrium erosion is
achieved. The results are captured at three different time intervals t = 0.2, 5 and 55
minutes. Numerical results suggest that pipeline erosion evolves through three stages.
The first stage is the onset stage. In this stage, the pipeline is assumed to be fully buried
in the sea bed material and there is no gap for flow beneath the pipeline. The erosion
is caused by the pressure difference between the upstream and downstream sides of the
pipeline. Once a small gap is created by the onset erosion, the second stage of the pipeline
erosion is initiated. At this stage, a strong water jet is formed in the gap between the
pipeline and the sea bed. It increases the bed shear stress beneath the pipeline and
results in quick erosion. This process is called tunnel erosion. This process is quick and
develops maximum erosion within the first 5-10 waves incident on the pipeline. The final
stage of the erosion is lee-wake erosion. It is initiated by the lee-wake at the upstream
and downstream sides of the pipeline. The intensity and extent of the lee-wake erosion
depends on the wave characteristics and the sea bed material beneath the pipeline. It
might trigger additional erosion beneath the pipeline with the lee-wake erosion intruding
into the tunnel eroded sea bed.
Fig. 2(a) shows a well-developed profile of tunnel erosion. The maximum erosion below
the pipeline takes place within t = 0.2 minute. The upstream and downstream sides of the
pipeline are found to be completely safe from lee-wake erosion. A good match between
the simulated results and the experimental observation [2] is seen which indicates the
robustness of the model in capturing tunnel erosion. Tunnel erosion is considered to be
the most crucial stage because the maximum erosion beneath the pipeline takes place
during this process. The prediction is also equally important from an engineering point of
view. If intensive erosion takes place at an early stage of the erosion process, the design
of protective measures cannot be avoided. Fig. 2(b-c) shows the lee-wake erosion at t
= 5 and 55 minutes respectively. Results indicate that the erosion on the downstream
side of the region is generated by the lee-wake vortices. The maximum erosion beneath
the pipeline agrees with the experimental data but the erosion at the downstream side of
the pipeline is slightly underestimated. The reason for the underestimation of the erosion
might be the nature of the wake vortex at the upstream and downstream sides of the
pipeline, which changes continuously with the development of the scour hole beneath the
pipeline.
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Figure 2: Time development of the pipeline erosion profiles on coarse sand sea bed, θc =
0.11, d50 = 0.58 mm, KC = 7. Black solid line: simulated results; Red circles: Experiment
by Sumer and Fredsøe (1990)[2]
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5.2 Effect of sea bed material on erosion around pipeline

Three numerical tests are carried out to investigate the effect of the sea bed material
on pipeline erosion. The sea bed materials selected for the tests are silt (d50 = 0.06
mm, θc = 0.17), coarse sand (d50 = 0.58 mm, θc = 0.11) and very coarse sand (d50 =
1 mm, θc = 0.035). Shields parameter for each test is calculated from the experimental
observations [2] and the Shields diagram based on the median particle diameter. The
input wave condition is same for all tests i.e. a = 0.06 m, T = 1.43 s and KC = 7. The
fully coupled simulation is run until the equilibrium erosion state is achieved. Finally, the
eroded profile around the pipeline and the temporal evolution of the maximum erosion
are evaluated. Fig. 3(a) shows the eroded profile of the silt sea bed. It is seen that a small
amount of erosion Smax = 5 mm takes place beneath the pipeline which indicates weak
tunnel erosion. The result demonstrates the high shear strength of the sea bed against
the low bed shear stress generated by the flow jet below the pipeline. There is no lee-wake
erosion at the upstream and downstream sides of the pipeline which indicates ineffective
lee-wake vortices against the high shear strength of the sea bed. Fig. 3(b) shows the
eroded sea bed profile of the coarse sand sea bed. A maximum erosion of Smax = 20 mm
takes place beneath the pipeline. However, the far upstream and downstream sides of
the pipeline are moderately affected by the erosion. This signifies a strong tunnel erosion
regime over the lee-wake erosion. Fig. 3(c) shows the eroded profile of the very coarse
sand sea bed. The maximum erosion beneath the pipeline is 30 mm and the downstream
side of the pipeline is adversely affected by the lee-wake erosion. The maximum erosion
at downstream is almost Smax = 80 mm which indicates a strong influence of the lee-wake
vortices on the very coarse sand sea bed material.

Table 1: Test conditions and results comparison

Parameters Test1 Test 2 Test 3
Cylinder diameter D (mm) 50 50 50
Wave time period T (s) 4 4 4
Maximum bed orbital velocity Um (m/s) 0.23 0.23 0.23
Wavelength λ (m) 5 5 5
Amplitude a (m) 0.06 0.06 0.06
KC number 7 7 7
Median grain size d50 (mm) 0.06 0.58 1
Critical Shields parameter θc 0.17 0.11 0.035
Simulated maximum scour depth Smax (mm) 5 20 80
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Figure 3: Simulated free surface and the maximum erosion on different sea bed materials
below the pipeline during the wave peak action. Black dotted line represents the initial
sea bed level.

Fig. 4 represents the temporal development of the maximum erosion around the
pipeline and non-dimensional scour depth S/D with θc. The fluctuation in the tem-
poral evolution of the process represents erosion and refilling of the scour hole with back
and forth action of the waves. Fig. 4(a) depicts the temporal evolution of the erosion
process for the silt sea bed (θc = 0.17). It is clearly seen that the maximum erosion takes
place within the first t = 20 s. The wave propagation over the pipeline after t = 20 s,
contributes to small fluctuations in erosion, while the resulting maximum erosion beneath
the pipeline remains unaffected. Fig. 4(b) shows the temporal evolution of the maximum
erosion for the coarse sand sea bed (θc = 0.11). It is understood that a decrease in the
shear strength of the sea bed results in higher erosion. Almost 20 mm of erosion takes
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place within the first t = 5 s of wave action. It indicates an increase in tunnel erosion with
a decrease in the sea bed strength. The small non-uniformity in the erosion pattern after
t = 5 s, indicates interference of lee-wake erosion with tunnel erosion. Fig. 4(c) shows
the temporal evolution of the pipeline erosion for very coarse sand sea bed. Almost 30
mm erosion takes place within t = 5 s which indicates a higher action of tunnel erosion
on a very coarse sand sea bed. Furthermore, after t = 5 s, the temporal evolution of the
process is non-uniform which indicates the presence of a strong lee-wake erosion at the
upstream and downstream sides of the pipeline.
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Figure 4: Time development of the maximum erosion around the pipeline

Fig. 4(d) represents the variation of the non-dimensional scour depth S/D with crit-
ical Shields parameter (θc). Here S is the maximum scour depth and D is the pipeline
diameter. It is interesting to note that the erosion pattern and magnitude increases with
decreasing critical Shields parameter. The very coarse sand sea bed is more adversely
affected by erosion compared to the silt sea bed.

5.3 Effect of KC number on erosion around pipeline

The numerical model is further tested for the calculation of the maximum erosion below
the pipelines for different wave conditions by changing the KC number. Fig. 5 depicts
the variation of the maximum scour depth S/D with the KC number. It is found that
the maximum scour depth increases with increasing KC number. The present numerical
results are also found to be consistent with the empirical formula based on experimental
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observations by Sumer and Fredsøe (2002) [26], where, S/D = 0.1(KC)0.5.
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Figure 5: Maximum erosion beneath the pipeline plotted against KC. Coarse sand sea
bed, d50 = 0.58 mm, θc = 0.11

6 CONCLUSIONS

The open-source CFD model REEF3D has been developed to predict the erosion pro-
cess around pipelines for different sea bed materials. A fully coupled modeling approach
is implemented to investigate pipeline erosion. The bed deformation is calculated using
the Exner formulation. A sand slide model is introduced to smooth out the morphologi-
cal irregularities of scour profiles. The simulated results are verified against experimental
data. Based on the numerical results, the following conclusions can be reached.

- The results for the erosion beneath the pipeline indicate that the model predicts the
hydrodynamics and sediment transport with acceptable accuracy in a fully coupled
manner. Also, the results for different sea bed materials indicate the possibilities
for modeling the real field case studies including cohesive and active sediment in
permafrost regions.

- For the silt sea bed, maximum erosion takes place under the pipeline only. While
the upstream and downstream sides of the pipeline are found to be safe.

- Results suggest that tunnel erosion is a quick process which takes place within the
first 5-20 s of the whole process.

- For the coarse sand sea bed, both tunnel erosion and lee-wake erosion are involved
and the maximum erosion is governed by the tunnel erosion.

12



323



324

Nadeem Ahmad, Hans Bihs, Arun Kamath and Øivind A. Arntsen

[10] Wilcox, D.C. Turbulence modeling for CFD. DCW Industries Inc., La Canada,
California., 1994.

[11] Jiang, G.S. and Shu, C.W. Efficient implementation of weighted ENO schemes.
Journal of Computational Physics 1996. 126:202–228.

[12] Jiang, G.S. and Peng, D. Weighted ENO schemes for Hamilton-Jacobi equations.
SIAM Journal on Scientific Computing 2000. 21:2126–2143.

[13] Shu, C.W. and Osher, S. Efficient implementation of essentially non-oscillatory shock
capturing schemes. Journal of Computational Physics 1988. 77:439–471.

[14] Griebel, M., Dornseifer, T. and Neunhoeffer, T. Numerical simulation in fluid dy-
namics: a practical introduction. SIAM, 1998.

[15] Chorin, A. Numerical solution of the Navier-Stokes equations. Mathematics of Com-
putation 1968. 22:745–762.

[16] Falgout, R.D., Jones, J.E. and Yang, U.M. Numerical Solution of Partial Differential
Equations on Parallel Computers. Springer Berlin Heidelberg, 2006. pp. 267–294.

[17] Berthelsen, P.A. and Faltinsen, O.M. A local directional ghost cell approach for
incompressible viscous flow problems with irregular boundaries. Journal of Compu-
tational Physics 2008. 227:4354–4397.

[18] Afzal, M.S., Bihs, H., Kamath, A. and Arntsen, Ø.A. Three-dimensional numerical
modeling of pier scour under current and waves using level-set method. Journal of
Offshore Mechanics and Arctic Engineering 2015. 137(3):032001.

[19] Ahmad, N., Afzal, S., Bihs, H. and Arntsen, Ø.A. Three-dimensional numerical
modeling of local scour around a non-slender cylinder under varying wave conditions.
In: 36th IAHR World Congress, June 2015, The Netherlands.

[20] Ahmad, N., Bihs, H., Kamath, A. and Arntsen, Ø.A. CFD modeling of local scour
around a pair of tandem cylinders under wave conditions. In: Proceedings - Inter-
national Conference on Port and Ocean Engineering under Arctic Conditions, June
2015, Norway.

[21] Ahmad, N., Bihs, H., Kamath, A. and Arntsen, Ø.A. Three-dimensional CFD mod-
eling of wave scour around side-by-side and triangular arrangement of piles with
REEF3D. Procedia Engineering 2015. 116:683 – 690.

[22] van Rijn, L.C. Sediment transport, part I: Bed load transport. Journal of Hydraulic
Engineering 1984. 110(10):1431–1456.

14



325

Nadeem Ahmad, Hans Bihs, Arun Kamath and Øivind A. Arntsen

[23] Dey, S. Threshold of sediment motion on combined transverse and longitudinal
sloping beds. Journal of Hydraulic Research 2003. 41(4):405–415.
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Abstract. In small hydroelectric plants, where the power production is small and the efficiency
has not significant role, the use of pumps in inverse operation (pumps as turbine - PAT) can be
an inexpensive solution for electricity production. The use of a pump instead of a turbine to
transform the hydraulic power into mechanical power can be advantageous in particular cir-
cumstances. In fact, the cost of a pump can be much lower than the cost of a turbine. The object
of this study is to evaluate the performance of a pump in turbine mode using CFD methods.
Performance characteristics of a single stage centrifugal pump with spiral casing are calculated
by using appropriate boundary conditions and the results were validated with experimental data.
After this comparison, the performance of the pump in turbine mode was calculated using nu-
merical methods. Results shows that head and flow rate at the best efficiency point are higher
than the pump mode.

1 INTRODUCTION

Thanks to the recent developments in the field of electric motors and turbomachinery, today
it is possible for pumped-storage hydroelectric plants to work with only one hydraulic/electric
group instead of a two-groups system, i.e. pump/electric motor and turbine/generator. Both the
electric and the hydraulic machines can, in fact, work in direct and inverse operation. This rep-
resents an investment cost much lower than the conventional solution. This solutions does not
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decrease the overall efficiency which, especially for for small-sized hydro-plants. Small-sized
installation became very interesting as an inexpensive method to recover energy in situation
such as small rivers, or to replace the lamination valves in industrial processes [1]. A pump
working in reverse operation is normally indicated as Pump as Turbine (PAT) [2], [3], [4].

The selection of the pump for the installation is the most challenging part of the plant design.
In fact, the manufacturer provide all the information regarding the direct operation, but no data
are given for PAT mode. Many scholars tried to obtain empirical equations to calculate the head
and flow rate of the PAT in turbine mode starting from the given characteristics of the pump. The
results are only approximations of the turbine hydraulic characteristics and give no information
about the flow conditions in the machine [5]. For both modes, the hydraulic efficiency of the
machine is the most important parameter in the design process and the working scenario of the
plant must be considered carefully. That is rather easy to handle for pumps which will work on
turbine mode and can be done by simply redesigning the impeller.

In this work, performance charts of a norm type single-staged end suction centrifugal pump
designed with characteristics of Hm = 80 m, Q = 400 kg/s, P = 300 kW and η= 80% at best
efficiency point is calculated with CFD methods for both pump and turbine mode and the curves
are compared to test data for the pump mode.

2 COMPUTATIONAL DOMAIN

Figure 1: CAD representation of the numerical domain

Simulations were performed on the
pump model provided by the company
Turbosan [6]. The 3D model of the compu-
tational domain is shown in Fig. 1. Figure
2 illustrates the exploded view of the CAD
model. The figure shows that the computa-
tional domain is formed by three volumes:
the inlet pipe, the impeller and the volute
fluid.

The computational model consists of
tetrahedral, hexahedral and pyramidal type
cells. A check done after the simulation
shows in fact that the y+ is in the range
30 < y+ < 300 for every time step. This
allows to use proper wall modelling in cal-
culation of the turbulence, as it will be fur-
ther explained in the next section.

The effect of the design change (num-
ber of blades, blade angles, blade profile

etc.) of the impeller on the performance will be investigated later. In Figure 3 the mesh is
shown for three particular zones, represented by the squares on Fig. 1. Figure 3 a) shows the
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Figure 2: Exploded view of CAD model of the hydraulic machine

a) b) c)
Figure 3: Particulars of the computational mesh (5 million cells): a) interface between the rotor and the volute
casing; b) interface between the rotor and the inlet pipe; c) inlet pipe

rotor and the volute casing mesh, including one of the rotor blades and the rotor-stator interface.
The interface between the inlet pipe and the rotor is shown in Fig. 3 b) including the structural
layer around the leading edge and the surface of the rotor blade. The mesh configuration of the
inlet pipe and its structural layer on the external surface is shown in Fig. 3 c).

2.1 Boundary Conditions

No-slip wall condition has been specified for all the wall boundaries such as pipes, hubs,
shrouds, blades plus the upper and lower wall of both the impeller and the volute. At the pipe
inlet the mass flow is imposed for the pump mode. Atmospheric pressure is imposed at the
diffuser outlet in order to calculate the head. Turbulent intensity is considered moderate and
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it is imposed at 5 % at the inlet. For the turbine mode, inlet and outlet boundary conditions
is swapped, mass flow is imposed to volute outlet and atmospheric pressure (zero gauge) is
defined for the pipe inlet.

3 MATHEMATICAL MODELLING

The commercial software ANSYS Fluent was used for the calculation. The code uses a Finite
Volume Method to solve steady and unsteady 3D Navier-Stokes equations. The turbulence is
simulated by a realizable k-ε model with adequate wall modelling in most of the turbine mode
and pump mode simulations. However, to show the effects of turbulence modelling, variants of
k-ε model, k-ω model and Reynolds Stress Model (RSM) were used and the result were showed
comparatively. The turbulence is simulated by five different Reynolds Averaged Navier-Stokes
(RANS) models: Standard, Realizable, RNG k-ε and SST k-ω and RSM models. The pressure-
velocity coupling is handled using SIMPLE scheme. Turbulent kinetic energy (k), turbulent
dissipation ratio (ε), specific dissipation rate (ω) and Reynolds stresses are discretised with a
second order upwind scheme as well as the momentum equation. The CFD calculations were
repeated for several flow rates ranging between 200 and 600 kg/s at 1500 rpm.

4 RESULTS

The performance characteristics (variations of pump and turbine head and efficiency with
flow rate) are plotted in Fig. 4. The comparison between the machine hydraulic performance
while working in pump and turbine mode shows similarities to the observations reported in the
literature [7]. The effect of the computational mesh resolution is studied and the simulations
performed at 4 different level of mesh sizes: 3, 5, 10 and 27 million cells. The performance of
the pump at design conditions (400 kg/s and 1500 rpm) is shown for four different meshes in
Table 1. It can be seen that the deviation of the integral quantities are low and the numerical error
coming from spatial discretization does not affect the performance characteristics significantly.
It is concluded that 5 million cells is fine enough to solve such problem.

Mesh Head [m] Hydraulic Power [kW] Efficiency [%]
3M 75.4 296 82
5M 76 298 82

10M 75.9 298 82
27M 76.1 299 83

Table 1: Performance characteristics of the hydraulic machine, pump mode (at 1500 rpm and 400 kg/s ) for four
different mesh sizes. (Realizable k-εmodel)

This part of the work focuses the turbulence modelling. In both operation modes (pump
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Figure 4: Performance characteristics of the hydraulic machine, pump mode (upper), turbine mode (lower). Only
CFD results are presented for turbine mode (5M cells mesh).

mode and turbine mode) the turbulence models used for the simulations are 5: standard k-ε,
RNG k-ε, realizable k-ε, SST k-ω and the Reynolds Stress Model (RSM).

The flow conditions has been simulated in steady state at the design point (400 kg/s and 1500
rpm) each time using a different model. The results have been analysed and the integral quanti-
ties (head, power and efficiency) evaluated. The results for the different turbulence models are
reported in Table 2 for the pump mode and in Table 3 for the turbine mode.

The contours of the static pressure head on the mid-plane of the pump is shown for five
turbulence models: Fig.5 for the pump mode and Fig. 6 for the turbine mode. The pressure
head values shown in water column (metres) are negative because the pressure is defined as
zero at the outlet for the pump mode.

Model Head [m] Hydraulic Power [kW] Efficiency [%]
SST k-ω 75.5 296 81

realizable k-ε 76 298 82
standard k-ε 75.5 296 81

RNG k-ε 76.3 299 82
RSM 74.5 292 81

Table 2: Performance characteristics of the hydraulic machine, pump mode (at 1500 rpm and 400 kg/s ) for five
different turbulence models (5M cells mesh)
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Model Head [m] Hydraulic Power [kW] Efficiency [%]
SST k-ω 82 322 86

realizable k-ε 83 326 86
standard k-ε 83 324 85

RNG k-ε 83 324 86
RSM 82 321 86

Table 3: Performance characteristics of the hydraulic machine, turbine mode (at 1500 rpm and 400 kg/s ) for five
different turbulence model (5M cells mesh)

5 CONCLUSIONS AND FUTURE WORK

In this work, performance characteristics of a single stage centrifugal pump with spiral casing
is calculated for both pump and turbine mode and the results were validated with experimental
data. The results from simulations in pump mode show that CFD is a reliable tool to predict
the reverse performance of the pump systems when they are working in turbine mode. This
represents a great advantage for engineers for the selection of the pumps in the design phase of
small hydro power plants which will use PAT.

Results shows that head and flow rate at the best efficiency point are higher than the pump
mode. The results of the integral quantities for the design point volume flow compared to the
data obtained from the manufacturer showed that in the influence of the turbulence model is
negligible. This statement was confirmed by an analysis of the velocity and pressure field in
the diffuser channel by another work has been done in the literature [8]. According to these
considerations, a realizable k-ε model has been chosen for it robustness and for its wide use
in industry for internal flow problems. The calculations were performed by the supercomputer
VILJE [9]. Scalability of the parallel calculations using multiple nodes would be worthy future
work. The effect of the design change (number of blades, blade angles, blade profile etc.) of
the impeller on the performance will be investigated later.
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a) b)

c) d)

e)
Figure 5: Static pressure head distribution in water column (metres) for each different turbulence model at n=1500
rpm in pump mode (5M cells mesh) a) SST k-ω, b) realizable k-ε, c)standard k-ε, d) RNG k-ε, e) RSM
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a) b)

c) d)

e)
Figure 6: Static pressure head distribution in water column (metres) for each different turbulence model at n=1500
rpm in turbine mode (5M cells mesh): a) SST k-ω, b) realizable k-ε, c)standard k-ε, d) RNG k-ε, e) RSM
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NOMENCLATURE

ε Turbulence dissipation rate [m2/s3]

η Efficiency [rpm]

ω Specific turbulence dissipation rate [1/s]

BEP Best Efficiency Point

H pump Head [m]

k Turbulence kinetic energy [m2/s2]

n Rotational speed [rpm]

PAT Pump as Turbine

Q Flow rate [m3/h]

RANS Reynolds Averaged Navier-Stokes equations

RNG Re-Normalization Group

RSM Reynolds Stress Model

SST Shear Stress Transport

T Torque [Nm]

y+ Dimensionless wall distance

REFERENCES

[1] H. Ramos and A. Borga, “Pumps as turbines: an unconventional solution to energy produc-
tion,” Urban Water, vol. 1, no. 3, pp. 261–263, 1999.

[2] P. Garey, “Using pumps as hydro-turbines,” Hydro Review, pp. 52–61, 1990.

[3] S. V. Jain and R. N. Patel, “Investigations on pump running in turbine mode: a review of the
state-of-the-art,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 841–868, 2014.

[4] H. Nautiyal, A. Kumar, et al., “Reverse running pumps analytical, experimental and com-
putational study: a review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 7,
pp. 2059–2067, 2010.

[5] S.-S. Yang, S. Derakhshan, and F.-Y. Kong, “Theoretical, numerical and experimental pre-
diction of pump as turbine performance,” Renewable Energy, vol. 48, pp. 507–513, 2012.

[6] Turbosan. http://turbosan.com.

[7] R. S. Stelzer and R. N. Walters, “Estimating reversible pump-turbine characteristics,” tech.
rep., Bureau of Reclamation, Denver, CO (USA). Engineering and Research Center, 1977.

9



336

A. Nocente, T. Arslan and E. Ayder

[8] A. Nocente, T. Arslan, and T. K. Nielsen, “Numerical simulation of flow inside centrifugal
pump by two different solvers,” in Proceedings of MekIT 2015 Conference (B. Skallerud
and H. I. Andersson, eds.), pp. 333–342, 2015.

[9] Vilje. https://www.hpc.ntnu.no/display/hpc/Vilje.

10



337

9. National Conference on Computational Mechanics
MekIT’17

B. Skallerud and H I Andersson (Eds)

RECENT DEVELOPMENTS AND NEW RESULTS ON THE
FLOW AROUND AN INCLINED 6:1 PROLATE SPHEROID

HÅKON STRANDENES1,3, FENGJIAN JIANG1, BJØRNAR
PETTERSEN1 AND HELGE I. ANDERSSON2

1Department of Marine Technology
2Department of Energy and Process Engineering

Norwegian University of Science and Technology
Trondheim, Norway

3 Corresponding author: hakon.strandenes@ntnu.no

Key words: CFD, flow, inclined, spheroid

Abstract. In the light of new computational resources and improved simulation tools we
present new simulations of the flow around an inclined 6:1 prolate spheroid. We present
the development of the flow from the symmetric and laminar case at Reynolds number
800 to the fully turbulent and highly asymmetric case at Reynolds number 3000.

Already at Reynolds number 1000 we find strong transient behaviour in the flow that
has not previously been reported. We attribute this finding to the improved grid resolution
in this case. At Reynolds number 3000 the new computational setup we use in the present
study shows a very long initial development phase with a symmetric wake configuration
previously never reported before.

NOMENCLATURE
CF x Drag coefficient

CF y Lift coefficient

CF z Side force coefficient

D Minor axis diameter

d Volume-equivalent sphere diameter

F Force on spheroid

ReD Reynolds number Re = DU∞/ν

U∞ Inlet (freestream) velocity

u, v, w Velocity components

x, y, z Cartesian coordinates

λ2 Vortex identification criterion by [1]

ν Kinematic viscosity of fluid

ρ Fluid density

ωx Vorticity ωx = ∂w/∂y − ∂v/∂z

1

Recent developments and new results on the flow around an inclined 6:1 prolate  speroid
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1 BACKGROUND

Jiang et al. [2, 3, 4, 5] studied the wake behind a 6:1 prolate spheroid at 45 degree
inclination at various Reynolds numbers by means of DNS. Depending on the actual physical
size, the spheroid can serve as a model for various objects ranging from microfibers to
underwater drones and submarines. This configuration gives rise to a wide range of
interesting flow features, such as 3-D flow separation and wake asymmetry which makes it
an interesting case for high-resolution flow simulations.

When the ReD is lower than 1000, perfectly steady and symmetric wake consisting of a
counter-rotating vortex pair that develops from the vortex sheets separated from the two
sides of the spheroid is reported [3].

At ReD = 1000, they observed steady and symmetric wake close to the spheroid, whereas
a clear asymmetry developed in the intermediate region. However, the wake was in general
steady. Based on the zero side force and the slight quasi-periodic oscillations in the far
wake, they concluded that, at ReD = 1000 , the wake behind this particular geometry is
still fully laminar and just on the verge of becoming unsteady [3]. This statement was
further supported by a later study where the wake at ReD = 800, 1000, and 1200 were
carefully compared [2]. The comparison showed the scenario of how the wake gradually
lost its symmetry and turns unsteady within a small Reynolds number range.

In [4] and [5], the Reynolds number were increased from ReD = 1200 to ReD = 3000. A
strong transitional wake was found. At ReD = 3000, both the instantaneous wake and
the time-averaged wake turned out to be very asymmetric, which means the wake curved
towards one side. The time-averaged asymmetric wake also contributes to a distinct side
force, which was almost 75% of the drag force. The counter-rotating vortex pair clearly
observed at lower Reynolds numbers was almost no longer present in the instantaneous
wake, but one concentrated vortex tube, which proved to be a helical vortex, managed to
persist itself as a main coherent structure in the wake. In [5], the authors did detailed
analysis on this coherent structure and observed several interesting phenomena, such as the
vortex decomposition in the generation stage, a new helical symmetry alteration scenario
in the developing stage, and self-similarity in the far wake.

It is worth to mention that in 2014, for the ReD = 1000 case, the authors used 512
processors on the HPC cluster Vilje to run a mesh of less than 0.2 billion Cartesian grid
cells. It took 2.2 seconds to march the simulation one time step onward [3]. While in
2015, for the ReD = 3000 case, the authors used 1792 processors on the same system to
run a mesh consisting of 0.75 billion Cartesian grid cells, and it took about 3.1 seconds to
march the simulation one step forward. Almost 1 million CPU hours were consumed for
the ReD = 3000 case in [5].

2 CURRENT WORK

In the recent years, there have been a huge effort in improving our simulation tools and
methods to be able to simulate higher Reynolds numbers and resolve more complicated
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Figure 1: Illustration of the grid configuration used in the present paper. Each cube contain 40 × 40 × 40
grid cells. The coarsest grids are not shown to avoid cluttering the figure.

physics. The performance has improved tremendously, for large cases the improvements
can be up to a factor of ten or more.

Recently we got access to the computer system Fram, provided by Uninett Sigma2.
This allowed us to look at the previously published cases with new tools to verify the
results and explore potential new physics in flow regions far behind the spheroid, which
has never been studied before. Some of these results are presented here.

2.1 NUMERICAL METHODS AND SIMULATION CODE

The code MGLET [6] has been used to perform all simulations presented in the references
and this paper. MGLET uses a staggered Cartesian grid and introduces the solid geometry
through an immersed boundary method [7]. The grid can be locally refined with a zonal
approach, in which Cartesian grid boxes are stacked together in an unstructured manner.
For each level of grid refinement, each parent grid cell is split into eight equal (3-D) child
cells [8]. One important difference between MGLET and other CFD codes with local
refinement possibilities, is that within MGLET we never remove cells that are refined.
This means that a particular physical location can be present in many different grid cells
at once, one per refinement level. The advantage of this approach is two-fold: first we
refine the grid around our geometry and flow features. Secondly we keep a grid hierarchy
that we use in the solver for the pressure equation (of Poisson-type), easily creating an
efficient multigrid solver.

Previously, using many grid levels in this way was very costly due to inefficient commu-
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nication and load balancing issues in MGLET. Due to this, using one large Cartesian grid
and only using cell stretching was the only way of clustering grid cells around regions of
interest in the flow. This was not very efficient because a lot of cells were wasted outside
of the region of interest.

The new way of creating computational grids, illustrated in figure 1, gives us the
possibility of only refining the flow regions of interest without sacrificing either grid quality
(as the aspect ratio is always 1:1:1 everywhere in the domain) or wasting any cells.

3 THE FLOW AROUND AN INCLINED SPHEROID

In the next paragraphs we will give a brief overview of the development of the flow
around an inclined 6:1 prolate spheroid as the Reynolds number increase from 800 to 3000.
In this Re-range the wake topology changes from a steady symmetric wake to a turbulent
and asymmetric wake configuration.

The simulations are all conducted on the same computational grid, which is shown in
figure 1. The origin of the coordinate system in this figure is in the center of the spheroid.
The grid consists of 29471 individual Cartesian grid boxes of size 403 grid cells, distributed
over 5 different grid refinement levels. This gives a total of 1.89 billion individual grid
cells. No grid convergence study has been performed, instead we keep the grid slightly
finer than the grid used in [4]. The minimum grid resolution is 0.005D, which is kept in a
region surrounding the entire spheroid and up to a position x/D = 10 in the wake region.
Behind x/D = 10 the grid is coarsened with a factor of two, which mean that the grid
resolution behind this position is 0.010D. In comparison, at the location x/D = 23, the
grid used in [4] with stretching has a spacing of 0.084D in the streamwise direction.

In the present work we have focused on exploring a broad range of Reynolds numbers,
and how the wake develops gradually from laminar to turbulent. Despite the fact that the
highest Reynolds number currently does not exceed earlier studies, we manage to take
advantage of the development of the simulation tool and could use much finer mesh in
the far wake. This has not only given us the possibility to verify the improvements of the
code, but also offered us new insight on how the far wake develops. It also serves as a
motivation for even higher Reynolds number simulations.

The force coefficients presented in this work is normalized as

CF = F
1
2ρU2

∞
πd2

4
(1)

where d is the diameter of a sphere with the same volume as the 6:1 prolate spheroid
discussed here (d = 1.817D).

3.1 Reynolds number 800

The flow at Reynolds number 800 is perfectly symmetric, laminar and steady. Figure 2
shows the wake vortices illustrated by λ2 [1], and figure 3 shows the streamwise vorticity
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Figure 2: Isosurface of λ2 = −1.0 for Reynolds number 800.
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Figure 3: Time-averaged streamwise vortcity ωx for the Reynolds number 800 case for three different
cross-sections in the wake.
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in the wake. From close examination of the time evolution of the velocity in the three
planes in figure 3 (not shown here), we cannot find any signs of transient behaviour after
the initial evolution from an non-physical initial condition to a resolved wake.

In summary, we cannot find any new flow features in this case compared to what was
shown earler in [2] with a coarser grid.

3.2 Reynolds number 1000

In [3] the wake at Reynolds number 1000 was reported to be laminar, but with a
significant asymmetry. Although the wake structures were reported to be ‘steady’, some
fluctuations were found in the velocities in the far wake (x/D = 20), while the near wake
remained completely stationary. The magnitude of the oscillations at x/D = 20 was
approximately 0.002U∞.

In the present simulations, we also find an asymmetry in the wake. However, we find
significant and strong transient behaviour in the velocity signal too. In our simulations we
see oscillations in streamwise velocity at x/D = 24 of magnitude 0.1U∞. Although the
sampling plane is not at the same streamwise location as in [3], the wake topology in the
far wake, seen in figure 4, is also clearly different from the one in [3].

It is also worth mentioning, that although the wake in the present case is asymmetric,
there is no sideways force on the spheroid at all.

3.3 Reynolds number 1200

At Reynold number 1200 the wake is entering a transitional state. The instabilities
are larger, and the point of transition from a steady and laminar vortex tube to a more
chaotic wake happens just behind x/D = 10. As seen in figure 6 the wake is regular and
repetitive, with a certain vortex pattern that almost repeats itself downstream.

Except from the fact that the wake region now is significantly better resolved, no major
new phenomena have been observed in this case.

3.4 Reynolds number 1500

At Reynolds number 1500 the instabilities have moved almost all the way up onto the
spheroid surface as seen in figure 7. Even in the sampling plane at x/D = 4.0 there is now
signs of asymmetry and instabilities. One interesting observation is that the asymmetry
in the average vorticity at x/D = 24 is less evident compared to the Reynolds number
1000 case.

In this case the side force is now becoming non-zero, although with a very small
magnitude (about 1 % of the drag force).

3.5 Reynolds number 2000

At Reynolds number 2000, as shown in figure 9 and 10 the most significant feature
discovered is that the sideways force is now for the first time strongly non-zero, about 20%
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Figure 4: Isosurface of λ2 = −1.0 for Reynolds number 1000.
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Figure 5: Time-averaged streamwise vortcity ωx for the Reynolds number 1000 case for three different
cross-sections in the wake.
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Figure 6: Isosurface of λ2 = −1.0 for Reynolds number 1200.

of the value of the drag force. The history of the force coefficients are shown in figure 10.
An interesting phenomena is that the sideways force seems to be reaching the non-zero
average value very slowly, it has a long period of more than 150 tU∞/D where the drag
coefficient is zero. The drag- and lift-forces are exhibiting some intermittent high-frequent
oscillations, while the sideways force is oscillating with very low frequencies after the initial
development into a non-zero state.

The wake is now very transitional, and perhaps even entering a turbulent regime in
the far wake. The regular, repetitive patterns in the wake topology we have seen up to
Reynolds number 1500 are much less visible, and the wake is more dominated by smaller
and more irregular vortex filaments.

3.6 Reynolds number 3000

The Reynolds number 3000 case, as illustrated in figure 11, is so far the most interesting.
The flow has been described extensively in [4] and [5]. The wake is clearly more turbulent
(while the very near wake is still transitional), and is extremely asymmetric compared
with the lower Reyholds numbers. In fact, the wake is so asymmetric that the main part
of the vortex core falls outside of our original sampling plane in figure 12. The vortex core
in the sampling plane at x/D = 4 has grown extremely strong, with a maximum ωx that
is two to three times stronger than in the other cases we have shown here.

The sideways force, shown in figure 13, has grown significantly. The sideways force is
now almost as strong as the drag force, which in itself is surprising.
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Figure 7: Isosurface of λ2 = −1.0 for Reynolds number 1500.
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Figure 8: Time-averaged streamwise vortcity ωx for the Reynolds number 1500 case for three different
cross-sections in the wake.
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Figure 9: Isosurface of λ2 = −1.0 for Reynolds number 2000.
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Figure 10: History of the drag, lift and crossflow force coefficient for the Reynolds number 2000 case
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Figure 11: Isosurface of λ2 = −1.0 for Reynolds number 3000.

−2 0 2

z/D

0

2

4

6

8

y
/
D

x/D = 4.0

−12 −8 −4 0 4 8 12

−2 0 2

z/D

x/D = 10.0

−1 0 1

−2 0 2

z/D

x/D = 24.0

−0.4 −0.2 0.0 0.2 0.4

Figure 12: Time-averaged streamwise vortcity ωx for the Reynolds number 3000 case for three different
cross-sections in the wake.
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Figure 13: History of the drag, lift and crossflow force coefficient for the Reynolds number 3000 case.

In contrast to the works in [4] and [5], we are now able to study the entire wake, up to a
distance of 30D behind the spheroid due to the improved code and grid generator. Another
interesting aspect that is clearly visible in figure 13 is that it takes a significant amount of
time to develop the asymmetry. The net sideways force is about zero for more than 200
tU∞/D before the flow suddenly become asymmetric. In the previous works [4] and [5] this
change happened more or less instantly when starting the simulation. The reason(s) for
this could be either that the refined computational grid leads to lower numerical errors or
that the pressure solver that we use in the present work produces less asymmetric residual
patterns. At the current stage we are not yet sure about the exact cause, but this will be
subject to further investigations.

For the simulation results shown here, we used 2560 processors on the Fram HPC cluster
(which is a Lenovo NeXtScale nx360 system with 1006 compute-nodes each equipped
with dual Intel E5-2683v4 CPU’s), and in average, the time used to march one timestep
was 1.68 seconds. In other words, it took 4300 CPU-seconds to advance the simulation
one timestep. In the previous work [4], the number of CPU-seconds used to advance one
timestep was 5550. When taking into account that the current grid consist of 1.89 billion
grid cells, and the previous grid consist of only 0.75 billion grid cells, the advances in
computational effort are impressive.

4 CONCLUDING REMARKS AND FURTHER WORK

The ultimate goal of this work is obviously to increase the Reynolds number even
further, beyond 3000. We have described a flow that goes from a steady and laminar flow
to a highly asymmetric transitional flow. An important question is how the asymmetry
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will behave when further increasing the Reynolds number.
A peculiar remark is that in all works on this flow case, the asymmetry develops

towards the same side. This is strange, as one should expect that the cases would develop
asymmetries to ‘random’ sides. This is probably due to asymmetries in the numerical
methods, which we will need to look further into.
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Abstract. A sensitivity study on a numerical transient flow model for compressible gas
was performed to determine the most important parameters when simulating long off-
shore gas pipelines. A simplified pipeline was simulated with synthetic transient boundary
conditions, while systematically modifying different model parameters and correlations. It
was found that, for the mass flow and pressure, the most important parameters by a large
margin, are the friction factor and the compressibility factor. For the temperature, the
parameter with the highest impact was found to be the derivative of the compressibility
factor with respect to temperature (at constant density), closely followed by the isochoric
gas heat capacity and the friction factor.

1 INTRODUCTION

Natural gas exported from Norway to Europe accounts for around 25 percent of the
yearly gas consumption in the European Union. The gas is transported from Norway
through pipelines that are up to 1166 km long. To ensure that the pipelines stay within
their operating limits, to monitor the pipelines for leaks, and to track changes in gas
quality, it is important to know the state of the gas in the pipelines. But measurements
of the state of the gas are usually only available at the inlet and outlet, which means that
numerical models are necessary to know the state of the gas between the endpoints.

Simulating compressible gas flow is a highly complex issue, so to reduce the problem
to a tractable one, several empirical correlations and simplifications like the Colebrook-
White equation [1] and the Dittus-Boelter equation [2, 3] are typically used to model
different aspects of the system. When doing this, inaccuracies are introduced into the
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simulations, the total effect of which can be hard to calculate a priori, and which will
depend on the state and system being simulated.

The objective of this study is to investigate which parameters and correlations in the
gas models that have greatest impact on the modelled results, especially during tran-
sient conditions, to know where to apply effort when trying to improve the models. A
similar study limited to steady state models was done by Langelandsvik [4], and some
work using transient models was by Helgaker [5]. The present work deals with transient
one-dimensional non-isothermal models for compressible natural gas mixtures, and a sim-
plified pipeline is modelled using synthetic but representative flow transients as boundary
conditions.

This article is structured as follows: The theoretical foundation and underlying equa-
tions are presented in section 2, followed by a presentation of the studied pipeline system
in section 4. Results are presented and discussed in section 5 while concluding remarks
are drawn in section 6.

2 THEORY

The description of the theoretical foundation closely follows the description in [6].

2.1 Conservation laws

The governing equations for compressible, non-isothermal, transient pipeline gas flow
are derived by averaging the Reynolds time-averaged conservation laws for viscous flow
over the cross-section, resulting in:

the continuity equation

∂ρ

∂t
+ ∂(ρu)

∂x
= 0, (1)

the momentum equation [7]

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+ ∂p

∂x
= −fρ |u| u

2D
− ρg sin θ, (2)

and the energy equation [8]

ρ

(
∂e

∂t
+ u

∂e

∂x

)
+ p

∂u

∂x
= fρu3

2D
+ Ω

Ah

, (3)

where ρ is gas density, e is internal energy, f is the friction factor, Ω is heat transfer
through the pipe wall, and Ah is the area through which the heat is transferred.

The two terms containing the friction factor f in eqs. (2) and (3) model respecively
viscous shear stress at the wall of the pipe, and viscous dissipation – the transfer of me-
chanical energy to thermal energy via viscous stresses, and should account for dissipation
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at all length scales. The last term in the energy equation model heat transfer to the
surroundings, and includes turbulent heat transfer via the standard inner film coefficient.
See section 2.2 for more details on this.

Using a real gas equation of state
p

ρ
= ZRT, (4)

where Z is the compressibility factor, and introducing the mass flow rate ṁ = ρuA, the
governing equations are developed into partial differential equations for mass flow ṁ,
pressure p, and temperature T

∂p

∂t
=


1

p
− 1

Z

∂Z

∂p

∣∣∣∣∣
T




−1




 1

T
+ 1

Z

∂Z

∂T

∣∣∣∣∣
p


 ∂T

∂t
− ZRT

pA

∂ṁ

∂x


 (5)

∂ṁ

∂t
= ṁZRT

pA


−2∂ṁ

∂x
+ ṁ


1

p
− 1

Z

∂Z

∂p

∣∣∣∣∣
T


 ∂p

∂x
− ṁ


 1

T
+ 1

Z

∂Z

∂T

∣∣∣∣∣
p


 ∂T

∂x




− A
∂p

∂x
− fZRTṁ |ṁ|

2DAp
− pA

ZRT
g sin θ

(6)

∂T

∂t
= − ṁZRT

pA

∂T

∂x
− ṁ (ZRT )2

pAcv

T


 1

T
+ 1

Z

∂Z

∂T

∣∣∣∣∣
ρ




·


 1

ṁ

∂ṁ

∂x
+


 1

T
+ 1

Z

∂Z

∂T

∣∣∣∣∣
p


 ∂T

∂x
−


1

p
− 1

Z

∂Z

∂p

∣∣∣∣∣
T


 ∂p

∂x




+ f

2cvD

(
ZRT |ṁ|

pA

)3

+ ZRT

pcv

Ω
Ah

.

(7)

The resulting non-linear partial differential equations are discretized using the cell-
centered backward-time centered-space (BTCS) implicit finite difference method [9, 10],
and solved using matrix inversion and the Jacobi iterative method [11], as described in
further detail in section 3.1.

2.2 Closure relations

2.2.1 Heat transfer

To calculate the heat transfer Ω between the gas and the surroundings, a transient one-
dimensional radial model [12] is used. This model includes heat storage in the pipeline wall
and surrounding medium, and has been shown to give accurate results for the temperature
development in long off-shore pipelines [13–15], given accurate ambient temperatures [16].

When calculating the heat transfer Ω, the inner and outer heat transfer coefficients are
used to calculate respectively the heat transfer between the gas and the pipeline wall, and
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the heat transfer between the pipeline wall and the ambient. The heat transfer coefficient
h can be determined from the Nusselt number for pipe flow

NuD = hD

k
, (8)

where D is the (inner or outer) diameter and k is the thermal conductivity of the fluid
(the gas or the ambient fluid).

The inner film heat transfer coefficient can be determined from the Dittus-Boelter
relation [2, 3], which is valid for forced convection in turbulent pipe flow with Reynolds
numbers larger than 104 [17]. The Dittus-Boelter relation is

NuD = 0.023 · Re0.8 Pr0.4, (9)

where Re and Pr is respectively the Reynolds number and the Prandtl number of the gas.
The outer film heat transfer coefficient can be determined from a similar equation,

valid for circular cylinders in cross flow with Reynolds numbers between 103 and 2 · 105

[17]

NuD = 0.26 · Re0.6 Pr0.3, (10)

where Re and Pr is respectively the Reynolds number and the Prandtl number of the
ambient medium.

2.2.2 Equation of state

For high pressures, such as in the Norwegian export network, the selection of equation
of state can have a significant impact on the simulation results [13, 18]. In this study the
BWRS (Benedict–Webb–Rubin-Starling) equation of state [19] is used, to determine the
gas density, and the compressibility factor Z and its derivatives. The BWRS equation is
the following function of molar density ρm and temperature

P = ρmRT +
(

B0RT − A0 − C0

T 2 + D0

T 3 − E0

T 4

)
ρ2

m +
(

bRT − a − d

T

)
ρ3

m

+ α

(
a + d

T

)
ρ6

m + cρ3
m

T 2

(
1 + γρ2

m

)
exp

(
−γρ2

m

)
.

(11)

The parameters A0, B0, etc. are 11 mixture parameters specific to BWRS, and are cal-
culated using mixing rules and pure component properties given in [19], and a set of
parameters Ai and Bi. The set of parameters Ai and Bi used in this study has been
especially tuned for the Norwegian gas transport network [20].
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2.2.3 Friction factor and viscosity

The Colebrook-White equation [1] is a classical semi-empirical relation used to calculate
the friction factor f

1√
f

= −2 log
(

ε

3.7D
+ 2.51

Re
√

f

)
, (12)

where ε is the sand grain equivalent roughness of the inner pipeline wall. Here a value of
3 micrometer was used for the roughness. The Colebrook-White equation is an implicit
equation, which is solved using the Newton-Rhapson method.

The Lee-Gonzales-Eakin correlation [21] is used to calculate the viscosity of the gas µ

µ = K exp
(
XρY

)
, (13)

where

K = (9.4 + 0.02M) T 1.5

209 + 19M + T
, (14)

X = 3.5 + 986
T

+ 0.01M, (15)

Y = 2.4 − 0.2X, (16)

and M is the molecular weight of the gas.

3 NUMERICAL SCHEME

3.1 Governing equations

To solve the non-linear partial differential equations for the three state variables mass
flow ṁ, pressure p, and temperature T , eqs. (5) to (7) are first discretized using a scheme
similar to the BTCS (backward time, centered space) finite difference scheme, using cell
averages [9, 10]. The pipeline is divided into N grid points, and the different variables
are approximated at each section between the grid points by

y ≈ yn+1
i+1 + yn+1

i

2 , (17)

where y represents a general variable, superscripts n and n + 1 denote time level, and
subscripts i and i + 1 denote grid points. Time derivatives are approximated by

∂y

∂t
≈

yn+1
i+1 + yn+1

i −
(
yn

i+1 + yn
i

)

2∆t
, (18)

and spatial derivatives by

∂y

∂x
≈ yn+1

i+1 − yn+1
i

∆x
. (19)
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This scheme is first order accurate in time, and second order accurate in space, and have
been shown to give accurate results for pipelines and boundary conditions comparable to
the ones used in the present study [13, 22]. Central difference schemes are known to be very
prone to oscillations, but this problem is avoided by choosing an appropriate time step and
grid spacing, and by using smooth transients, avoiding discontinous changes in boundary
conditions [22]. A different approach could be using an upwind (backward difference)
scheme for the spatial derivatives, but upwind schemes do not take into account acoustic
information traveling from points which are downstream [23], so central differences are
preferred.

When replacing eqs. (17) to (19) in eqs. (5) to (7) non-linear equations in ṁ, p and T
are aquired. These equations are linearized by “lagging” behind parts of the non-linear
terms [24]

yn+1 → yn. (20)

The result is a set of linear equations, with three equations for each pipe section, and
N − 1 total pipe sections, giving a total of 3(N − 1) equations. The number of unknowns
at time level n + 1 is 3N (N for each state variable), so three boundary conditions are
needed. Here the inlet mass flow ṁ1, outlet pressure pN , and inlet temperature T1 are
chosen. The linear equations with boundary conditions are written on matrix form

Ax = b, (21)

where the vector x has length 3(N − 1) and contains the unknowns

x =
[
ṁn+1

2 , . . . , ṁn+1
N , pn+1

1 , . . . , pn+1
N−1, T n+1

2 , . . . , T n+1
N

]−1
, (22)

the matrix A has shape 3(N − 1) × 3(N − 1) and contains the coefficients in front of the
unknowns, and the vector b contains the known terms including the boundary conditions.
Equation (21) is solved using matrix inversion and the Jacobi iterative method [11]. This
entails finding x using matrix inversion

x = A−1b, (23)

where the inverse A−1 is found using a linear algebra library. In the Jacobi iterative
method the unknows at time level n + 1 are given the values from x, and terms like the
friction factor, compressibility factor etc., are updated using the new mass flow, pressure
and temperature. This gives a new set of coefficients A and known terms b, and the
procedure is repeated until the unknowns converge.
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4 SIMULATIONS

4.1 Pipeline description

A simplified pipeline was modelled, based on typical off-shore pipelines that transport
gas from Norway to Europe. The simplified pipeline profile is illustrated in fig. 1, and the
pipe wall composition in fig. 2.

25 km25 km 600 km

100 m

Figure 1: Illustration of the simplified pipeline. The
pipe is on-shore and buried 2 m underground for the first
and last 25 km, and 100 m below sea level and exposed
to sea water for 600 km between the on-shore sections.
Figure created freely after figure in [5].

Asphalt
Concret

e

Steel

1 m

Figure 2: Illustration of pipe and pipe
wall materials. The model pipeline has an
inner diameter of 1 m, and the pipe wall
consists of 24 mm of steel, coated with
7 mm of a protective asphalt coating, and
finally 80 mm of concrete.

The pipeline has an inner diameter of 1 m, and consists of a steel pipeline, coated with
a protective asphalt coating, and an outer concrete shell. The pipeline is on-shore and
buried underground for the first 25 km. It is then 100 m below sea level and exposed to
sea water for 600 km, before it is on-shore and buried for the final 25 km.

4.1.1 Boundary conditions

The boundary conditions for the pipeline was constant inlet temperature of 33 ◦C,
constant outlet pressure of 10 MPa, and constant air and sea water temperatures of
respectively 6 ◦C and 4 ◦C. The system was thermalized with constant inlet mass flow of
600 kg/s, and then the mass flow rate was gradually decreased from 600 kg/s to 200 kg/s
in a span of 4 minutes to emulate a transient. The mass flow transient is shown in fig. 3.
These conditions correspond to a Reynolds number of 40 to 50 million.

The gas composition was kept fixed at the values shown in table 1.

4.2 Sensitivity study

Which parameters to include in the sensitivity study were determined by looking at
which variables appear in the governing equations (eqs. (5) to (7)), in addition to other
correlations that are used in the simulations. The focus was on simplifications and em-
pirical correlations in the models, not on input parameters like pipe diameter, ambient
temperature, etc. The following nine parameters are included in the study:
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Figure 3: Plot of the inlet mass flow boundary condition, which simulates a transient occuring in a time
span of approx 4 minutes.

• the Colebrook-White correlation for the friction factor f , eq. (12)

• the compressibility factor Z and three derivatives: ∂Z
∂T

∣∣∣
p
, ∂Z

∂p

∣∣∣
T

and ∂Z
∂T

∣∣∣
ρ
, which are

all calculated from the equation of state

• Nusselt number relations (the Dittus-Boelter equation and eq. (10)) for inner and
outer film heat transfer coefficients, which go into the calculation of the heat transfer
between the gas and the surroundings Ω

• the correlation for heat capacity of the gas at constant volume cv

• the Lee-Gonzales-Eakin correlation for the viscosity of the gas µ, eq. (13), which
mainly enters the simulations via the Reynolds number, Re = ρuD

µ

To investigate the sensitivity of the model a base case was first established using stan-
dard model parameters and the boundary conditions described in section 4.1. The inlet

Table 1: The gas. composition used for the simulations.

Component Mole fraction
CH4 0.8916
C2H6 0.073513
C3H8 0.005104

iC4H10 0.000251
nC4H10 0.000311
iC5H12 0.000009
nC5H12 0.000024

N2 0.006980
CO2 0.022208
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and the maximum relative difference

max (∆yrel) = max
(

yi − y0
i

y0
i

)
(25)

was calculated for mass flow, pressure and temperature. This was calculated for each
parameter in the sensitivity study, at every grid point in the simulations. Since a transient
case is simulated, and both the temperature and the pressure vary between the inlet and
the outlet, relative differences are used. A plot of the maximum and average differences
as function of position, for all parameters in the study, are shown in fig. 5.

From fig. 5 a) and b) it can be seen that the parameters with the highest impact on
both mass flow and pressure are the friction factor f and the compressibility factor Z.
For the mass flow the greatest impact is at the outlet, with a gradual decrease from the
inlet to the outlet. For the pressure the situation is reversed. This behaviour is caused
by how the simulations are set up, with the mass flow as boundary condition at the inlet
and the pressure as boundary condition at the outlet.

The average impact for the whole pipeline was calculated by averaging over the time
averaged difference for each grid point. A list of the average impact of all parameters is
listed in table 2. The average impact on mass flow is found to be 1.43 % for the friction
factor and 0.90 % for the compressibility factor, which is respectively 6.6 and 4.1 times
higher than the third most important factor, ∂Z/∂p

∣∣
T , which has an average impact of

0.22 %. The average impact on pressure is 3.09 % for the friction factor and 2.07 % for
the compressibility factor, which is respectively 14.3 and 9.6 times higher than the third
most important factor, the viscosity µ, which has an average impact of 0.22 %.

Table 2: Table of the average relative difference in mass flow, pressure and temperature, for all
parameters in the sensitivity study.

Average relative difference

Parameter Mass flow [%] Pressure [%] Temperature [%]
Z 0.90 2.1 0.029

∂Z/∂p
∣∣
T 0.22 0.053 0.0084

∂Z/∂T
∣∣
p 0.19 0.061 0.016

∂Z/∂T
∣∣
ρ 0.10 0.057 0.045

houter 0.017 0.0073 0.0061
hinner 0.0033 0.0015 0.0015

cv (gas) 0.088 0.023 0.032
µ (gas) 0.078 0.22 0.0027

f 1.4 3.1 0.031

For the temperature it is seen from fig. 5 c) that the situation is less clear-cut. From
table 2 it is seen that the parameter which gives the highest average difference along the
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whole pipeline is the derivative of the compressibility factor ∂Z/∂T
∣∣
ρ, with an average

difference of 0.045 %, 1.41 times the impact of the next parameter (cv) and 1.48 times the
impact of the third parameter (f). The effects on temperature are in general seen to be
much smaller than for mass flow and pressure, and there are no parameters that stand
out in the same way they for mass flow and pressure

In fig. 5 c), peaks in the temperature responses of up to 0.31 % are observed around
20 km off-shore, before the impact of all parameters steadily decrease until they stabilize
around 100 km to 200 km off-shore. Also, between 125 km (100 km off-shore) and landfall
at 625 km, all parameters have much lower impact than closer to the start of the pipeline;
no parameter have a higher maximum impact than 0.15 % or an average impact of more
than 0.06 %. The stable behaviour in this area is caused by the fixed sea temperature,
which acts as a thermal reservoir, so after a long off-shore section the gas comes to a
thermal equilibrium with the sea water, and the gas temperature is governed by the
ambient temperature.

Finally, there is a steady increase in the impact on temperature between landfall and
the outlet for most parameters. This is because the boundary condition for the thermal
exchange between the gas and the ambient changes at landfall (the pipeline goes from
being exposed to sea water to buried under ground), and the thermal equilibrium between
the gas and the ambient is disturbed. Some details on the temperature response near the
outlet can be seen in the inset in fig. 5 d). It is clear that some of the parameters that
have very little effect on the temperature while off-shore, like the heat capacity cv and the
derivative of the compressibility factor ∂Z/∂T

∣∣
p, have a much higher effect after going

on-shore, and on the final outlet temperature, even though the final effect is still small.
The impact of the derivative of the compressibility increases from 0.0012 % at 625 km to
0.042 % at the outlet, a factor of 12.9, and the impact of the heat capacity cv increases
from 0.0018 % at 625 km to 0.069 % at the outlet, a factor of 13.8. The trend in the plot
indicates that the impact would be even bigger with a longer on-shore section. In general
it is observed that the exposure to the sea seem to reduce the impact of changes in the
model parameters on the temperature.

To further analyze the temperature responses, the maximum and average temperature
differences at certain points of interest along the pipeline are shown in a bar chart in fig. 6.
It is seen that the heat capacity cv is the parameter with the highest impact between all
the selected points on the pipeline, with the two highest average temperature differences
(respectively at 20 km off-shore, and at the end of the on-shore section), and the highest
and third highest maximum differences (respectively at 20 km off-shore and at the end of
the on-shore section). The parameter with the highest impact at 300 km off-shore is the
derivative of the compressibility factor ∂Z/∂T |ρ, while at the end of the off-shore section
and at the outlet it is the friction factor f .
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5.2 Comparisons with literature

The sensitivity study by Langelandsvik [4] was performed using steady state models,
and most of the parameters are hard to relate to the present study. One parameter
that is common for both studies is the viscosity. The viscosity was increased by 1 %
by Langelandsvik, which lead to a change in volume flow of 0.03 % to 0.05 % and no
observable change in outlet temperature (less than 0.01 ◦C or 0.004 %). Further, the
density was modified by 1 %, which is equivalent to changing the compressibility factor
by 1 %, since these values are linked via the equation of state

p

ρ
= ZRT. (4)

The modified density lead to a change in volume flow of 0.50 % and a change in the outlet
temperature of around 0.01 ◦C (0.004 %).

These results does not agree that well with the present results. Here a change in the
viscosity of 20 % leads to an average change in mass flow of 0.078 % and an average change
in the outlet temperature of 0.84 %. Further, a change in the compressibility factor of
20 % leads to an average change in mass flow of 0.90 % and an average change in the
outlet temperature of 0.84 %. The effects on temperature are somewhat in agreement,
but the effect on the flow rates are not proportional to the changes in the two parameters.
This is most likely caused by how the simulations performed by Langelandsvik are set up:
the boundary conditions are inlet temperature, inlet pressure and outlet pressure. This
means that the pressure drop is fixed, and any impact on pressure observed in the present
work would appear as impacts on flow rate in the work by Langelandsvik.

The sensitivity study by Helgaker [5] used a similar simplified pipeline as in the present
study, but a different methodology, so the results are not directly comparable. Helgaker
used real boundary conditions based on measurement data, but with flow rates, pressures
and temperatures in the same range as synthetic transient used in the present study.
In the present study, different correlations were modified directly by a constant factor,
while Helgaker modified the friction factor by changing the equivalent sand grain pipeline
roughness; tested different equations of state; and modified different parameters used by
the heat transfer model, like the thermal conductivity and heat capacity of the pipe wall
and burial medium, the burial depth, the length of the buried sections, and the ambient
temperature.

Helgaker used sand grain equivalent roughnesses (ε in eq. (12)) of 2 µm, 3 µm and 4 µm,
and found no observable difference in outlet mass flow or outlet temperature between the
three roughnesses, but a difference in inlet pressure of 0.15 MPa (approximately 0.8 % to
1.0 %). This contradicts the results from the present study, which shows that the friction
factor is important for both mass flow, pressure and temperature. A rough estimate using
the Colebrook-White equation shows that a change in the roughness of 1 µm leads to a
change in the friction factor in the order of 2 %, compared to a change in the friction
factor of 20 % used in the present study. This relatively small change in the friction
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factor used by Helgaker might explain why no difference was observed in the mass flow or
temperature. This estimate also shows that the relative effect on pressure when changing
the friction factor seems to agree between the two studies, with a change in the friction
factor of 0.8 % to 1.0 % leading to a change in the inlet pressure of approximately 1 % in
the work by Helgaker, and a change in the friction factor of 20 % leading to a change in
the inlet pressure of approximately 4.5 % to 7.2 % in the present work (see fig. 5).

The results of Helgaker for the heat transfer model are hard to compare to the present
results, since the physical properties of the pipeline and surroundings were modified, while
in the present study the correlations for the inner and outer heat transfer coefficients are
modified. This is by design, since the present study sets out to determine where to apply
effort when trying to improve the models themselves, not to determine which input to the
models that are most important.

Helgaker also looked at the effect of the partial derivatives of Z, by setting them all
to zero. He found that this had a small impact on the mass flow, but a considerable
effect on the pressure during transients. It also had a large impact on the temperature,
since setting ∂Z

∂T
|p to zero effectively removes the Joule-Thompson effect of cooling upon

expansion. It is hard to compare these results to the present study, since setting the
derivatives to zero is very different from modifying them by a constant factor of 20 %.
But the maximum difference caused by modifying the different derivatives observed in
fig. 5 indicate that these parameters are important during transients, which agree with
the results of Helgaker.

6 CONCLUSIONS

To determine where to apply effort when trying to improve compressible gas flow models
for long off-shore pipelines, the relative importance of a selection of model parameters were
determined, by modifying nine different model parameters by 20 % one at the time, and
investigating the response in mass flow, pressure and temperature.

It was found that, for the mass flow and pressure, the most important parameters by
a factor of between 4 and 14 are the friction factor f and the compressibility factor Z,
with an average impact on the modelled mass flow of 1.43 % for the friction factor and
0.90 % for the compressibility factor, and an average impact on the modelled pressure of
3.09 % for the friction factor and 2.07 % for the compressibility factor.

For the temperature, none of the parameters stood out like they did for mass flow
and pressure, but it was found that the parameter with the highest average impact on
the modelled temperature is the derivative of the compressibility factor with respect
to temperature (at constant density) ∂Z/∂T

∣∣
ρ, with an average difference of 0.045 %,

1.4 times the impact of the next parameter (the gas heat capacity cv) and 1.5 times the
impact of the third parameter (the friction factor f). Further, a peak in the temperature
response for most of the parameters was observed around 20 km after going off-shore, with
the highest peak attributed to the gas heat capacity cv. The response of all parameters
are greatly diminished after a long off-shore section, and the highest impact at 300 km
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off-shore is attributed to ∂Z/∂T
∣∣
ρ. Finally, at the end of the off-shore section, and at the

outlet, the most important parameter is the friction factor f .
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Abstract. Flow past a step cylinder with diameter ratio D/d = 2 at Reynolds number
ReD = 150 was simulated by directly solving the three-dimensional unsteady Navier-
Stokes equations. The vortical structures and shedding frequencies of the wake flow were
studied in details. One kind of streamwise vortices, i.e. the ’edge vortex’ was observed.
Three main vortex cells (S-cell vortex behind the small cylinder, L-cell vortex behind the
large cylinder and N-cell vortex in between) and the beat frequency which were reported
by previous papers were also precisely captured in the present simulation. Additionally,
half-loop connection between two L-cell vortices and loop connection between two N-
cell vortices were captured. Specially, we noticed antisymmetric topology between two
adjacent N-cell cycle periods.

1 INTRODUCTION

In recent years, interfering effects in the wake of a step cylinder Fig 1 a) have received
a lot of attention. Structures with similar shape of a step cylinder are used in many
industrial applications, for example, the hull of a SPAR-platform, the outer wall of TV-
towers, the supporting structures for offshore wind turbines (fixed and floating), and so
on.

There are two important variables when considering flow past a step cylinder, i.e.
the Reynolds number ReD and the ratio between diameters of large cylinder and small
cylinder (diameter ratio D/d). Many experimental and numerical investigations have
been out based on these two parameters. Lewis and Gharib [1] reported two vortex
interaction modes in the wake, direct and indirect modes. The direct mode happens
when the diameter ratio is smaller than 1.25 (D/d < 1.25). In this mode, vortices shed
from the large cylinder and the small cylinder have direct connections, and the vortex

1
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interaction between them takes place in a very narrow region around the step. Only
two dominating vortex shedding frequencies could be detected. When the diameter ratio
becomes larger than 1.55 (D/d > 1.55), the indirect mode takes place. Except for the
two dominated vortex shedding frequencies of the large and the small cylinder, another
low vortex shedding frequency could be captured in the wake region downstream of the
step. The vortex cell corresponding to this frequency was defined as N-cell by Dunn and
Tavoularis [2]. In paper [2], three types of spanwise vortices were identified based on the
shedding frequency: 1) S-cell vortex shedding from the small cylinder with the highest
vortex shedding frequency; 2) N-cell vortex shedding in the interaction region [1] with
the lowest vortex shedding frequency; 3) L-cell vortex shedding from the large cylinder.
Moreover, Dunn and Tavoularis [2] also defined two kinds of streamwise vortices; the edge
vortex and the junction vortex. The junction vortex was caused by the recirculation in the
step region. The downwash of incoming fluid at the step region induced the edge vortex.
They used hydrogen bubbles to visualize these two vortices by doing experiments with a
step cylinder (D/d=2) for ReD = 1230. Similar vortices were also observed by Morton
and Yarusevych [3]. However, they did not show them directly by numerical simulations.

All of the papers [1, 2, 3] mentioned that the N-cell is a cyclic phenomenon (N-cell
cycle). In [3], a detailed description and explanation were given. Morton and Yarusevych
[3] suggested that it is the dislocation [4] in N-L cell boundary that causes the N-cell
cycle. In their report, during this dislocation, a half-loop connection between two L-cell
vortices was captured, but the repetition of L-cell half-loop connection was not shown.
Weak cross-boundary or half-loop connections between N-cell vortices were assumed to
exist, but they did not observe it.

The primary aim of the present work is to show the structure of streamwise vortices
and to investigate the dislocation process in the N-L cell boundary. In order to achieve
this, the flow past a step cylinder (D/d=2) at Reynolds number 150 has been studied
by means of solving the full three-dimensional unsteady Navier-Stokes equations. The
isosurface of λ2 [5] and velocity spectra were plotted for detailed discussions.

2 FLOW CONFIGURATION AND COMPUTATIONAL METHOD

2.1 Introduction to MGLET

All simulations in this study were conducted by directly solving the full three-dimensional
unsteady Navier-Stokes equations for an incompressible fluid. This is achieved with the
code MGLET [6, 7]. In this second-order finite-volume solver, the governing equations
are in integral form:

∫

A

u · n dA = 0 (1)

∂

∂t

∫∫∫

Ω

ui dΩ +

∮

A

ui u·n dA = −1

ρ

∮

A

p ii · n dA+ ν

∮

A

grad ui · n dA (2)

2



371

Cai Tian, Fengjian Jiang, Bjørnar Pettersen and Helge I. Andersson

where Ω is the control volume and A is the control surface, n is the unit vector on
dA pointing out of Ω, and ii is the Cartesian unit vector in xi direction. The governing
equations (1) and (2) are solved on a staggered Cartesian grid. By discretizing equation
(2), the following format could be obtained:

∂u

∂t
= D(u) + C(u) +G(p) = f(u, p) (3)

In equation (3), D(u) represents the discretized diffusive term, C(u) represents the dis-
cretized convective term, and G(p) represents the discretized pressure term. The surface
integral is approximated by the midpoint rule which is of second-order accuracy. The
derivative in the integrand of the diffusive term is approximated by a central-difference
formulation, which preserves the second-order accuracy. The volume integral in equation
(2) is simply approximated by the product of the value of the integrand in the grid center
and the control volume of the grid cell. The time integration of equation (3) is done by
an explicit low-storage third-order Runge-Kutta scheme [8] (details can be found in [9]).
The general idea is to use an explicit time advancement scheme and correct the pressure
through solving a Poisson equation to fulfill a divergence-free velocity field:

div[(G(δp))]∆t = div(u∗) (4)

Equation (4) is referred to as the discrete analog of the Poisson equation, in which δp
is the pressure correction, and u∗ is an intermediate velocity field calculated by omitting
the pressure term in equation (3). This discretized Poisson equation is represented by a
linear equation system at every time marching step. This linear equation system is solved
iteratively by Stone’s Strongly Implicit Procedure (SIP) [10].

The use of a staggered Cartesian grid brings the problem of interpreting the solid
boundaries of the step cylinder in the computational domain. This problem is solved in
MGLET by introducing a direct-forcing Immersed Boundary Method (IBM). In MGLET,
the surface of the geometry is represented by an unstructured triangular mesh and read
directly to IBM to block grid cells bounded by this surface. Then the cells at the fluid-
solid interface will be transformed into internal boundary conditions by interpolation [11]
from the fluid cells in the vicinity of the bluff body geometry. A more detailed description
of the IBM used in MGLET can be found in [11].

3
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2.2 Flow configuration and coordinate system

Figure 1: a) The stepped cylinder geometry considered in the present study; b) Domain size illustrated
from different viewpoints (Diameter of large cylinder D is the length unit).

Figure 1 a) shows the shape of the step cylinder, in which D = 1m represents the
diameter of the large circular cylinder and d = 0.5D represents the diameter of the small
circular cylinder. l and L represent the length of the small and large cylinder, respectively.
The computational domain is depicted in Figure 1 b). The step cylinder was placed in
a continuous uniform flow, U = 1m/s, flowing in the X-direction. The inlet plane is
placed 10D upstream from center of the cylinder, while the outlet plane is placed 20D
downstream. The width of the domain in y-z plane is 20D. The height of the domian is
30D, with the small and the large cylinders occupying 5D and 25D, respectively. Morton
and Yarusevych [3] used the same domain size and cylinder length to model flow over a
stepped cylinder with the same Reynold number [3]. The following boundary conditions
are used in all simulations:

- The inflow boundary: uniform velocity profile u=U , v=0, w=0;

- The outlet boundary: Neumann boundary condition (∂u
∂x

= ∂v
∂x

= ∂w
∂x

= 0) and
constant zero pressure condition;

- The body surfaces: no-slip and impermeable wall;

- The other four surfaces: free-slip boundary condition;

4



373

Cai Tian, Fengjian Jiang, Bjørnar Pettersen and Helge I. Andersson

3 CASE SUMMARY AND GRID STUDY

3.1 Case overview

Figure 2: a) Mesh structures in x-z plane at y=0; b) A zoom-in plot of mesh in the step region (white
rectangle)

Table 1: Case information of all simulations

Case ReD
Min Grid Spacing

∆
D

Grid cells
Nx ×Ny ×Nz

Total grid number CD

1 150 0.01 414×356×384 56.59 million 0.645
2 150 0.02 264×204×356 19.17 million 0.641
3 150 0.05 244×184×336 15.09 million 0.636
4 150 0.08 196×140×324 8.89 million 0.632
5 150 0.1 174×124×304 6.56 million 0.628

Specific details of all cases are summarised in Table 1. The Reynolds number (ReD) in
this study is defined based on the diameter of large cylinder D and free-stream velocity
U , i.e. ReD = UD

ν
where ν is the kinematic viscosity of the fluid. For all five cases,

ReD = 150. The size of the computational domain for all cases is 30D× 20D× 30D. All

5
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cases are simulated on a staggered Cartesian grid. In Fig 2 a), x-z plane view of the mesh
structure at y=0 is presented. It is clear that there are two black bands. The quality
of the grid in these two bands are better than the rest of the domain. These two bands
make sure that the grid resolution near the step cylinder is good enough to resolve the
flow phenomenon properly. Because of the abrupt change of cylinder diameter, the flow
around the step is expected to be very complicated. A 2D × 2D × 2D “central block”
wrapping the step area was built up. Uniform grid spacing (given in Table 1 as “Min Grid
Spacing”) is used in the “central block”. A part of the uniform grid in the “central block”
is plotted in the zoom-in plot, as shown in Fig 2 b). The approximate position of this grid
is indicated by a white rectangle in Fig 2 a). The grid is gradually stretched outside of the
central block to the far field and the max expansion rate is lower than 1.04. An immersed
boundary method (IBM) [9, 11] is used to deal with the intersection between the Cartesian
grid and the curved surface of the step cylinder. The same numerical method was used
recently by Jiang et al. [12] to simulate the wake behind a prolate spheroid. In Fig 3, the
drag coefficient CD = F tot

X /ρu2(dl+DL) and the lift coefficient CL = F tot
Y /ρu2(dl+DL) of

the step cylinder for case 1 are plotted. It can be observed that fully developed flow was
obtained after 250 time units(D/U). All cases have been running for at least 600 time
units in parallel on a SGI Altix ICE X SLES − 11sp3 cluster system. The time-step
was set to guarantee the maximal CFL number lower than 0.6.

Figure 3: Drag coefficient and lift coefficient of step cylinder for Case 1.
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3.2 Grid independence study

Figure 4: a) Mean streamwise velocity ū
U distribution along line AB shown in Fig (b); b) Coordinates

and length of line AB (in x-z plane with y=0).

In order to ensure that the grid resolution is good enough to capture all important fluid
phenomena, especially the complicated flow close to the step, five grids were generated for
grid study, as shown in Table 1. First, a rough check was done. Based on the data of mean
total drag coefficients CD = F tot

X /ρU2(dl +DL) in Table 1, an convergence tendency can
be found. Additionally, the difference between Case 1 and Case 2 is smaller than 0.6%
Then, mean streamwise velocity distributions along line AB (as indicated in the subplot
of Fig 4 b)) are calculated to illustrate the flow field near the step. The distribution curves
of ū

U
are shown in Figure 4 a). It can be observed that the finer the grid is, the more

smoothly the curve becomes (Case 1 and Case 2). The convergence tendency is clear
by comparing the discrepancy between adjacent curves. Moreover, the difference between
Case 1 and Case 2 is almost negligible. It is therefore safe to conclude that the Case 1
has a fine enough grid resolution. All results presented in the following discussions are
therefore based on resolution Case 1.
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4 RESULTS

4.1 Overview of flow development

Figure 5: Vortex shedding in the wake of a step cylinder: a) Isosurfaces λ2 = −0.1 for ReD = 150 and
D/d=2; b) Isosurfaces by Morton and Yarusevych [3] of Q ≈ 2 × 10−3 c) Flow visualization image by
Dunn and Tavoularis [2] for ReD = 150 and D/d=1.98.

Overview of the vortical structures in the wake for ReD = 150 is illustrated in Fig 5
a) by using isosurface of λ2 = −0.1. Similar to the results of Morton and Yarusevych
[3] and Dunn and Tavoularis [2], the vortex structures can be mainly divided into three
types, namely, the S-cell, the N-cell and the L-cell. Comparing Fig 5 a), b) and c), we
observed that the overall wake structures obtained by the present numerical simulation
agrees well with previous numerical simulation [3] and experimental results[2]. Although
the streamwise vortices is not detectable in Fig 5, the edge vortex was observed in the
vicinity of the step. The junction vortex which was observed in [2, 3] was not captured
by the present study. As can be observed in Fig 5, vortex structures in the N-cell area are
far more complicated than those in the S-cell and L-cell areas. Moreover, it seems like all
N-cell structures appear in the wake behind the large cylinder. Detailed discussions are
presented in section 4.3.
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4.2 Streamwise vortices

Figure 6: a) Streamline near the step area at x-z plane with y=0; b) Streamline of projected velocity
vector in the y-z plane at a downstream position of x=0.6 (i.e. Plane 2 shown in Fig 7 a))

As the flow reaches the region near the step, the streamlines at the symmetry plane
tend to separate at the leading edge of the small cylinder and produce a recirculation at
the step surface of the large cylinder, which is shown in Fig 6 a). Due to this recirculation,
a peak value of vorticity ωy at the corresponding position was found in Fig 7 b). Based
on the vortex structure in Fig 7 a), the concentrated high vorticity region at the shoulder
in Fig 7 c) d) and the streamlines in Fig 6 b), it is clear that there is a streamwise vortex
pair near the step. As discussed in [2], there might exist two different kinds of stream-
wise vortices in the step cylinder flow, i.e. the ‘junction vortex’ and the ‘edge vortex’,
respectively. The ‘junction vortex’ is caused by recirculation, when viewing upstream, the
left-hand vortex tube should rotate clockwise while the right-hand vortex should rotate
counterclockwise. The ‘edge vortex’ has a different topology than the ‘junction vortex’.
Since the ‘edge vortex’ is essentially generated by downwash at the edge of the step, it
has an opposite rotating direction compared to the ‘junction vortex’ on each side shoulder
of the step [2]. In this way, we may identify the streamwise vortex in the present study.
In Fig 6 b), by plotting streamlines in y-z plane just behind the step cylinder, it is easy
to find that when viewing upstream from behind the step cylinder, the left-hand vortex
rotates counterclockwise and the right-hand vortex rotates clockwise. It means that the
streamwise vortex structure marked by a white circle in Fig 7 a) is not the branch of a
‘junction vortex’, but the ‘edge vortex’. Furthermore, the contours of ωx in y-z plane at
different x positions were presented in Fig 7 c) and d).

9
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Figure 7: a) Isosurface λ2 = −0.1 showing vortex structure near the step; b) Vorticity contour of ωy at
x-z plane of y=0 ; c) Vorticity contour of ωx at y-z plane of x=0 (i.e. Plane 1 in a)); d) Vorticity contour
of ωx at y-z plane of x=0.6D (i.e. Plane 2 in a))

4.3 Spanwise vortex

Figure 8: Streamwise velocity spectra for x/D=2.5 and y/D=0.75

Figure 8 shows the streamwise velocity spectra obtained to analyze the frequency and
compositions of spanwise vortices. Also, by plotting the λ2 isosurfaces in Fig 9, the
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spanwise vortex structures in the wake can be clearly observed. In order to analyze the
generation of N-cell cycle (definition of N, S, L cell can be seen in Fig 5), we present
consecutive images through a N-cell cycle in Fig 9. Moreover, the features and repetitions
of N-cell cycle are shown in Fig 10. It is worthy to mention that the N-cell cycle refers to
the cyclic changes in the N-cell instead of the N-cell vortex shedding, the differences will
be explained in the following discussions.

• Spanwise vortex shedding frequency

The streamwise velocity data is sampled at discrete points along a line parallel to
z-axis at x/D=2.5 and y/D=0.75. By Fast Fourier Transform of the time-series
of u, streamwise velocity (Euu) spectra are presented in Fig 8. From this figure,
three dominating peaks can be observed, corresponding to S-cell StS = fSD/U =
0.306, N-cell StN = fND/U = 0.154 and L-cell vortices StL = fLD/U = 0.177.
Additionally a smaller peak at the beat frequency Stbeat = fbeatD/U = 0.0232 is
also captured. The beat frequency is caused by linear combinations and harmonics
of the shedding frequencies of the adjacent vortices, which is commonly observed in
quasiperiodic spectra associated with spanwise vortex cells [4, 13]. In comparision,
[3] reported StS = 0.320, StN = fND/U = 0.157, StL = fLD/U = 0.179 and
Stbeat = 0.022. The maximum discrepancy is smaller than 6%, which is totally
acceptable.

• Main spanwise vortex structures

S − cell vortex: In Fig 9, first, behind the top half of the small cylinder, the S-cell
vortex structures are shed, one by one, regularly and parallel to each other. This is
similar to the wake structure behind a circular cylinder without a step. Secondly,
behind the lower part of the small cylinder, due to the influence of the step, the
complex connection between the N and S cell vortex appears. The connection can
be mainly divided into two types: some of the S-cell vortices connected to the N-
cell vortices, some of the S-cell vortices connected to the other side S-cell vortices
forming a half-loop connection. For example, in Fig 9 a), the connection between
vortex S2 and N1 belongs to the first type; while the connection between vortex S1
and S0 belongs to the second type.

L − cell vortex: Similar to the S-cell vortex, behind the lower part of the large
cylinder, L-cell vortex structures are parallel to each other regularly. When we
come closer to the step, we observed complex connections between the N-cell and
L-cell vortices. In Fig 9, there are mainly two types of connections. The first one
is characterized by a L-cell vortex connects to a corresponding N-cell vortex, like
N5 to L5, N7 to L7 and so on. The other type is characterized by one L-cell vortex
connects to the subsequent L-cell vortex forming a half-loop connection, like L1’ to
L0’ and L2’ to L3’ in Fig 10.
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Figure 9: Isosurface of λ2 = −0.1 showing N-cell development. T is the period of one N-cell cycle
defined by the beat frequency.

N − cell vortex: There are two kinds of N-cell shedding: N-cell vortex shedding
defined by StN and N-cell cycle shedding defined by Stbeat. The time sequences in
Fig 9 show the whole process of an N-cell cycle development. It is clear that the
vortex structures in a) and h) are very similar, representing the same phase in two
adjacent periods. From Fig 9, it can be found that around 14 N-cell vortices are
shed during one N-cell cycle. This estimation agrees well with those reported in
[2, 3].

12



381

Cai Tian, Fengjian Jiang, Bjørnar Pettersen and Helge I. Andersson

Figure 10: Isosurface of λ2 = −0.2 showing features and repetitions of N-cell cycle a) t=659; b) t=701;
c) t=743; d) t=785 (’D/U’ is the time unit).

The features and repetition of N − cell cycle: The N-cell cycle is caused by the
dislocation between N-L boundary [3]. It means the period of the N-cell cycle is
long, compared to the three main vortex cells. Moreover, during a N-cell cycle, the
interactions and variations of three vortex cells are very complicated. It is necessary
to find clear features that may help to identify the different cycles. Through long
time observation (more than 200D/U), two distinct characteristics were captured,
as shown in Fig 10. The first one is a half-loop connection generated between
two L-cells, like L1’ and L0’ in Fig 10 a). The other is that a N-cell vortex on
one side connected to the subsequent N-cell vortex on the other side, forming a
loop connection, like N0’ and N1’ in Fig 10 a). These two features always appear
together and only once during every N-cell cycle. The half-loop connection was also
captured by Morton and Yarusevych [3], but they did not show the repetition of
this feature. Meanwhile, they speculated that the weak cross-boundary or half-loop
N-cell vortex connections may persist but they couldn’t observed it. The N-cell loop
in Fig 10 nicely proves this speculation. To the authors’ knowledge, this is the first
time that the beat frequency is clearly identified and shown by the L-cell half-loop
and N-cell loop.

5 CONCLUSION

The study shows good agreement with previous researches [2, 3]. For streamwise vor-
tices, the ’jucntion vortex’ which was captured in [2] was not observed in the present study.
This may be explained by a Reynolds number effect. Dunn and Tavoularis [2] observed
the ’junction vortex’ for ReD = 1230 which is much higher than in the present study.
However, the ’edge vortex’ mentioned in [2] is captured in the present case and clearly
shown in Fig 7 a). By calculating the streamwise velocity spectra, shedding frequencies of
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three main vortex cells together with the beat frequency were captured. The discrepancy
is smaller than 6% compared to previous study [3]. The repetition of N-cell cycle was
shown clearly in Fig 10. This phenomenon was speculated to exist in [3], but haven’t been
presented by any results. Another interesting observation is that the vortex structure is
antisymmetric. Finally, different from the speculation about half-loop connection in [3],
a full-loop connection between two N-cell vortices was observed.

In the future, higher Reynolds numbers (e.g. extending to 104) and higher diameter
ratios between large cylinder and small cylinder will be investigated to explore when a
‘junction vortex’ can be observed. Additionally, a study about how the loop connection
for N-cell vortices is generated and why the vortex structure become anti-symmetric would
be of interest.
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Abstract. A compressible homogeneous flow model is applied for the solution of two-
phase flow around marine propellers. A novel method to solve phase volume fractions is
proposed. The numerical method is applied for a model-size marine propeller in cavitating
conditions, and the computed results are validated against experimental data in terms of
global performance characteristics, local flow phenomena and cavitation prediction.

1 INTRODUCTION

Cavitation, when it occurs, is a dominant cause of many detrimental impacts faced
by a marine propeller. Cavitation may trigger erosion, cause vibration problems, or
result in high intensity underwater noise emission. Depending on the propeller operating
conditions, many different forms of cavitation can be identified such as a steady attached
sheet cavitation on the blade surface, a bubble or cloud cavitation on the blade or in the
wake, and vortex cavitation where the propeller tip and hub vortices cavitate. Specifically,
marine propellers are an important source of noise emitted from ships to the underwater
environment and to the interior of the vessel. In the case of phase changes, the underwater
noise from cavitation dominates other propeller-induced noise, excluding singing, and all
other underwater noise from a ship [1]. For these reasons, an accurate prediction of the
two-phase flow phenomena is important in the design of ship propellers.

In recent years, computational fluid dynamics (CFD) has been actively utilized to study
the propeller performance in wetted and cavitating conditions [2–6]. Flow structures in
the wake and tip vortex of a propeller employing different RANS (Reynolds-averaged

1
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Navier-Stokes) or scale-resolving turbulence closures have been studied by [7] and [8].
Additionally, higher fidelity turbulence closures, such as the large eddy simulation (LES)
or detached eddy simulation (DES) approaches have been used to compute the flow past
marine propellers [4–6]. Specific attention towards propeller-induced noise has been given,
e.g., in Ref. [9]. Budich et al. [10] studied a propeller in cavitating conditions, where the
authors focused on the shock wave dynamics including an erosion assessment.

In this paper, a numerical method for a solution to homogeneous two-phase flow is
presented. In the solution, the phases share the same velocity but have different tempera-
tures. Both phases are assumed to be compressible. A pressure-based algorithm similar to
a single-phase solution [11] is used for the pressure-velocity coupling, and a finite-volume
discretization is employed. For the void fraction equation, two different TVD flux limiters
are applied, whereas for the other variables a MUSCL-interpolation [12] is utilized.

Previously, the present method has been applied for propeller flows in Refs. [7,13] . The
computational case used in this paper is the Potsdam Propeller Test Case (PPTC) [14].
The results are compared to experimental data in terms of global propeller forces, cavi-
tation observation and local flow phenomena. Multiple different turbulence closures are
utilized: linear and non-linear two-equation models, as well as a hybrid RANS/LES model.
The two-equation models used are Chien’s low-Reynolds-number k−εmodel [15], Menter’s
SST k − ω [16], and the SST model with an Explicit Algebraic Reynolds Stress Model
(EARSM) [17]. Beyond the traditional RANS approach, a DDES (delayed detached eddy
simulation) approach based on the SST k − ω is used [18].

In the next section, the hydrodynamic modelling is described, followed by a description
of the essential features of the solution methods. Next, the test case is introduced, followed
by an assessment and validation of the numerical results. Finally, conclusions are drawn
from the presented results.

2 FLOW MODEL

2.1 Governing equations

The flow model applied is based on a homogeneous flow assumption, which is a com-
mon assumption as far as cavitation is concerned [19]. The governing equations for the
cavitation model are

∂αkρk
∂t

+∇ · αkρkV = Γk

∂ρV

∂t
+∇ · ρVV +∇p = ∇ · τij + ρg,

(1)

where p is the pressure, V the velocity and τij the stress tensor, αk is a void (volume)
fraction of phase k, ρk the density, t the time, Γk the mass transfer term and g the
gravity vector. For the mass transfer

∑

k Γk = 0 holds, and consequently only a single
mass transfer term is needed. In the following, we define Γ = Γg.

2
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Although the phase temperatures do not play a significant role in cavitation, the energy
equations are always solved in the present method. The aim is to apply a compressible
form of the equations. In order to predict the correct acoustic signal speeds, a complete
model is needed. The phase temperatures Tg and Tl also have some influence on the
solution via the material properties that are calculated as functions of the pressure and
phase temperatures.

The energy equations for phase k = g or l are written as

∂αkρk(ek +
V 2

2
)

∂t
+∇ · αkρk(ek +

V 2

2
)V =

−∇ · αkqk +∇ · αkτij ·V + qik + Γk(hksat +
V 2

2
) + αkρkg ·V. (2)

Here ek is the specific internal energy, qk the heat flux, qik interfacial heat transfer from
the interface to phase k and hksat saturation enthalpy. Since

∑

k Γk = 0, by adding the
energy equations together the following relationship is obtained between the interfacial
heat and mass transfer

Γg = − qig + qil
hgsat − hlsat

and qik = h′
ik(Tsat − Tk). (3)

Above h′
ik is a heat transfer coefficient between the phase k and the interface. The inter-

facial heat-transfer coefficients are based on the mass transfer, as is shown in Section 2.3.
The momentum and total continuity equations in the homogeneous model do not

change, except the material properties like density and viscosity are calculated as

ρ =
∑

k

αkρk and µ =
∑

k

αkµk, (4)

where µ is the dynamic viscosity. The turbulence effects are currently handled using
single-phase eddy-viscosity models for the mixture.

2.2 Turbulence modelling

Nominally a Reynolds-averaged form of Eqs. (1-2) is used, but a detached eddy sim-
ulation (DES) that combines RANS and LES is also applied in the same form. Usually,
in the cavitation modelling turbulence is taken into account using single-phase closures.
Also in this study, the turbulence modelling is applied for the homogeneous mixture. The
choice of turbulence closure plays an essential role in the numerical prediction of the per-
formance of a marine propeller. While the global forces or steady cavitation patterns near
the blades generally might not considerably differ between the turbulence closures, the
utilized model can have a significant influence on unsteady flow structures, or on the flow
in the wake of the propeller. In the case of unsteady propeller cavitation, the capturing of
the cavitation dynamics is crucial in order to assess not only the performance but also the

3
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erosive tendency of collapsing cavities, as well as the induced underwater noise. Moreover,
accurate prediction of the wake flow is important when considering the propeller-rudder,
propeller-pod or multi-propeller interactions, or the noise emitted by the propeller.

The RANS models applied in the present calculations are Chien’s low-Reynolds-number
k−ε turbulence model [15], and Menter’s SST k−ω model [16]. The latter formulation is
used in connection with an Explicit Algebraic Reynolds Stress Model (EARSM) [17]. The
applied hybrid RANS/LES approach called delayed detached eddy simulation (DDES) is
also based on the SST-model [20]. With all models the calculations are performed up to
the wall. The non-dimensional wall distance is adjusted such that the non-dimensional
wall distance d+ � 1 for the first cell.

The SST k−ω is a zonal model, referring to the formulation where the k−ω equations
are solved only inside the boundary layer, and the standard k− ε equations, transformed
to the ω-formulation, are solved away from the walls. The models are coupled using a
blending function F1 [16]. Both the k−ε and the k−ω turbulence models are isotropic, i.e.,
and they predict the Reynolds stress tensor according to the Boussinesq approximation

−ρu′
iu

′
j = 2µTSij − 2

3
δijρk. (5)

where µT is the eddy viscosity, Sij the strain-rate tensor and k the turbulence kinetic
energy. To account for turbulent anisotropy, an explicit algebraic Reynolds stress model
(EARSM) is utilized [17]. The EARSM applied relies on the SST formulation, but with
the Reynolds stress anisotropy tensor, defined as

aij =
u′
iu

′
j

k
− 2

3
δij, (6)

evaluated from a linear pressure-strain model. The traditional Boussinesq approximation
is replaced with the EARSM approach by modifying the Reynolds stress tensor as

−ρu′
iu

′
j = 2µTSij − 2

3
ρkδij − ρka

(ex)
ij , (7)

where the last term is the corrective extra-anisotropy tensor. When the EARSM is active,
only the first three terms are kept in the implicit stage of solution.

Detached eddy simulation (DES) is a hybrid RANS/LES model, and functions as an
LES subgrid model in regions where the local turbulent phenomena are of greater size
than the local grid spacing [21]. A time-accurate solution is made to resolve the turbulent
fluctuations. In the present cases, a second-order three-level fully implicit method is
used. The DES model reduces to a RANS model in regions where the largest turbulent
fluctuations are of a smaller size than the local grid spacing. In the present study, DES
is based on the modification of the SST k − ω model [18]. In DES, the equation for the
turbulent kinetic energy can be written with a modified dissipation term as

ρ
Dk

Dt
= P − ρk3/2

lDES

+D, (8)

4
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where lDES is the length scale and D is the diffusion term. The DES length scale is
computed as the minimum of the RANS length scale, lRANS =

√
k/β∗ω, and the local

resolution ∆. Here β∗ = 0.09 is a model constant. Parameter ∆ is evaluated as the
minimum of the local wall distance, and the grid resolution max(∆xi), where ∆xi denotes
the thickness of the cell in different index directions. The DES length scale is then

lDES = min(CDES∆, lRANS), (9)

and the coefficient CDES is computed from

CDES = (1− F1)C
k−ε
DES + F1C

k−ω
DES, (10)

where the constants are Ck−ε
DES = 0.61, Ck−ω

DES = 0.78, and F1 is Menter’s blending function.
Furthermore, when utilizing the delayed DES (DDES), the length scale is replaced by the
expression [20]

lDDES = lRANS − F1 max(0, lRANS − CDES∆). (11)

Here F1 → 1 outside the boundary layer, and the length scale becomes lDDES = CDES∆
if the grid spacing permits. The DDES variant of DES aims to improve the accuracy
compared to Eq. (9), which has in some instances been observed to cause grid-induced
separation. It should be noted that the standard model constants (e.g., 0.09, 0.61, 0.78)
applied have not been validated in a full scale situation. Also in the following the effect
of turbulence modelling will be studied by varying the turbulence closure, not the model
parameters.

2.3 Mass and energy transfer

A number of mass transfer models has been suggested for cavitation [22]. Usually the
mass transfer rate is proportional to a pressure difference from a saturated state or to a
square root of that. In this study the mass transfer model is similar to that of Merkle et
al. [19]

Γl =
ρlαlmin [0, p− psat]
1
2
ρ∞V 2

∞(Lcav/Vcav)τl
+

ρgαg max [0, p− psat]
1
2
ρ∞V 2

∞(Lcav/Vcav)τg
, (12)

where psat is the saturation pressure, ρ∞ the reference (inlet) density, V∞ the corresponding
velocity. The evaporation time constants are made non-dimensional using the reference
length Lcav and the velocity related to cavitation (Vcav). In some cases, such as on a
propeller blade, the cavitation length and velocity differ from the reference length Lref

and the reference velocity (V∞). The time constants correspond to the parameters of the
original model as τl = 1/Cdest and τg = 1/Cprod. There are several suggestions for the
parameters Cdest and Cprod. A common choice is Cdest = Cprod = 100.

In the present method, the saturation pressure is based on the free-stream temperature,
and the gas phase is assumed to be saturated, i.e. Tg = Tsat. Liquid temperature varies
less because of the mass and energy transfer. Since the gas temperature is forced to be

5
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Tg = Tsat, qig = 0. From Eq. (3) the interfacial heat transfer can be solved for the liquid
phase

qil = −(hgsat − hlsat)Γg − qig = (hgsat − hlsat)Γl. (13)

Using Eqs. (12) and (13), the interfacial transfer terms in the continuity and energy
equations can be solved.

In order to decrease the oscillations in the solution owing to the rapid changes in the
mass transfer, the mass transfer rate is under-relaxed between the iteration cycles as
Γn+1
l = αΓΓ

∗
l + (1− αΓ)Γ

n
l , where αΓ = 0.5 is an under-relaxation factor, n refers to the

iteration cycle and Γ∗
l is calculated from Eq. (12). For small values |Γn

l | < 0.1 kg/m3s
under-relaxation is not applied. The under-relaxation factor and the limit are quite arbi-
trary, although tested by numerous simulations.

3 Solution methods

3.1 Finite-volume Form

Eqs. (1) can be written in a general finite-volume form for a cell Vi as

Vi
d(αkρk)i

dt
+
∑

j

(Sαkρkū)j = ViΓk,i,

Vi
d(ρV)i

dt
+
∑

j

ṁjVj +
∑

j

Sjnjpj =
∑

j

Sj(τij · n)j + Vi(ρi − ρ0)g

(14)

where the sum is taken over all cell surfaces j, nj is a surface normal on a cell face and
Sj the cell face area. The mass flux dṁ = ρV · ndS = ρūdS can be identified in all
field equations. In Eqs. (14) a Rhie-Chow type damping term is added via the convective
velocity ū. Instead of the commonly used scaling, the term is scaled using an artificial
sound speed [11]. Pressure differences are applied and the flux terms are written in terms
of the void fraction. However, the implicit solution is based on mass fractions:

Vi
d(ρx)i
dt

+
∑

j

ṁjxj = ViΓi. (15)

This form in the implicit stage is convenient, since the same mass flows can be used in
the Jacobian matrices.

Eqs. (14) can be applied for arbitrary cell shapes, although in the present solution a
structured grid is applied. The viscous fluxes as well as the pressure terms are centrally
differenced. For the convective part the variables on the cell surfaces are evaluated using
a third-order upwind-biased MUSCL interpolation [12]. A flux limiter can be applied, but
in this study this is done only for the void fraction. The application of a limiter function
(φ) to the convective fluxes of the void fraction may be necessary, since it is essentially
a discontinuous quantity through the phase boundary. This may lead to problems in a

6
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Figure 1: Van Albada and superbee limiters in the Sweby diagram.

numerical solution, and the void fraction could locally obtain non-physical values amidst
an iterative solver. Additionally, cavitation volumes can exhibit rapid temporal and
spatial variation when, for instance, bursts of cloud cavities or fine cavitating vortices are
present. In this study, two different TVD limiters are utilized: the limiter of Van Albada
[23], and the ’superbee’ limiter of Roe [24]. The Van Albada limiter is a more diffusive
one, whereas Roe’s superbee is a compressive limiter. The behaviour of the limiters is
depicted in Fig. 1. A review of the high-resolution limiters for two-phase flows is given,
e.g., in [25].

3.2 Solution algorithm

Two different solution strategies are utilized for the simulations of the flow around the
rotating propeller. The first one is to rotate the computational domain with the propeller
rate of revolution, and integrate the governing equations in the physical time. The three-
level fully implicit scheme is applied with all turbulence closures. Consequently, results
which are obtained from this strategy are referred to as transient. In this approach,
a steady-state solution is sought within each physical time-step by iterating until the
L2 norms of the main variables have decreased by a sufficient amount, i.e., at least 2-
3 orders of magnitude. One hundred inner iterations are usually required within each
physical time-step for non-cavitating simulations. In the present study, between 150-200
inner iterations were made for the cavitating simulations, depending upon the utilized
turbulence model.

The second approach exploits the fact that the governing equations can yield a steady-
state solution, when the equations are expressed in the coordinate system that is rotating
with the propeller. Consequently, this solution method is referred to as quasi-steady.
Absolute velocities are used in the solution, and the rotational movement of the propeller
is accounted for in the convection velocity and as source terms in the y and z-momentum
equations as the propeller is rotating around the x-axis. The equations are iterated until
the global force coefficients and the L2 norms of the main variables have obtained a
sufficiently steady level, with the L2 norms having decreased to 10−5 . . . 10−7.

We note here that the transient simulation of the performance characteristics of an

7
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open-water propeller is not usually necessary. In many cases, a quasi-steady RANS anal-
ysis provides excellent agreement in terms of the global propeller performance charac-
teristics and steady cavitation patterns, which usually are the primary quantities and
phenomena in which a propeller designer is often interested. However, in the future our
aim is to predict propeller-induced underwater noise utilizing a computational hydroa-
coustic methodology, which in turn solely relies on transient CFD data as input [13].

The solution method is a segregated pressure-based algorithm where the momentum
equations are solved first and then a coupled pressure-velocity correction is made. A
pressure correction equation is derived from the continuity equations linked with the
linearized momentum equation. The method is based on the corresponding algorithm
for a single-phase flow [11]. The solution of the momentum and turbulence equations is
straightforward and is not described here. The basic idea in the solution of all equations
is that the mass balance is not forced at every iteration cycle, but rather the effect of the
mass error is subtracted from the linearized equations. An example of this treatment is
seen in Section 3.4.

3.3 Pressure-correction method

A derivation of a pressure correction equation is started by establishing a relationship
between the pressure and velocity corrections on a cell face. Ignoring the off-diagonal
terms (SIMPLE approximation), the following relationship is obtained between the ve-
locity and pressure corrections:

V′
i+1/2 = − Vi+1/2

āuP,i+1/2

(∇p′)i+1/2 , (16)

where Vi+1/2 is a volume of an auxiliary cell located at the face and the multiplier is
obtained from the two diagonal elements of the Jacobian matrix for the momentum equa-
tions [11]

1

āuP,i+1/2

=
1

2

(

1

auP,i+1

+
1

auP,i

)

. (17)

The two-phase solution is based on approximating the gradients of the pressure correction
on the basis of an orthogonal grid assumption. Thus, for the SIMPLE method

ū′
i+1/2 = − Si+1/2

āuP,i+1/2

(p′i+1 − p′i). (18)

Next, the continuity equations are linearized as
[

Viρk,i
∆t

+
∑

out

Sjρk,iūj

]

δαk,i +

[

Viαk,i

∆t
+
∑

out

Sjαk,iūj

]

∂ρk,i
∂p

p′i

+

[

Viαk,i

∆t
+
∑

out

Sjαk,iūj

]

∂ρk,i
∂hk

δhk,i +
∑

j

Sjαk,jρk,jū
′
j = ∆ṁk,i. (19)

8
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Here ∆t is a local time-step based on a Courant number and ∆ṁk,i a mass balance
error for phase k. The time-derivative terms are used for an inertial under-relaxation in
all equations. In the transient case, a true time derivative is also linearized and added
together with the inertial relaxation term. The true time-step size is defined via input.
A simplification is obtained by dropping the

∑

out -sums out from the multipliers of the
first two terms. The change in void fraction can be eliminated on the basis of δαg = −δαl

and using δhk ≈ p′/ρk results in the following equation

Vi

ρic2i∆t
p′i +

∑

k,j

1

ρk,i
Sjαk,jρk,jū

′
j =

∑

k

∆ṁk,i

ρk,i
, (20)

where ∆ṁk,j = −∑

j ṁk,j +ViΓk,i is the error in mass balance and the sound speed for a
two-phase mixture is defined as

1

ρc2
=

α

ρgc2g
+

1− α

ρlc2l
and

1

ρkc2k
=

∂ρk
∂p

+
1

ρk

∂ρk
∂hk

. (21)

By making approximations in the densities (ρk,i ≈ ρk,j) and using Eq. (18) the final
pressure correction equation is obtained

[

0.01Vi

ρic2i∆t
+

Vi|Γi|
∆pmax

(

1

ρg,i
− 1

ρl,i

)]

p′i −
∑

j

S2
j

āuP,j
(p′j+ − p′i) =

∑

k

∆ṁk,i

ρk,i
, (22)

where p′j+ is the pressure change in the cell on the other side of face j. An extra multiplier
of 0.01 has been added on the basis of test calculations. This is because the method is not
time-accurate in this form and it was found that the convergence slows down in steady
cases if the first term is too large. In the transient case, the true time-derivative terms are
added on the RHS of the equations and the corresponding inertial term on the left-hand
side.

Although the mass transfer term (12) depends on pressure in Eq. (22) a more general
pseudo-linearization is applied in Eq. (22). The change in pressure caused by Γ is limited
to

∆pmax = Cp|p− psat|+ εp, (23)

where Cp = 1 and εp = 0.01Pa have been used. Furthermore, an under-relaxation factor
αp has to be used for the pressure as with pressure correction methods in general.

It should be noted that eliminating the mass fractions from the continuity equations
on the basis of δxg = −δxl would lead to the same pressure correction equation as in
the case of the single-phase flow [11]. However, the resulting method can only be used if
Γ = 0, otherwise the mass will not be conserved.

9
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3.4 Void fraction

As was mentioned above, in the solution of continuity equations mass fractions, (qual-
ities) are applied, since this is convenient at the implicit stage. A drawback is caused by
the small values of mass fraction, since the accuracy may be threatened with small voids.
Because of this the explicit stage, i.e. the RHS of the continuity equations is expressed
in terms of the void fraction.

If the diagonal element is not concerned, the coefficients in the linearized form of
Eq. (15) are the same as the inviscid part of the momentum equations [11]. At the implicit
stage, a residual concept is utilized and corrections to the existing values are solved. A
residual is defined as the right-hand sides of Eqs. (14) as all

∑

j terms are moved on that
side. The residuals are evaluated using the values from the previous iteration cycle. By
defining a change between the iteration cycles as xn+1 = xn+δx, the time derivative term
of Eq. (14) can be approximated as

Vi
δ(ρx)i
dt

≈ Vi
ρn+1
i xn+1

i − ρni x
n
i

∆t
= Vi

ρni δxi + xn
i δρi + δρiδxi

∆t
. (24)

Here term Viδρi/∆t is the same as the total continuity residual, that is the total mass
balance error Rc

i = ∆ṁg,i +∆ṁl,i. From the total continuity equation we obtain

Vi
δρi
∆t

= −
∑

j

ṁn
j −

∑

j

δṁj = Rc
i −

∑

j

δṁj. (25)

By combining Eqs. (24) and (25)

Vi
δ(ρx)i
dt

= Vi
ρni δxi + δρiδxi

∆t
+ xn

i R
c
i − xn

i

∑

j

δṁj =

(

Vi
ρni
∆t

−
∑

j

ṁn
j −

∑

j

δṁj

)

δxi + xn
i R

c
i − xn

i

∑

j

δṁj.

(26)

Similarly, the flux terms at time level n+ 1 are linearized as
∑

j

(ṁj + δṁj)(xj + δxj) =
∑

j

ṁjxj +
∑

j

ṁjδxj +
∑

j

xjδṁj +
∑

j

δṁjδxj. (27)

The second-last term is combined with the last term arising from the linearization of the
time derivative Eq. (26) as

∑

j(xj − xi)δṁj ≈ 0. The first term is a part of the residual
Rx

i ≡ ∆ṁg,i = −∑

j ṁjxj + ViΓi. By applying a first-order upwind discretization for the
mass fractions, the two remaining terms can be divided into mass flows in and out of the
computational cell as

∑

j

ṁjδxj +
∑

j

δṁjδxj =
∑

in

ṁjδxj +
∑

in

δṁjδxj +
∑

out

ṁjδxi +
∑

out

δṁjδxi. (28)
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By combining Eqs. (26–28)

(

Vi
ρni
∆t

−
∑

in

ṁn
j −

∑

in

δṁj

)

δxi −
∑

in

ṁjδx
n
j +

∑

out

δṁjδxi = Rx
i − xn

i R
c
i . (29)

The second term on the right-hand side of this equation removes the effect of the mass
imbalance. Similar terms exist in the momentum and energy equations [11]. The double
δ-terms are ignored, which results in

(

Vi
ρni
∆t

−
∑

in

ṁn
j

)

δxi −
∑

in

ṁjδx
n
j = Rx

i − xn
i R

c
i . (30)

A corresponding equation is obtained from the liquid continuity equation. Since xg+xl = 1
only one equation can be solved. In the case of the homogeneous flow assumption, the two
continuity equations can be merged by multiplying the gas continuity equation by 1− x
and the liquid continuity equation by x. The left-hand side of Eq. (30) remains unchanged,
but on the right-hand side we have a new residual combined from the individual phase
residuals weighted by the mass fractions. The advantage of this is that with small voids
the gas continuity equation dominates and as x → 1 it is in an opposite way. This
treatment increases the accuracy near the phase boundaries.

A computation of a mass transfer term itself is under-relaxed with the previous value
using the under-relaxation factor of αΓ = 0.5. For Eq. (30) the mass transfer term could
not be linearized with respect to x. Instead, the following under-relaxation term is added
on the diagonal of Eq. (30)

Vi|Γi|
∆xmax

, (31)

where the maximum change of quality is obtained from

∆xmax = Cx min(x, 1− x) + εx. (32)

After the test calculations, Cx = 0.05 and εx = 1 · 10−6 have been used. A size of εx will
affect the formation of void at low values of x. The effect of the leading term in Eq. (32)
is that the mass transfer term can change the quality x (or 1 − x) by five per cent per
iteration cycle except when xk = O(10−6).

In addition to under-relaxation of Eq. (32) the mass fraction is updated from xn+1 =
0.1xn+0.9x∗, where the intermediate value x∗ = xn+δx is restricted in the range of [0,1].
It should also be noted here that ad hoc parameters have been applied in the under-
relaxation process and further tuning of the solution method should require more test
calculations. According to the npresent computational experience, however, the constants
seem to have very little influence on the speed of convergence, but their motivation is to
increase the robustness of the method. Thus the algorithm can be efficiently applied in
the present form for new designs.
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3.5 Energy equations

The energy equations (2) are linearized with respect to enthalpy changes δhk. Cou-
plings between the liquid and gas energy equations as well as with the pressure correction
equation are ignored for the moment. The linearization follows the guidelines for the
single-phase flow [11] resulting in a complex treatment of energy, mass and momentum
residuals on the right-hand side of the linearized equations. The interfacial heat transfer
term (3) can be directly linearized with respect to the phase enthalpies, but in the case of
the mass transfer term, a similar trick as in the solution of the mass fractions is applied.
Thus, the following term is added on the diagonal of both energy equations

Vi

[

|Γi|(hksat +
V 2

2
)

∆hkmax

+
h′
ik

cpk

]

, (33)

where cpk is a specific heat capacity and ∆hkmax governs the amount of under-relaxation

[26]. In the case of cavitation, a large value of ∆hkmax = hksat+
V 2

2
can be used. The first

term is more important in heat transfer calculations [26], where smaller values should be
given for ∆hkmax.

After solving the enthalpy changes, the phase temperatures are updated as T n+1
k =

T n
k + δhk/cpk. The iteration cycle is terminated by a solution of the turbulence equations,

and after the iteration cycle the material properties are updated as functions of the
pressure and the temperature.

4 TEST CASE

4.1 PPTC propeller

The investigated case is a model-size propeller with a diameter of 0.250 m. The five-
bladed propeller has a right-handed direction of rotation. The skew of the propeller is
moderate. Table 1 summarizes the main geometrical parameters of the PPTC propeller.
A photograph of the propeller is shown in Fig. 2. In this study, the propeller operates
in push configuration. A large database of experimental results has been made available
by SVA Potsdam. The simulations were performed using a constant rate of revolutions,
n = 20 1/s. The advance coefficient, the pressure coefficient and the cavitation number
are defined as

J =
VA

nD
, Cp =

p− p∞
1
2
ρ(nD)2

and σn =
p− psat
1
2
ρ(nD)2

, (34)

respectively, where VA is the propeller speed of advance, n the propeller rate of revolu-
tions, D the propeller diameter, and psat the saturation pressure. In this paper, a single
cavitating propeller operating condition is investigated with J = 1.019 and σn = 2.024.
Additionally, one non-cavitating operating condition is considered at J = 1.253. In the
time-accurate simulations, a physical time-step of ∆t = 0.139ms is used, corresponding
to 1◦ of propeller rotation. The thrust, torque and the efficiency of the propeller are
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non-dimensionalized as

KT =
T

ρn2D4
, KQ =

Q

ρn2D5
and η0 =

J

2π

KT

KQ

, (35)

where T denotes the thrust, Q the torque and η0 the efficiency, respectively.

Table 1: Main geometric parameters of the PPTC propeller [14].

Diameter [m] 0.250
Pitch ratio at r/R = 0.7 1.635
Chord at r/R = 0.7 0.417
EAR 0.779
Skew [◦] 18.837
Hub ratio 0.300
Number of blades 5
Rotation Right handed

Figure 2: Photograph of the
PPTC propeller [14].

4.2 Grid and boundary conditions

The propeller is operated in push configuration, i.e., the shaft is located in front of
the propeller. The computational grid used consists of roughly 5.5 million cells in 28 grid
blocks. The computational domain is shown in Fig. 3. Due to the symmetric nature of
the problem of a propeller operating in uniform inflow, only one blade is modelled. The
blades, hub and shaft are modelled as no-slip rotational surfaces coloured black in Fig.
3. A velocity boundary condition is applied at the inlet, denoted as the red face, and a
pressure boundary condition is applied at the outlet. A slip boundary condition is applied
at the simplified tunnel walls, which are coloured green in Fig. 3. Cyclic boundaries are

Figure 3: Grid topology used in the open-water computations.

denoted as the blue faces, and the whole computational domain is considered as rotating
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with the given rate of rotation. The inflow velocity is set based on the advance numbers
of the propeller, and the background pressure level is set based on the cavitation number.
The inlet is located five propeller diameters upstream of the propeller, and the outlet is
located ten diameters downstream of the propeller. The rectangular cavitation tunnel of
SVA Potsdam was here modelled as a circular duct of the same cross-sectional area, thus
enabling the quasi-steady computation of the problem. The radius of the computational
domain is then 0.3385 m.

The surface grid on the suction side of the blade is shown in Fig. 4(a). The surface
grid on the pressure side of the blade is similar. The grid has an O-O topology around
the propeller blades. The grid resolution around the leading edge is fine, as shown in
Fig. 4(b), and there are about 30 cells around the leading-edge radius. Due to the O-O
topology, the same resolution is applied around the blade tip and the trailing edge as well.
The grid is refined normal to the viscous surfaces such that d+ ≈ 1.

The grid points in the helical blocks located downstream of the propeller were con-
centrated in the region of the tip vortex. Figure 5 depicts the concentration of the grid
points near the tip vortex induced by the rotating blades. In the figure, |Ωi| denotes the
absolute value of vorticity, and the propeller blades, hub and shaft are coloured dark red.
The figure shows exemplary views of the resolution on the finest grid, demonstrating that
the tip vortex is excellently maintained even beyond x/D ≈ 1. There are roughly 18× 14
grid points in the cross-section of the tip vortex on the finest grid on the plane x/D = 1.
The helical blocks in the slipstream of the propeller are extended to a pitch corresponding
to approximately 450◦ of rotation from the propeller plane.

The calculations were performed on three grid levels. On the coarse grid level, every
second point in all directions is removed compared to the finer level grid. A solution on
the coarse grid is used as an initial guess for the computations performed on the next finer
grid level. In this paper, we present the results that were obtained on the finest grid.

5 RESULTS

In this section we present the numerical results of the PPTC test case in the investigated
operating conditions. Unless otherwise stated, all cavitating results are obtained using
the transient approach and with the superbee limiter for the void fraction. In all transient
results depicting the propeller, a snapshot is shown with the propeller blade at the top-
dead centre. Experimental results are given in Refs. [14, 27].

5.1 Propeller global forces

A comparison of the simulated results with the model tests (EFD) in the cavitating
conditions in terms of the non-dimensional thrust and torque coefficients is given in Table
2. It can be seen that the propeller performance in terms of the global forces is captured
relatively well utilizing any of the turbulence models. In this case, the best agreement
with the experiments is obtained with the k − ε turbulence model.
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(a) Grid resolution on the suction
side

(b) Grid resolution near the LE

Figure 4: Grid resolution on the suction side and
near the leading edge of the blade.

(a) Cut plane y = 0

(b) Cut plane x/D = 1

Figure 5: Views of grid resolution on cut planes
y = 0 and x/D = 1.

Table 2: Global performance characteristics of the propeller in cavitating conditions utilizing different
turbulence closures.

Quantity k − ε SST k − ω
SST k − ω
EARSM

DDES with
k − ω

KT (EFD) 0.374 0.374 0.374 0.374
KT (CFD) 0.368 0.362 0.358 0.358
∆KT -1.6% -3.3% -4.4% -4.4%
10×KQ (EFD) 0.970 0.970 0.970 0.970
10×KQ (CFD) 0.947 0.934 0.930 0.923
∆KQ -2.4 % -3.8% -4.3% -5.1%
η0 (EFD) 0.625 0.625 0.625 0.625
η0 (CFD) 0.634 0.632 0.628 0.633
∆η0 1.4% 1.1% 0.5% 1.2%

5.2 Comparison with LDV measurements

Circumferential distributions of velocity components in the wake of the propeller are
compared to the LDV measurements conducted in a cavitation tunnel [14]. The LDV
measurements were conducted at J = 1.253 in wetted conditions. Quasi-steady CFD
computation utilizing the k − ε turbulence model was conducted at J = 1.269 with
the deviation1 of ∆J = 1.3% for the advance coefficient, ∆KT = 2.6% for the thrust

1J = 1.269 corresponds to the operation point of Case 2.3.2. of smp’11, to be assessed in a future work
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coefficient, and ∆KQ = 0.6% for the torque coefficient. Comparison of the axial, radial
and tangential velocity components is made on the cut-plane x/D = 0.2 at two radii.
The first radius, shown in Fig. 6(a), corresponds to the location of maximum observed
axial wake, which was r/R = 0.966 in the measurements, whereas the maximum wake
occurred at r/R = 0.920 in the simulations. The second comparison is made at the radius
r/R = 0.7, which is shown in Fig. 6(b).
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Figure 6: Comparison of velocity components on the cut-plane x/D = 0.2 on constant radii. Experiments
are described in [14].

Overall, good qualitative agreement is achieved between the experiments and the sim-
ulations. It is observed that the shape of the tip vortex and the propeller wake are well
captured. The tip vortex strength or the wake created by the propeller is not observably
dissipated at this x station. However, there is a difference of 5% between the EFD and
CFD in the values of the radii in Fig. 6 at which the maximum wake is observed. A reason
for the higher streamtube contraction might be the difference in the propeller loadings.

5.3 Cavitation observation

The cavitation patterns on the suction side of the propeller blades and in the wake
of the propeller are compared with the observations made in the cavitation tunnel tests
in Figs. 7 and 8. In the simulated results, the grey transparent surface denotes the iso-
surface of α = 0.1. The results are obtained with DDES. The experimental results are
reported in [27]. The propeller has strong tip vortex and hub vortex cavitations, which
are visible in the experiments and in the simulations. The shape and extent of the root
cavitation, as well as the tip and hub vortex cavitations, are captured well. The tip
and hub vortex cavitations extending far behind the propeller are captured exceptionally
well, as shown in Fig. 8. Comparing the EFD and CFD results in Fig. 8, also the modal
shapes of the cavitating tip vortex are qualitatively well captured. The simulation predicts
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attached sheet cavitation at the leading edge, which is not observed in the experiments.
We, however, note that the cavitation inception at the leading edge (LE) is sensitive
to the manufacturing accuracy of the model propeller, and small inaccuracies especially
concerning the sharp LE shape can alter the observed cavitation extent [13].

(a) EFD (b) CFD

Figure 7: Comparison of the cavitation patterns near the blade surfaces with the cavitation sketches
according to observations made in the experiments. DDES using the superbee limiter. Experiments are
described in [27].

(a) EFD (b) CFD

Figure 8: Comparison of the tip and hub vortex cavitation extents behind the propeller. DDES using
the superbee limiter. Experiments are described in [27].

Surface-restricted streamlines and non-dimensional pressure coefficients on the blade
surface, predicted by the different turbulence models, are shown in Fig. 9. It can be seen
that the surface pressure distributions are similar between the two turbulence models. The
streamlines are mostly radially directed in a major part of the blade, without considerable
difference between the turbulence models. The k− ε model, however, apparently predicts
a more laminar region close to the LE at smaller radii than the other choices. The effect
of cavitation on the surface-restricted streamlines is significant. The re-entrant jets are
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(a) k − ε (b) SST k − ω

(c) SST k − ω EARSM (d) DDES with SST k − ω

Figure 9: Surface-restricted streamlines and non-dimensional pressure coefficients on the blade surface.
Cavitating conditions utilizing different turbulence models. The grey transparent surface denotes the
iso-surface of α = 0.1.

directed towards the cavitating tip vortex at the closure line of the sheet cavitation. A
similar phenomenon was observed by [28], see also Fig. 12. This behaviour appears as
practically identical for all of the utilized turbulence closures. There is no considerable
difference in the location of the cavity closure line between any of the utilized turbulence
models. In addition, apparent flow separation is seen in the blade root region. With any
of the k−ω based models or the SST-based DDES, the region of separating flow extends
to a slightly higher radii near the trailing edge than for the k − ε model.

5.4 Comparison of different flux limiters for the void fraction equation

A comparison of the Van Albada and superbee flux limiters for the void fraction is car-
ried out utilizing the SST k−ω turbulence model and a quasi-steady solution. Integrating
the total volume of vapour in the computational domain gives 20.15 mm3 vapour with
the Van Albada limiter, and 23.32 mm3 with the superbee limiter, respectively. Fig. 10
shows a comparison of the cavitation extent in the wake of the propeller as predicted by
the two limiters. Albeit not shown, the limiter applied had little influence on the cavita-
tion patterns near the blade surface in this operating condition. In Fig. 10 results of the
two computations are compared in a single picture, the figure being halved at the centre
of the propeller hub in the vertical direction. In the top half we show results obtained
with the Van Albada limiter, while in the bottom half those obtained with the superbee
limiter. Overall, the predicted cavitation patterns near the blades and, to an extent also
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in the wake, are relatively close to the cavitation observations made in the experiments
regardless of the utilized limiter. The two flux limiters employed bear little difference to
the prediction of the hub vortex cavitation. However, a notable difference is seen in the
prediction of the tip vortex cavitation. The tip vortex cavitation as predicted with the
Van Albada limiter narrows from x/D ≈ 1 downstream, while similar dissipation is not
observed in the cavitating tip vortex predicted by the superbee limiter, nor in the exper-
iments. Furthermore, the modal shapes of the tip vortex cavitation seem slightly clearer
as predicted with the superbee limiter. Lastly, we note that the tip vortex cavitation
diminishes roughly 72◦ earlier in the simulations with the Van Albada limiter than with
the superbee limiter.

Figure 10: Comparison of computed cavitation extents with the different flux limiters. Top half: Van
Albada limiter, bottom half: superbee limiter.

5.5 Flow structures behind the propeller

The vorticity magnitude and the pressure coefficient behind the propeller are shown in
Fig. 11 in cavitating conditions. The figure shows a snapshot of the simulations with the
propeller blade at the top-dead centre. The results utilizing the four different turbulence
closures are visualized. As can be seen, a strong tip vortex is preserved well in the
slipstream. Utilizing all but the k−ε turbulence model, the high vorticity region together
with the cavitating tip vortex is preserved close to the extent of the helical grid. The
pressure in the tip vortex region predicted by the k − ε model decreases in magnitude at
around the extent of the propeller hub, halting the mass transfer and causing the vapour
to vanish far sooner than with any of the other employed turbulence models. It can be
observed that the overall flow field in the wake appears as rather smooth with the k − ε
model. Conversely, the disturbance at the tip vortex region is convected nearly unaffected
by the distance it has travelled when utilizing the linear and non-linear SST k−ω, or with
DDES. Furthermore, with DDES, formation of auxiliary and unsteady vorticity appears
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(a) k − ε (b) k − ε

(c) SST k − ω (d) SST k − ω

(e) SST k − ω EARSM (f) SST k − ω EARSM

(g) DDES with SST k − ω (h) DDES with SST k − ω

Figure 11: Magnitude of the vorticity vector and the pressure coefficient on the cut plane y = 0
in cavitating conditions utilizing different turbulence models. The transparent iso-surface of the void
fraction α = 0.1 is coloured by blue.
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around the strong tip vortices as we move downstream from the propeller. The apparent
flow separation near the propeller root causes visible disturbances in the wake, which
are significantly more pronounced in the results obtained with the linear and non-linear
SST k − ω than with the k − ε model, and differences between the linear and non-linear
k − ω models seem mostly qualitative. DDES then again predicts more detailed vortical
structures than the two-equation models.

(a) k − ε (b) SST k − ω

(c) SST k − ω EARSM (d) DDES with SST k − ω

Figure 12: Iso-surface of the magnitude of the vorticity vector |Ωi| = 750 1/s near the suction side with
blade surface restricted streamlines (top), near the propeller and in the wake (bottom). The iso-surface
is coloured by helicity. Cavitating conditions utilizing different turbulence models.

The flow field is visualized at the suction side of the blade and in the wake by the
iso-surface of the magnitude of the vorticity vector |Ω| = 750 1/s. in Fig. 12 in cavitating
conditions. The iso-surface is coloured by helicity H = Vr ·Ω/(|Vr||Ω|), where Vr is the
relative velocity vector in the rotating reference frame. The helicity denotes the cosine of
the angle between the relative velocity and the absolute vorticity vectors, and tends to ±1
in the vortex cores, the sign indicating the direction of swirl. We observe strong tip and
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hub vortices extending far in the wake. Minor instabilities are seen in the vorticity field
near the sheet cavitation at the leading edge, but the re-entrant jet of the sheet cavitation
near the LE is directed up towards the cavitating tip vortex. As we observed in Fig. 9,
the vapour in the sheet cavity is convected toward the cavitating tip vortex, and the sheet
cavitation itself is stable. The root region sheds unsteady vortical flow structures in the
wake. The rather stable root cavitation in Fig. 7 causes apparent changes to the flow
geometry which leads to separation. Observing the results obtained with the linear and
non-linear SST k − ω model or with DDES, the flow departing the trailing edge exhibits
unsteadiness up to approximately r/R = 0.5. The helical vortex track originating from
the root region is clearer with DDES than with any of the two-equation models. Separate
vortex filaments form close to the surface of the hub shortly after the trailing edge of
the blade with the linear and non-linear SST k − ω model and with DDES. Utilizing the
non-linear model, the vortical flow structures shed from the root region convect longer
and more detailed in the propeller wake than with the other two-equation models. A
similar phenomenon is observable for the cavitating hub vortex. Overall, DDES predicts
considerably more detailed vortical flow shapes and structures in the wake of the propeller
than any of the two-equation models. If we inspect Fig. 12(d) carefully, we notice a vortex
pairing phenomenon taking place, where the strong tip vortex (with H ≈ 1) has a smaller
and weaker vortex tube (with H ≈ −1) coiling around it. We do not observe similar
phenomenon with the two-equation models. Dissipation is low in the tip vortex in the
helical grid region with the linear and non-linear SST k−ω model and with DDES. Overall
flow details in the wake obtained with k − ε turbulence model are severely damped due
to excess turbulent viscosity produced by the model [13].

6 CONCLUSIONS

A numerical method for a solution of cavitating propeller flows was described. In
the solution method, a compressible homogeneous flow model is applied. The finite-
volume based algorithm utilizes a pressure correction equation derived from the phase
continuity and the mixture momentum equations. Several turbulence closures are used to
describe turbulence in the mixture. Mass transfer between the phases is evaluated from
the commonly used Merkle model.

The numerical method was applied for the PPTC propeller in wetted and cavitating
conditions. The computed results were compared with experimental data. The predicted
global propeller performance characteristics were in good agreement with the experiments.
Differences between the utilized turbulence closures were not considerable, although the
best correspondence was obtained with the k − ε model. Cavitation patterns with all
the utilized turbulence closures were also well predicted, especially near the blades. The
cavitating tip and hub vortices were excellently captured with the linear and non-linear
SST k − ω -models, as well as with DDES, and little difference was observed in the
predicted steady cavities between these approaches. In the wake, more detailed vortical
flow structures can be seen, as the complexity of the turbulence closure is increased.
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Different flux limiters were applied for the convection term in the void-fraction equa-
tion: Van Albada’s limiter and Roe’s superbee limiter. With all other numerical settings
kept untouched, the results demonstrate a significant difference in the predicted tip vor-
tex cavitation extent between the different limiters. Using the more compressive limiter,
better agreement was achieved with the experiments in terms of the cavitation prediction.
The numerical results indicate, however, that the steady cavitation patterns in the vicin-
ity of the blades did not considerably depend on the utilized limiter at the investigated
operating condition.

In this study, our goal was to validate the present two-phase flow model and to compare
turbulence modelling approaches for a model-scale propeller. The interaction between a
full-scale marine propeller and a ship is very complex. The propeller usually operates
in the vicinity of the hull in the three-dimensional wake of the ship, where the flow
is mostly time-dependent, highly turbulent and, in adverse conditions, even separated.
Additional complexity can follow from the interaction between the propeller and the ship
wave system, or with rudders or other propellers in a multi-propulsor configuration. From
a numerical point of view, the computational burden imposed by the propeller operating
in behind ship conditions mainly results from the highly time-dependent nature of the
problem, with the ship motions and the generated wave system following a time scale
very different to that of the rotating propeller. Using a typical number of O(30) cores,
usual computational times for a transient open-water calculation are of the order of days
for a single propeller revolution. Conversely, a CFD simulation of a full-scale ship with
an operating propeller could consume up to a month in order to achieve a reliable result.

In the future, the aim is to predict propeller-induced underwater noise. For this pur-
pose the CFD solution will be linked with an acoustic solver. The flow solution will be
developed by assuming unequal velocities for the phases [26]. This creates new challenges
for modelling of turbulence and interfacial transfer, which will be important research
topics in the future.
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Abstract. The coastal high way project E39 aims at building a continuous ferry-free road
connection along the west coast of Norway. One of the major challenges in the project
is to replace ferries with new fjord-crossing methods such as floating bridges and floating
tunnels. The unique topographies of the Norwegian fjords pose deep water conditions
and large scale wave transformations. This makes it more complicated to analyse the
wave loads on the floating structures. In order to have a better knowledge of the wave
height distribution, wave direction and wave transformation details, accurate simulations
of wave propagations with good representations of the free surfaces are demanded. CFD
(Computational Fluid Dynamics) is able to capture most complexities of the wave physics
with few assumptions and has been widely and successfully applied on hydrodynamics.
With increasing computational capacities, it is possible to use CFD on large scale sim-
ulations. Therefore, large scale three dimensional simulations of wave propagations into
Sulafjord are performed in this paper with the CFD model REEF3D. The spectra wave
model SWAN is used to obtain the wave data from offshore data and give inputs for the
CFD simulation. The CFD simulations are performed with both regular and irregular
waves and give the details of the free surfaces and wave transformations in the fjord,
the results of which are also compared with the wave model SWAN. REEF3D solves the
incompressible Navier-Stokes equations with finite difference method and uses level-set
method to capture the free surface under the two phase flow approximation. Together
with the implements of high order schemes, REEF3D demonstrates high performance on
wave hydrodynamics. The large scale Sulafjord simulation shows high resolution results
and the details of wave transformations are well visualised. The results at wave probes
are also compared between REEF3D and SWAN.

1
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1 INTRODUCTION

The coastal highway project E39 is a major marine civil engineering project in Nor-
way. As part of the National Transport Plan (NTP) for 2014-2023, it is aimed to build
a continuous ferry-free road connection between Kristiansand and Trondheim along the
west coast of Norway, which covers around 1100 km in distance with seven major fjord
crossings [6]. Three major bridge designs are proposed for fjord crossings, a single span
suspension bridge, a floating bridge and a submerged tunnel [6]. The floating structure
designs put new demands for accurate wave propagation simulation into the fjords. The
Norwegian fjords are very unique as most of them have very steep slopes with rather deep
water conditions. For example, the research object Sulafjord is 3200m to 5000m wide and
up to 450m deep [11]. Though it is not the widest or deepest fjord, it has been chosen as
the study case in this paper due to its representative features and reasonable domain size
with respect to computation load. Besides, the study will make the numerical simulation
keep pace with the ongoing field measurements in Sulafjord.

The numerical models for coastal simulation were initially developed with a statisti-
cal method based on significant wave height. But the requirement of a fine mesh in the
coastal region due to the complex bathymetry demands the third generation wave models,
such as MIKE 21 SW [23]. Another third generation model is the spectral wave model
Simulating Waves Near shore (SWAN) developed by Delft University of Technology [23].
Both MIKE 21 SW and SWAN give good results in terms of predicting energy spectrum
and significant wave height. However, as they are phase-averaged wave models, some phe-
nomena like wave diffraction can not be represented well [23]. Therefore, a high resolution
phase-resolved numerical model is needed to reflect detailed wave phenomena in the fjords.

Another application in coastal and harbour engineering is a Boussinesq equation based
wave model. Boussinesq type equations have been used successfully for shallow water
simulations. Improved versions of the Boussinesq equations further reduce the limitation
of its application due to water depth (d) and wave length (L), which makes it possible to
simulate waves with d/L ratio of 0.6 [15]. But in Sulafjord, the d/L ratio can be greater
than 1 which corresponds to deep water conditions, where Boussinesq equations are not
applicable.

As Computational Fluid Dynamics (CFD) is able to capture most of the complexity in
the flow field with few assumptions, it is becoming the new alternative for modelling in
coastal engineering. However, the limitation of CFD application to coastal engineering is
the high demand on the computational resources. In recent years, super computer infras-
tructure and parallel computation technology have been improved at a fast pace. With
increasing computational resources and improved CFD tools, large domain simulations of
wave propagation for Sulajord is possible with CFD. To meet this challenge, REEF3D has
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been developed at NTNU as a CFD code with focus on wave hydrodynamics by solving
the incompressible Navier-Stokes equations [4] and has been applied to a wide range of
marine applications, such as breaking wave kinematics [1], breaking wave-structure inter-
action [14] or floating body dynamics in waves [3]. This paper presents the large scale
CFD wave modelling at Sulafjord using REEF3D.

A simulation is firstly performed with the spectral wave model SWAN to approximate
the wave properties at the fjord entrance from the offshore wave data. Three wave height
probes are used in the SWAN model which correspond to the three locations of the field
measurements. The resulting wave height and period at the probe at the fjord entrance
are then used as inputs in the CFD simulation. A CFD simulation with a unidirectional
regular wave and a CFD simulation with a unidirectional irregular wave are conducted us-
ing REEF3D. Wave height probes corresponding to the same locations as those in SWAN
are also used in the CFD simulations. The resulting wave properties from all three nu-
merical simulations are compared at wave probes and the phase-resolved results from the
CFD simulations are visualised and analysed against the wave transformation physics.

2 NUMERICAL MODEL

2.1 Governing Equations

Water wave hydrodynamics comply with the mass conservation and momentum con-
servation, which are represented by the incompressible Navier-Stokes equations, as shown
in Eqn. (1) and Eqn. (2). For large scale water waves, the turbulence effect is ignored,
and thus the turbulence terms in the equations are excluded.

∂ui

∂xi

= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

[

ν

(

∂ui

∂xj

+
∂uj

∂xi

)]

+ gi (2)

where u is the velocity, ρ is the fluid density, p is the pressure, ν is the kinematic
viscosity and g the acceleration due to gravity.

REEF3D solves the governing equations on a structured Cartesian grid and is able to
implement high-order schemes with finite difference method .

For the convection terms in the Navier-Stokes equations, the conservative fifth-order
weighted essentially non-oscillatory (WENO) scheme is applied. By using a convex com-
bination of all stencils with each of them assigned with a weight, WENO is less sensitive

3
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to round-off errors and also has better smoothness of the flux [10].

The third-order Total-Variation-Diminishing (TVD) Runge-Kutta scheme [5] is em-
ployed for time treatment in the momentum equations and the level set equations. The
adaptive time step is also adopted in order to fulfil the Courant-Friedrichs-Lewy(CFL)
criterion [9].

The Poisson equation for pressure is solved using the HYPRE library [12]. The HYPRE
library provides high performance solvers that make large and detailed simulations pos-
sible and solve the problems faster at large scales. With the HYPRE library, REEF3D is
able to use BiCGStab [24] as the iterative solver and geometric multi-grid PFMG [7] as
the pre-conditioner for the Poisson equations. As a result, the solver scales very well.

2.2 Numerical Wave Tank

The level set method is adopted to capture the free surface. The level set function
φ(�x, t) is a signed distance function which is designed so that it equals to zero at the
interface and shows opposite signs in the two different phases, as shown in Eqn. (3) [19].

φ(�x, t)











> 0 if �x ∈ phase 1

= 0 if �x ∈ Γ

< 0 if �x ∈ phase 2

(3)

REEF3D is able to apply various wave theories, such as linear wave theory, 2nd-order
and 5th-order Stokes waves and irregular wave theories. The equations to describe the
waves include the velocities in the horizontal and vertical direction u and w and the level
set function φ for the surface elevation. As an example, the equations for deep water
linear wave theory are represented in Eqn. (4).

u(x, z, t)analytical =
πH

T

cosh [k (z + d)]

sinh (kd)
cosθ

w(x, z, t)analytical =
πH

T

sinh [k (z + d)]

sinh (kd)
sinθ

φ(x, z, t)analytical =
H

2
cosθ − z + d

(4)

The wave phase θ and the wave number k are described in Eqn. (5):

k =
2π

L
θ = kx− ωt

(5)

where H is the wave height, L is the wavelength, T is the wave period, ω is the angular
wave frequency and z is the vertical coordinate measured from the still water level z = 0.
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The wave is generated and absorbed using relaxation method [16]. The relaxation
function formulated by Jacobsen [13] is implemented as shown in Eqn. (6).

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1] (6)

where x̃ is scaled to the length of the relaxation zone.
The velocities and the free surface level defined in Eqn. (4) together with the pressure

are ramped up in the wave generation zone to the analytical values from the desired wave
theory and the waves are released into the working zone in the tank. In the numerical
beach, the velocities are reduced smoothly to zero, free surface is damped to still water
level and the pressure is relaxed to hydrostatic pressure. The process is shown in Eqn. (7)

u(x̃)relaxed = Γ(x̃)uanalytical + (1− Γ(x̃))ucomputational

w(x̃)relaxed = Γ(x̃)wanalytical + (1− Γ(x̃))wcomputational

p(x̃)relaxed = Γ(x̃)panalytical + (1− Γ(x̃))pcomputational

φ(x̃)relaxed = Γ(x̃)φanalytical + (1− Γ(x̃))φcomputational

(7)

The complicated bathymetry of coastal region consisting of a set of scattered points
is implemented using the inverse distance weighting method. This method obtains the
values at the unknown points by interpolating the weighted average of the values at the
known scattered points [20]. Additionally, an improved level set method is used for the
geometric representation of the irregular solid boundary. As a result, the water surface is
better captured near the irregular shoreline with very shallow water condition.

The irregular solid geometry at the seabed also poses a challenge to the boundary condi-
tions. This challenge is solved by the ghost cell immersed boundary method (GCIBM) [2].
GCIBM makes the solution across the boundaries continuous by extrapolating data into
the fictitious ghost cell. And therefore, the numerical discretisation deals with boundary
conditions implicitly. The algorithm is originally based on the local directional approach
in two dimensions [2].

3 SULAFJORD SIMULATION

3.1 Sulafjord description

The bathymetry for Sulafjord is obtained from the Norwegian Mapping Authority
Kartverket. Fig. 1 (a) [8] shows the geographical domain of the entire Sulafjord region.
The preliminary designs of the fjord crossing and the crossing locations are shown in
Fig.1(b) [21]. Therefore, the main focus of the simulation is shown as a black box in
Fig. 1. The most dangerous wave direction for the fjord is shown in Fig. 2 [17]. In this
paper, only unidirectional waves are simulated with the direction of the most dangerous
waves. The ongoing field measurements are conducted at location D, A and B, as shown
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DA
B

Suspension Bridge

Floating Tunnel
Floating Bridge

I

(a) (b)

Figure 1: (a)Locations of the wave height probes in the Sulafjord measurements and the domain of
focus shown as the black box, (b)possible fjord crossing locations

in Fig.1(a), the coordinates of the three probes in UTM 33 coordinate system are listed
in Table 1. Values at probe I from SWAN are used as inputs in REEF3D, the coordinate
of which is also shown in Table 1.

Table 1: The wave height probes at Sulafjord

Probe denotation x coordinate y coordinate
I 31600.00 6957000.00
D 33109.42 6956082.14
A 38596.05 6953729.83
B 40026.88 6950883.83

3.2 Swan simulation of Sulafjord and corresponding offshore area

Before the waves reach Sulafjord, large scale wave shoaling occurs, which have signif-
icant effect on wave properties. Therefore, in order to have reasonable wave inputs in
the fjord simulation, a spectral wave model simulation is used to get the wave properties
from the offshore wave data. The initial wave properties are taken from offshore data
according to the suggestion of the NORSOK Standard [18]. The selected significant wave
height is 16m, the period is 18s. The directional width of the directional spreading func-
tion is chosen to be 2. The bottom geometry is obtained from the Norwegian Mapping
Authority Kartverket. To optimise the computational resources and accuracy, a nesting
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Hareidlandet

Godøya

Sula

DANGEROUS WAVES

Figure 2: Dangerous wave direction for Sulafjord

technic is applied. By nesting, the overall region is simulated with a coarse resolution; this
simulation provides boundary values to a finer grid of smaller area, which again provides
boundary input values to an even finer grid at an even smaller domain. Generally it is
advised to reduce step size from one nesting level to the next by a factor of 2 or 3 [22].
The mean wave direction is chosen to be 315◦ so the waves in general agree with the most
dangerous wave direction. The mesh convergence study is shown in Fig.4. Therefore, four
nesting layers are used with the mesh size of 200m, 100m, 50m and 25m. The bottom
geometry and the layers of nesting are demonstrated in Fig. 3, the resulting significant
wave height distribution is shown in Fig. 5. The significant wave height at inlet probe I is
5.34m and the peak period is 16.86s, which is later used as input in the CFD simulations.

3.3 Wave tank set up of the CFD simulations

In order to focus on the fjord crossing region and align the numerical wave propaga-
tion direction with the most dangerous wave direction, the sub-sea topography is further
extracted for a smaller domain, shown as a black box in Fig. 1. The geometry is then
rotated anti-clockwise of 55◦ so that the wave can propagate from the left side of the wave
tank. The final geometry used in the simulation is shown in Fig. 6. The corresponding
numerical tank is 10000 m long and 9000 m wide and the maximum water depth is 447 m.
The wave generation zone is shown as a black box and the numerical beaches are shown as
yellow boxes in Fig. 6. Considering the computational resources, the mesh size is chosen
to be 20 m. As the main focus is to demonstrate the feasibility of large scale simulation,
and the large scale simulation is very time consuming, no further mesh convergence study
is conducted at the current stage.

The results at probe I from the SWAN simulation are used directly in the CFD simula-
tions. The irregular wave consists of 700 wave components and the standard JONSWAP
wave spectrum is used. The regular wave is a Stokes 5th wave of 5.34m wave height and
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1200

600

0

Figure 3: The bottom geometry of the SWAN simulation and the nesting layers in the simulation, the
three black boxes represent the three nesting layers, smaller box has finer mesh

16.86s wave period.

3.4 CFD simulation results

The simulation results for both regular waves and irregular waves are shown in Fig. 7.
Refraction can be observed along the fjord, where the wave propagation direction tends
to be perpendicular to the bank at the near-shore area. The overlapping patterns of
the refracted waves, diffracted waves and reflected waves can be seen around the tip of
Sula island. The wave propagation is rather steady inside the fjord, with minor reflection
from the banks. The different wave transformation phenomena are well presented in the
simulation result. This gives CFD simulation a prominent advantage in comparison to
the phase-averaged models where only the significant wave height contours are presented.
From the fjord crossing infrastructure design point of view, the simulation is not only
able to give the magnitudes of wave heights, but also the direction of the waves at specific
locations and the interaction of different waves, which facilitate the analysis of wave loads.

The significant wave heights obtained from the SWAN simulation and the irregular
wave simulation are compared with the mean wave heights from the regular wave simula-
tion in Table 2. The mean wave periods are also compared. As can be seen, the regular
wave simulation gives much higher wave height, indicating that the regular wave simu-
lation with one propagation direction is too conservative from engineering point of view.
The irregular wave CFD simulation also gives higher Hs than SWAN, but it is not easy
to make a judgement of the accuracies. As SWAN is not performing well with the diffrac-
tion phenomenon [23], the results at the probes inside the fjord are not considered to be
very convincing. Meanwhile, the irregular wave CFD simulation does not account for the
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Figure 4: The mesh convergence study of the swan simulation

directional spreading function, which also leads to more conservative results. The data
from the field measurements is only available for two months [8], which is not suitable for
validation purpose. An observation of longer time is needed.

Table 2: The comparison of the wave properties at probes from the SWAN simulation, the regular wave
CFD simulation and the irregular wave CFD simulation

Probes
SWAN Regular wave CFD Irregular wave CFD

Hs Tm Hm Tm Hs Tm

D 4.67 9.95 5.33 16.86 6.91 8.38
A 2.57 9.71 7.31 16.92 5.11 7.53
B 2.28 9.37 7.41 16.97 5.12 8.68

4 CONCLUSIONS

The CFD simulation of the Sulafjord presents a good wave transformation process with
reasonable computational resources. This gives confidence to large scale CFD simulations.
As a first large scale CFD wave application on record for Norwegian fjords with deep water
conditions, the detailed simulation results show the great potential of CFD capacity and
introduce many promising topics for further development. The combination of SWAN
and REEF3D reduces the cost on time and computational resources tremendously. The
practice lays the foundation for the future development of an integrated numerical model
consisting of CFD, Boussinesq model and fully non-linear potential flow model.

The uncertainties in the simulations and comparisons provoke the topic of developing
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Figure 5: Significant wave height distribution of Sulafjord from swan simulation, to the left: the whole
domain Hs distribution, to the right: Hs distribution at Sulasjord

a CFD simulation with a directional wave spectrum. Multi-chromatic waves and wave
directional spreading functions are to be implemented in the future study. The field mea-
surements for the duration of one whole year is needed to compare with the simulations.
In conclusion, CFD models can be effectively applied on large scale wave simulation in
Norwegian fjords and REEF3D shows satisfying capacity of carrying out such simula-
tions. The attempt to optimise the advantages of each existing wave model and combine
different models also shows promising potential.
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Abstract. In this work, the dynamics of inertial disk-like particles in a turbulent vertical 
channel flow has been investigated. Direct numerical simulations are performed to obtain the 
turbulent flow field, and the disks are modeled as oblate spheroids with inertia and shape 
parameterized by means of Stokes number and aspect ratio. For each of the four disk classes, 
three different gravity configurations are considered: upward flow with gravity opposing, 
downward flow with aiding gravity, and channel flow in the absence of gravity. Results of the 
translation, rotation and orientation of disks with inward and outward motion judging from 
the particle wall-normal velocity have been reported. Though the gravity force is observed to 
alter the particle position and the tendency of moving towards or away from the nearest wall, 
the presence of gravity always inhibits the wall-normal motion of disks in the central region. 
Moreover, disk-like particles spin faster for inward motion in the near-wall region and for 
outward motion in the central region. It is found that disks are more likely to orient in the 
spanwise direction as moving towards the wall. The gravity force however has a negligible 
impact on the rotation and orientation of particles, except that heavy disks in the channel 
center have less tendency to orient randomly when the flow is upward or downward.  

1 INTRODUCTION 
Suspensions of tiny rigid non-spherical particles are commonly encountered in many 

industrial, environmental and biological applications. Due to the widespread practical 
importance, dynamics of non-spherical particle-laden suspensions has been a topic of research 

Gravity effects on the wall-normal motion of inertial disk-lie particles in turbulent  vertical 
channel flow
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in both homogenous isotropic turbulence [1,2] and wall-bounded turbulence [3-8] by means 
of advanced experimental and numerical approaches. The readers can refer to [9-11] for an 
overview of different types of experimental and numerical methodologies available for the 
investigation of non-spherical particles.  

Among the previous work, the dynamics of non-spherical particles has been commonly 
studied by assuming regular axisymmetric shapes, i.e. either prolate (rod-like) or oblate (disk-
like) spheroids. Zhang et al. [3] were the first to investigate prolate spheroidal particle 
transport and deposition in fully developed turbulent channel flow using direct numerical 
simulations (DNSs) along with a point-particle approach. Later, Mortensen et al. [4,5] and 
Marchioli et al. [6,7] adopted this method and studied the dynamics of a wide range of prolate 
spheroidal particles in wall turbulence. They pointed out that inertial rods, similar to spheres 
[12,13], tend to accumulate in the viscous sublayer and preferentially concentrate in the low-
speed streaks. In addition, the orientation and rotation of rods in the near-wall region are 
strongly dependent on its elongation and this effect reduces with the increase of inertia [4,6]. 
Prolate spheroids orient randomly in the central region where the fluid vorticity is almost 
isotropic, and exhibit preferential alignment with the local fluid vorticity in the near-wall 
region where strong velocity gradients exist [14,15]. However, only a few studies have 
focused on suspensions of disk-like particles in turbulent flows compared with those of rod-
like particles. Njobuenwu and Fairweather [16] investigated the dynamics of spheroidal 
particles using large-eddy simulation (LES) and a Lagrangian particle tracking technique, and 
noted that oblate spheroids segregate in the low-speed streaks in the same manner as spheres 
and prolate spheroids. Challabotla et al. [17] explored the dynamics of inertia-free spheroids 
in wall turbulence by means of DNS, and observed that the shape-dependence of the particle 
orientation carries over to the particle rotation, and the mean spin is reduced with increasing 
departure from sphericity. They further concluded that near-wall spheroids with large inertia 
tend to orient their long axis in the mean-shear plane, though inertial oblate spheroids prefer 
to align their symmetry axes normal to the local fluid vorticity [18].  

Moreover, the gravity force has a significant effect on particle dispersion and deposition in 
a vertical pipe flow via the crossing trajectory mechanism [19]. Marchioli et al. [20] and 
Nilsen et al. [21] studied the concentration of spheres with different gravity configurations, 
and observed that spherical particles have a tendency to gather in the channel center in the 
downward flow. Challabotla et al. [22,23] further explored the dynamics of rods in a turbulent 
vertical channel flow. They reported that the upward flow suppresses the drift velocity of 
particles, eventually giving rise to a more uniform rod distribution throughout the channel as 
compared to the distinct near-wall accumulation in the downward flow and in the absence of 
gravity. However, according to our recent study, disk-like particles behave quite differently 
from rod-like particles in turbulent vertical channels [24]. A common feature is that the role 
of gravity on the spheroid concentration diminishes with higher inertia and the spheroid shape 
has only a modest influence. The wall-normal motion of spheroids plays an important role on 
the final distribution, and deserves further investigations for channel flow with different 
gravity configurations. 

The present paper focuses on the wall-normal motion of disk-like particles in turbulent 
vertical channel flow, and is an extension of our earlier study [24] on the statistical 
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performance of disk-like particles modeled as oblate spheroids. In order to understand how 
gravity affects the dynamics of particles with different shape and inertia, we now judge from 
the particle drift velocity in the channel, and distinguish particles with inward (towards the 
nearest wall) and outward (away from the nearest wall) motions. The results from simulations 
of upward flow (GU), and downward flow (GD) in a vertical channel will be compared with 
results from channel flow simulations in which gravity is neglected (G0).  

2 METHODOLOGY 
The dynamics of rigid disk-like particles suspended in channel flow turbulence is modeled 

in an Eulerian-Lagrangian approach. The continuous Newtonian fluid phase, in which disks 
are suspended, is governed by continuity and Navier–Stokes equations, 

 0i
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

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where iu  is the component of the fluid velocity vector in the ix  direction, and f , p and μ 
denote the fluid density, fluctuating pressure and dynamic viscosity, respectively. The fluid 
flow is driven through the vertical plane channel by means of a constant body force, which 
includes the negative mean pressure gradient P x   and a negative or a positive gravity force 

f g , i.e. the last term to the right in Eq. (2).  
In addition, a general spheroidal particle is characterized by three semiaxes a b c  . The 

rigid disk-like particles in our simulations are modeled as oblate spheroidal point-particles 
with aspect ratio 1c a   . Two different Cartesian frames of reference are used to study the 
dynamics of oblate spheroidal point particles in channel flow turbulence. The translational 
motion of a disk-like spheroid is governed by Newton’s second law of motion, expressed in 
the inertial reference frame ( ,  ,  )ix x y z , in which the turbulent flow field is obtained; while 
the rotational motion is governed by Euler’s equation, which is formulated in a particle frame 

( ,  ,  )ix x y z     with its origin in the mass centre and the coordinate axes aligned with the 
principal directions of inertia of the spheroid,  

 i
i

dvm F
dt

 , (3) 
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Here, m is the particle mass and ijk  denotes the Levi-Civita alternating or permutation tensor. 
i iv dx dt  is the translational particle velocity in the inertial frame, whereas   and ijI   denote 

the angular velocity and the moment of inertia tensor of the oblate spheroid in the particle 
frame, respectively.  

The spheroidal particles are sufficiently small, so that the neighboring flow can be 
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considered as Stokesian. Thus, the drag force iF  acting on a spheroid from the surrounding 
fluid can be expressed as, 

 11i ij j x,iF aK u mg
D

      
 

, (5) 

where p fD    is the ratio between the particle density and fluid density. ju  is the slip 
velocity vector defined as ,j p j ju u v   , with ,p ju  and jv  are the fluid velocity at the particle 
location and the particle translational velocity in the jx  direction, respectively.  

The resistance tensor ijK  is represented in the inertial frame and related to the resistance 
tensor ijK   in the particle reference frame as t

ij ik kl ljK A K A , where ijA  denotes the orthogonal 
transformation matrix which relates the same vector in the two different frames through the 
linear transformation i ij jx A x  . Just as in Eq. (2), the positive and negative signs apply for 
downward and upward flow, respectively. The first term on the right-hand side of Eq. (5) 
represents the hydrodynamic drag force from the surrounding fluid on a non-spherical particle, 
while the second term represents the gravity and buoyancy forces. The resistance tensor ijK   
obtained by Challabotla et al. [18] for oblate spheroids is a diagonal matrix with elements,  
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where 1 2 1 22tan ( (1 ) )C       .  
The torque components N ´ 

i  for a three-axial ellipsoidal particle in creeping shear flow 
originally derived by Jeffery [25] are simplified for a spheroid to, 
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Here, ijS   and iΩ  denote the fluid rate-of-strain tensor and the rate-of-rotation vector, 
respectively. The analytical expressions for the shape factors 0 0 0( ,  ,  )    for oblate spheroids 
have been derived by Siewert et al. [26],  
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The ability of a disk-like particle to adjust to the ambient flow field can be estimated by the 
particle response time p . Shapiro and Goldenberg [27] introduced a translational relaxation 
time based on the orientation-averaged resistance tensor 1 1 1 13( )xx yy zzK K K K        . This is a 
relevant time scale for isotropically oriented particles and has been widely used for prolate 
spheroids [4,5]. The same definition of an equivalent response time has also been adopted by 
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Challabotla et al. [18] for the oblate spheroids,  
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where  is the kinematic fluid viscosity. The Stokes number St is defined as the ratio between 
the response time p  and the viscous time scale 2u based on the wall-friction velocity u , 

 2St p

u




 . (10) 

We use DNS to simulate a turbulent channel flow at Reynolds number Re 
τ = 180 based on 

u  and the channel half-height h. The variables are be normalized by the viscous scales for 
velocity u , length ( u ) and time ( 2u ). The computational set-up and the flow solver are 
essentially the same as in the preceding simulation studies of dilute suspensions of spheroids 
in turbulent channel flow reported by Mortensen et al. [4,5] and Challabotla et al. [22,23]. In 
the present work, it is assumed that the solid suspension is sufficiently dilute so that the one-
way coupled Eulerian-Lagrangian approach can be justified, i.e. the feedback from the disks 
onto the fluid is ignored. The size of disk-like particles does not exceed the Kolmogorov 
length scale. 

3 RESULTS AND DISCUSSIONS 
Simulations are performed for oblate spheroids with aspect ratios λ = 0.33, 0.1 and Stokes 

numbers St = 1, 30. Combined with the three different gravity configurations: no gravity (G0), 
downward flow (GD), and upward flow (GU), a total of 12 different cases have been 
considered. In each case, 2×105 

   disk-like particles with the same normalized semi major-axis 
a+ = 0.36 are tracked in the turbulent field. In order to obtain reliable particle statistics, the 
results are computed by averaging instantaneous data in the time window from t+ = 5,400 to 
10,800 (viscous time units) and also in both the homogeneous streamwise and spanwise 
directions.  

The statistically averaged percentage of disk-like particles with inward and outward 
motions are shown in Fig. 1 as a function of the normalized wall-normal coordinate z+. It is 
clear that there is a greater proportion of particles moving towards the nearest wall in the 
central region, and the effect of gravity on this phenomenon is nearly unaffected by the 
particle shape but depends on the particle inertia. For particles with modest inertia (St = 1), 
the gravity force has little impact on the tendency of particles to move towards or away from 
the nearest wall. While for large inertia (St = 30), disk-like particles in the channel center are 
more likely to move towards the nearest wall in the downward flow, whereas the upward flow 
weakens this tendency. 
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Figure 1: Statistically-averaged percentage of disk-like particles with inward or outward motions in the wall-

normal direction. (a) St = 1, λ = 0.33; (b) St = 1, λ = 0.1; (c) St = 30, λ = 0.33; (d) St = 30, λ = 0.1. 

Nevertheless, by virtue of inward turbulent fluid motions in the buffer region, most of 
inertial particles also move toward the nearest channel wall in the viscous sublayer, and the 
increased inertia enlarges the percentage of this kind inward motion. Though this average-
percentage analysis does not present the final distribution of particles, it is suggested that the 
downward flow promotes a larger majority of particles to move towards the nearest channel 
wall in the central region, while the upward flow drives particles in the buffer layer to move 
outward to the central region. Thus, it can be inferred that the particle distribution may be 
more evenly across the channel in the upward flow in this large inertia case. This is consistent 
with the final distribution observed in our previous work [24].  

Fig. 2 shows the mean wall-normal fluid velocity <u  
p,z> conditionally sampled at particle 

locations. The angle bracket notation < > presents statistically-averaged value. Simlarly, the 
gravity effect on the statistical fluid velocity sampled at particle locations has nothing to do 
with the spheroid shape but is closely associated with the inertia. As particles are drifted by 
the fluid flow, it is noted that inward particles are likely to locate in inward fluid excursions, 
and outward particles are likely to locate in outward fluid excursions. The wall-normal fluid 
velocity sampled at particle locations decreases with the rising inertia, in spite of the fact that 
the overall <u  

p,z> is increasing.  
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Figure 2: Mean wall-normal fluid velocity sampled at particle locations. (a) St = 1, λ = 0.33; (b) St = 1, λ = 0.1; 

(c) St = 30, λ = 0.33; (d) St = 30, λ = 0.1. 

For modest inertia, the local fluid velocity statistics are nearly unaffected by the gravity 
force. This is similar as the statistically-averaged percentage of particles with inward and 
outward motions shown in Fig. 1. The overall <u  

p,z> is nearly zero for low-Stokes-number 
particles, which is different from the cases with large inertia in which the overall <u  

p,z> 
slightly increases in a limited range and drops to zero at z+  ≈ 50. The <u  

p,z> sampled for 
inward and outward particles always has the same changing trend as that of large inertia 
particles. The absolute local wall-normal fluid velocity always increases in the viscous 
sublayer and the buffer layer, and almost keeps constant in the central region.  

However, for large inertia, the gravity force is observed to play an important role on the 
local wall-normal fluid velocity. In the presence of gravity, the upward flow slightly induces 
inward particles to the regions with higher wall-normal fluid velocity in the whole channel, 
and the downward flow obviously promotes outward particles to regions with higher wall-
normal fluid velocity in the inner wall layer. In general, the overall performance is that 
particles always locate in outward fluid excursions in the near-wall region. In the central 
region, however, inertia disk-like particles are more likely to locate in inward fluid excursions 
in the upward flow and in outward fluid excursions in the downward flow. Interestingly, 
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though the overall <u  
p,z> in the no-gravity flow is between the two cases with gravity force, 

both inward and outward <u  
p,z> are not always between them. The no-gravity <u  

p,z> for inward 
and outward particles is the highest once the corresponding particles move into the outer layer. 

The mean wall-normal slip velocity <Δu 
z> is then presented in Fig. 3. The particle shape 

has no impact while the inertia plays an important role on the mean wall-normal slip velocity. 
For modest inertia, though the gravity force has a negligible effect on <Δu 

z>, wall-normal slip 
velocities for particles with inward and outward motions are quite different. <Δu 

z> rises with 
increasing distance from the wall, and changes more rapidly for particles moving towards the 
channel wall. The mean wall-normal slip velocity peaks for inward particles before for 
outward particles with a larger maximum value, and then drops to zero at a position closer to 
the wall. In addition, the mean wall-normal slip velocity is negative when particles are further 
from the nearest wall, and the overall <Δu 

z> between that of particles with separate inward 
and outward motions eventually returns to zero in the channel center. This observation 
indicates that particles with inward motions experience drift force towards the channel center, 
whereas particles with ouward motion experience drift force towards the channel wall in the 
central region. 

0 50 100 150

-0.01

0.00

0.01

0.02

0.03

St=1, λ=0.33

GU
G0

Outward

<
Δu

z>

z+

       
       
       

Inward Overall
GD

(a)
0 50 100 150

-0.01

0.00

0.01

0.02

0.03

St=1, λ=0.1

<
Δu

z>

z+(b)

0 50 100 150

-0.06

0.00

0.06

0.12

0.18

St=30, λ=0.33

<
Δu

z>

z+(c)
0 50 100 150

-0.06

0.00

0.06

0.12

0.18

St=30, λ=0.1

<
Δu

z>

z+(d)  
Figure 3: Mean wall-normal slip velocity of disk-like particles. (a) St = 1, λ = 0.33; (b) St = 1, λ = 0.1; (c) St = 

30, λ = 0.33; (d) St = 30, λ = 0.1. 
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On the other hand, the maximum <Δu 
z> markedly rises with the growing inertia, which is 

opposite to <u  
p,z> presented in Fig. 2. Based on the definition of slip velocity, we can obtain 

that, <v  
z> drops for the large inertia. Furthermore, the gravity force is also observed to have a 

siginficant influence on the mean wall-normal slip velocity at St = 30. In the near-wall region, 
the downward flow leads outward particles to larger positive slip velocity, whereas the 
upward flow affects inward particles. However, the overall <Δu 

z> always experience the same 
changes with the overall <u  

p,z>. In particular, <Δu 
z> for outward particles is negative in the 

visous sublayer, which implies the deceleration process due to turbulence sweep events. The 
inward and outward particles experience the same <Δu 

z> at somewhere in the channel. The 
upward flow promotes this place closer to the channel wall, suggesting that inward particles 
are more likely to experience drift force toward the channel wall in the upward flow. 
Ultimately, in the presence of gravity, <Δu 

z> is inevitably negative for outward particles and 
positive for inward particles in the central region, which further indicates that the gravity 
inhibits the wall-normal motion of particles near the channel center.  
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Figure 4: Mean spanwise angular velocity in the near wall region of disk-like particles. (a) St = 1, λ = 0.33; (b) 

St = 1, λ = 0.1; (c) St = 30, λ = 0.33; (d) St = 30, λ = 0.1. 

Figure 4 shows the mean spanwise angular velocity <ω 
y> for z+ 

 ≤ 50. Clearly, both the 
particle shape and inertia affect the mean spanwise angular velocity. The presence of gravity, 
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however, has a negligible influence on this rotational behavior. Disk-like particles are inclined 
to rotate in the near-wall region, and <ω 

y> decreases as particles move away from the nearest 
wall, and eventually become close to zero near the channel center. Especially, disks with a 
higher aspect ratio λ always have a larger angular velocity near the channel wall. This agrees 
with the conclusion of Challabotla et al. [17] that the mean spin is reduced with increasing 
departure from sphericity. Still, inward particles are observed to rotate faster in the near-wall 
region, whereas outward particles have a larger angular velocity in the central region. The 
large-Stokes-number particles are more likely to have a mean rotation that is almost equal to 
the mean fluid rotation, and the large inertia results in the position that inward and outward 
particles have the same angular velocity much closer to the channel wall. 

Root-mean-square (rms) values of the three angular velocity components near the wall are 
shown in Fig. 5 for St = 1 (left column) and St = 30 (right column). It is noted that disk-like 
particles possess fairly strong angular velocity fluctuations in the streamwise and wall-normal 
directions, in spite of the fact that the mean rotation components about the streamwise and 
wall-normal axes are zero. Similarly to <ω 

y> in Fig. 4, the gravity effect is modest and almost 
confined to a region very close to the channel wall, whereas the particle shape shows 
significant impact on the angular velocity fluctuations.  

The angular velocity fluctuations next to the channel wall are larger for St = 1 than for St = 
30. The anisotropic rms-values always have the highest level in the spanwise direction and the 
lowest level in the streamwise direction. This reflects the prevailing anisotropic vorticity 
fluctuations in the buffer region. In addition, in the near-wall region (z+ 

 > 15), rms( )y  and 
rms( )z  are further seen to slightly increase with increasing λ, while rms( )x  is observed to 
decrease as disks are closer spheres. This is because of the different moment of inertia for 
disk-like particles with different λ [18], and this aspect ratio effect vanishes almost completely 
for the most inertial particles. The intensity of the spin fluctuations reduces with the distance 
from the wall and also tends towards isotropy in the central region. In contrast, the wall-
normal spin fluctuation is stronger for spheroids with smaller λ. As the mean spin <ω 

z> = 0, it 
can be inferred that the high level of rms( )z  represents a vigorous flipping behavior 
superimposed onto the disk-like particle’s primary rotation about its symmetry axis.  

Moreover, inward particles experience stronger angular velocity fluctuations in the central 
region, whereas outward particles have larger rms-values in near-wall region. This 
observation is opposite to <ω 

y> for inward and outward particles. By revisiting Eq. (7), the 
observed particle spin is accordingly a signature of the local flow field and, in particular, of 
the fluid rotation in the vicinity of the particles. Though the gravity force influences the 
distribution of particles through altering the preferential location of particles (Fig. 2), the spin 
associated with the mechanism of particle-turbulence interaction is not changed. Therefore, 
from a statistical viewpoint, particles just adjust their angular velocity to the local fluid field 
according to distance from the wall. However, inward and outward particles prefer to locate at 
different positions in the wall-normal direction, so that they have different rotational features.  
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Figure 5: rms-values of the particle angular velocity fluctuations in different directions for St = 1 (left column) 
and St = 30 (right column). (a, b) streamwise direction; (c, d) spanwise direction; (e, f) wall-normal direction. 

Figure 6 presents the mean absolute direction cosines for St = 1 (left column) and St = 30 
(right column). Here, the orientation of an oblate spheroidal particle is measured as <|cos θ 

i|>, 
referred to as the direction cosine, and defined in terms of the angle θ 

i between the symmetry 
axis of the spheroid and the x 

i-axis of the inertial frame. It is quite clear that the orientation for 
inward disk-like particles is different from for outward disk-like particles. 
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Figure 6:  Mean absolute direction cosines of disk-like particles relative to (a, b) streamwise direction; (c, d) 

spanwise direction; (e, f) wall-normal direction for St = 1 (left column) and St = 30 (right column). 

In the near-wall region, all disk-like particles tend to orient in the spanwise y-direction, i.e. 
<|cos θ 

y|> ≈ 1. This preferential orientation is shape-dependent in the vicinity of the wall, and 
disk-like particles with aspect ratio λ = 0.1 also have a tendency to orient in the wall-normal 
direction. In addition, the preferential orientation in the spanwise y-direction is more 
pronounced for outward particles than for inward particles. The inward particles, especially 
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for modest inertia, are also likely to orient in the wall-normal direction at z+ 
 ≈ 20. In general, 

the overall performance of disk-like particles is at variance with the observation of rods near 
the wall [4,6], and a common feature of prolate and oblate spheroids in the near-wall region is 
that both tend to align their long axis in the mean-shear plane.  

Besides, in the channel center, the mean absolute direction cosines in the three directions 
are about 0.5 with no impact from the anisotropy of particles, reflecting a nearly random 
orientation of disk-like particles. However, for large inertia, the preferential orientation of 
disk-like particles, especially in the streamwise direction, is moreover observed to be 
influenced by the presence of gravity. For instance, the upward flow causes the orientation 
angle of particles with outward motion to be more random for z+ 

 ≥ 55. In particular, the mean 
absolute direction cosines slightly departure from 0.5 in the channel center with the presence 
of gravity. This indicates that disk-like particles are less likely to orient randomly in the 
central region when the flow is either upward or downward.  

4 CONCLUSIONS 
The influence of the gravity force on the wall-normal motion of disk-like particles has been 

studied in a turbulent vertical channel flow. The turbulent flow field is obtained by means of a 
direct numerical simulation, and non-spherical particles modeled as oblate spheroids are 
tracked as Lagrangian point-particles subjected to Stokes drag, gravity and buoyancy forces 
and Jeffery torques. Altogether 4 different particle classes have been studied, with inertia and 
shape parameterized by means of Stokes number and aspect ratio. The inward and outward 
particle motions judging from its wall-normal velocity have been analysed in upward flow, 
downward flow, and channel flow in the absence of gravity.  

The results show that the translational motion of disk-like particles is controlled by the 
inertia, whereas the particle shape mainly influences on the rotation and orientation. The 
presence of gravity alters the wall-normal motion of particles, not only the tendency of 
moving inward or outward, but also the position of particles. The gravity force is further 
observed to inhibit the wall-normal motion of particles in the central region. In addition, disk-
like particles with inward motions rotate faster in the near-wall region, whereas outward 
moving particles rotate faster in the central region. However, disks moving towards the 
channel wall are more likely to orient in the spanwise direction in the near-wall region. The 
presence of gravity has a negligible influence on the rotation and orientation of particles, 
except for the striking effect on the orientation of large inertia particles in the central region. 
In the channel center, heavy disks always have less tendency to orient randomly when the 
flow is either upward or downward. 
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Abstract. This study is focused on a turbulent Couette-Poiseuille flow which is driven by
a streamwise pressure gradient and relative wall motion. The parameters were carefully
prescribed to yield a specific flow with vanishing mean shear at one wall. The distinct
shear conditions at the opposite walls result in asymmetry of wall-normal distributions of
statistical flow properties such as mean and rms velocity/vorticity and shear stresses with
respect to the channel center. The mean streamwise velocity profile demonstrates a longer
log-scale region than a conventional Poiseuille flow. In addition, the commonly observed
coherent near-wall turbulent structures in the form of streamwise streaks only occur near
the fixed wall. Using a spanwise two-point correlation coefficient of the streamwise velocity
fluctuation, a growth of the spanwise length associated with the large-scale structures
is observed throughout the whole channel. The small-scale streaky structures are only
confined near the fixed wall (local) but are strong, while the large-scale structures occupy
the whole channel height (global) but are weak. The dominating role switches from the
small-scales to the large-scales in the buffer layer next to the fixed wall.

1 INTRODUCTION

Wall-bounded flows are commonly encountered in many natural processes and engi-
neering applications. In particular, turbulent flows between two parallel walls have been
widely applied and extensively studied. A flow driven by a streamwise pressure gradient
between two solid walls is often referred to as a Poiseuille flow (hereby ‘P flow’ for brevity).

1

Scales of a turbulent Couette-Poiseuille flow with vanishing mean wall shear
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For a fully-developed turbulent P flow, the wall-normal distribution of the statistical flow
quantities is symmetric with respect to the channel center. It is well documented that the
near-wall region of a conventional P flow is characterized by coherent streamwise streaky
structures, which play an important role in turbulence regeneration cycles [1, 2, 3]. These
streamwise streaks are flanked by alternating streamwise vortices, which associate with
strong sweep and ejection events of locally high and low velocity. The origin of the stream-
wise streaks has been explored in various studies [4, 5, 6], some of which argue that the
local high mean shear rate is crucial in the formation of such coherent streaky structures
[7].

Another commonly encountered wall-bounded turbulent flow is the turbulent Couette
flow (‘C flow’), for which the flow is driven by the relative motion of the two boundary
walls. One important difference of a C flow from a P flow is the formation of large-scale
structures which occupy almost the whole domain [8]. Direct numerical studies (DNS)
studies on C flows usually require a much larger domain size than that of P flows, since it
has been argued that those large-scale structures may be induced by the periodic boundary
conditions applied in the numerical model [9, 10]. Near the walls of a C flow, coherent
streaky structures similar to those in a P flow are also observed. A detailed examination
of the characteristic spanwise spacing of the near-wall streaks in a C flow reveals that
they bear two distinct length scales, one with a similar value to that of a P flow and one
with a larger value [11]. The multiple length scales are caused by the imprinting of the
large-scale structures into the near-wall regions.

Both the P flow and the C flow have a statistical flow field that is symmetric with
respect to the channel center. This symmetry is broken by imposing both a streamwise
pressure gradient and a relative wall motion to the wall-bounded flow, which leads to
a so-called turbulent Couette-Poiseuille flow (‘CP flow’). This study concerns the flow
scales formed in the asymmetric flow field of a CP flow. In order to evaluate the role of
mean shear rate in the formation of coherent near-wall streaky structures and of the flow
structures in the whole domain, the relative wall motion was carefully chosen to yield
a vanishing mean shear rate at the moving wall. For the current flow Reτ equals 180,
defined by half channel height and the friction velocity uτ at the non-zero-shear wall. In
our recent paper [12], we have presented statistics, scales of flow structures and energy
conversion for this particular CP flow. The current paper will provide more details of the
mean velocity profile and explore the competition between different scales.

2 METHODOLOGY

We conducted a direct numerical simulation on a turbulent CP flow, with the special
consideration of obtaining zero mean shear at one wall by setting it to move relative to
the other wall (fixed wall). The computational domain is demonstrated in Figure 1. To
accommodate the large-scale structures presumed to form in such a flow, we applied a
domain size of Lx × Ly × Lz = 36h × 10h × 2h, which is almost 3 times longer in stream-
wise and 1.6 times wider in the spanwise direction than the P flow case at the same Reτ

2
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Figure 1: Sketch of the computational domain.

[1]. The fluid in-between the two solid walls is driven by a pressure gradient in the x-
direction and the relative wall velocity Uxw. The flow is governed by the incompressible
Navier-Stokes equations and the continuity equation, which are given in Equations 1 (in
which the quantities are normalized by uτ and h and this normalization is denoted by the
prime), where ũi denotes the instantaneous velocity in three (xi) directions at time t and
p̃ is the instantaneous pressure.

∂ũ′
i

∂t′ + ũ′
j
∂ũ′

i

∂x′
j

= − ∂p̃′

∂x′
i

+ 1
Reτ

∂2ũ′
i

∂x′
j∂x′

j

∂ũ′
i

∂x′
i

= 0
(1)

The flow field was calculated using a pseudo-spectral method in the homogeneous
streamwise (x-) and spanwise (y-) directions, and a second-order central finite differ-
ence method in the wall-normal (z-) direction. The validity of this DNS code has been
well established [13, 14, 15, 12]. During the simulation, the computational domain was
discretised into 576 × 260 × 192 grid points in the streamwise (x-), spanwise (y-) and
wall-normal (z-) directions, respectively. We applied a uniform grid spacing in the homo-
geneous planes, with ∆x+ = 11.25 and ∆y+ = 6.93. In the wall-normal (z-) direction,
finer grid spacing is applied closer to the walls, and the first wall-normal grid spacing is
∆z+ = 0.88 next to the wall and the largest wall-normal grid spacing ∆z+ = 2.86 is found
at the channel center.

Unless otherwise specified, all quantities are normalised using the viscous units at
the fixed wall and the ‘+’ sign is used to indicate non-dimensionality. Correspondingly,
u+

i = ũi/uτ ,x+
i = xi/(ν/uτ ) = t/(ν/u2

τ ), where ν is the fluid kinematic viscosity. By
means of Reynolds averaging, the instantaneous flow velocities can be decomposed into a
mean and a fluctuation component as ũi = Uim+ui in x-, y- and z- directions, respectively,
where Uim is the mean velocity and ui is the fluctuation component.

3
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3 RESULTS

The calculation was conducted up to t = 65.2h/uτ (or t+ = 11, 736) to allow a random
flow field to develop into a fully statistically steady turbulent flow and to store enough
samples for statistical analysis, with a time step of ∆t = 0.0002h/uτ (or ∆t+ = 0.036).
In total 122 samples were taken to study the statical properties of the flow field. Mean
streamwise velocity and shear stresses are presented and compared with the conventional
Poiseuille flow field (P flow) [1] at the same Reτ in Figure 2.

3.1 Statistics of the CP flow

Figure 2: Wall-normal distribution of statistical flow properties at Reτ = 180 for (a) the current CP
flow and (b) a reference P flow [1].

4



445

Kun Yang, Lihao Zhao and Helge I. Andersson

Figure 2 demonstrates the key properties of the current CP flow. As can be seen,
while the distribution of mean streamwise velocity and shear stresses is either symmetric
or anti-symmetric with respect to the channel center for the P flow, the variations are
asymmetric for the CP flow. For the latter, the mean streamwise velocity is zero at the
fixed wall and increases to the maximum value at the moving wall, giving a vanishing
total (i.e. viscous plus Reynolds) mean shear stress at the moving wall. The maximum
total shear stress is found only at the fixed wall for the CP flow and decreases towards
the moving wall.

Figure 3: Measure of the von Karman constant κ across the channel height.

An important feature of the mean streamwise velocity distribution in a conventional
P flow is the log-scale approximation, always formulated as U+

xm = κ−1lnz+ + B. At
Reτ = 180, the von Karman constant κ is around 0.4 and the additive constant B is
about 5.5 [1]. The application range of the log-scale approximation for the current CP
flow is evaluated in Figure 3, in which the wall-normal distribution of the κ constant
(obtained from κ = d(lnz+)/dU+

xm) is shown. It is seen that the distribution of U+
xm for

the CP flow results in a much elongated log-scale region compared to that of the P flow
case. While the log-scale range of the P flow spans from z+ ≈ 60 to 120 (roughly 1/3
of the half channel height below the channel center, that of the CP flow spans all across
the channel core up to near the moving wall from z+ ≈ 60 to 300 (ca. 2/3 of the whole
channel height). The averaged von Karman constant for the CP flow has a value of about
0.397 [12], which is similar but slightly smaller than that of the P flow.

5
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3.2 Scales of the flow structures

Figure 4: Contours of instantaneous streamwise velocity ũ+
x at various wall-normal locations: (a) Near

the fixed wall at z+ ≈ 10, (b) at the channel center of z+ = 180 and (c) near the moving wall at z+ ≈ 350.

As mentioned in the Introduction, it has been argued that the mean shear rate plays
an important role in inducing the coherent near-wall turbulent structures in the form of
streamwise oriented streaks in low-speed regions [7]. The current CP flow serves as a
good candidate to evaluate this issue, by providing distinguishing wall conditions with
maximum mean shear rate at the fixed wall and zero mean shear rate at the moving
wall. To demonstrate the local flow structures, Figure 4 shows contours of the streamwise
velocity fluctuations at three representative wall-normal locations, i.e. near the fixed
wall, in the channel center and near the moving wall, respectively. Near the fixed wall,
the streamwise oriented low-speed streaks are clearly observed (Figure 4(a)). As we move
away from the fixed wall to the center region, streamwise oriented streaks with clearly
wider spanwise spacing are still visible, but the number of streaks is clearly reduced.
Further away from the fixed wall and much closer to the moving wall, the streaks are
no longer observed, and the velocity contours are in the form of ’patch-like’ structures.
Comparing between the three plots, an enlarging trend of the fluid structures as the mean
shear rate reduces is clearly observed. The outer-layer large scales distinguished from the
inner-layer small scales have also been observed in P flow at high Re [16] and in C flows
[10].

6
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Figure 5: Cross-flow plane of the contour of ω̃+
x , averaged along the streamwise direction. Relative

strong streamwise vorticity is only observed near the fixed wall.

Since the strong near-wall coherent structures are accompanied by streamwise vorticity
(ω̃x), disappearing of those small-scale structures can be visualized by the distribution of
ω̃+

x along the channel height. Figure 5 shows the contours in the cross-flow plane of ω̃+
x

(averaged along the streamwise direction). As shown in Figure 5, strong ω̃+
x distributes

only close to the fixed wall. At larger z+, the streamwise vortices reduce strength while
become slightly stretched. They finally become too weak to be seen far enough away from
the wall (z+ large enough).

Figure 6: Wall-normal distribution of ω+
x (normalized streamwise vorticity). Results for a P flow [1] are

also included for comparison.

7
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The fluctuation of the streamwise vorticity is compared with the P flow [1] in Figure 6.
The high peak of ω+

x close to the fixed wall represents the strong intensity of the streamwise
vorticity associated with the near-wall coherent turbulent structures. Once leaving the
high peak near the fixed wall, ω+

x decreases until very close to the moving wall. Unlike
the symmetric flow field of a P flow, there is no high peak near the opposing moving
wall in the current CP flow. This observation confirms that the strong near-wall coherent
structures are only confined close to the fixed wall, and can not form near the moving wall
where the mean shear rate approaches zero. The maximum values at the two walls are
caused by the wall-induced streamwise vorticity [1]. The modest maximum value at the
moving wall indicates the presence of the large-scale structures. The value of ω+

x at the
fixed wall is higher than at the moving wall, because the streamwise vortices associated
with the near-wall streaks are much stronger than the large-scale structures.

It has been previously shown that the average spanwise spacing between the near-wall
streaks is approximately 100 wall units (ν/u2

τ ) for a P flow at Reτ = 180 [1]. The spanwise
spacing can be evaluated by a spanwise two-point correlation coefficient of the streamwise
velocity fluctuation, Ruxux(δy), which is defined as:

Ruxux(δy) = ux(x, y, z, t)ux(x, y + δy, z, t)
uxrms(z, t)uxrms(z, t) , (2)

in which δy is the spanwise distance between two sampling grid points.
To quantify the enlarging scales, the calculated Ruxux(δy) at three selected wall-normal

locations featuring near the fixed wall (z+ ≈ 10), in the channel center (z+ = 180) and
near the moving wall (z+ ≈ 350) is given in Figure 7(a). The distance between the
minimum point of the Ruxux(δy) curve and the origin is used to represent half the average
spanwise spacing between the streaks [1, 11], which is represented by λ+/2. Near the
fixed wall, the curve bears a sharp minimum point at δy ≈ 0.3h, yielding a δy+ of about
55 (λ+ ≈ 110), similar to that reported previously for a P flow[1]. The negative peak
becomes less abrupt and moves to larger δy/h as one leaves the fixed wall region and
approaches the moving wall. As can be observed in Figure 7(a), a minimum value can
be identified at δy/h ≈ 1.7 for the wall-parallel plane at the channel center, and an even
more blunt negative peak is found at δy/h ≈ 2 for the wall-parallel plane close to the
moving wall. This trend of less prominent negative peaks of Ruxux(δy) at larger δy/h
values is consistent with the previously observed enlarging scales of the flow structures in
Figure 4.

The conversion from the inner-layer small scales to the out-layer large scales happens
in the buffer layer, and is reflected by the relative magnitude of the different negative
peaks (or minimum values) of Ruxux(δy), shown in Figure 7(b). As seen, within a thin
layer between z+ = 26 to 30, all curves have two minimum values, one closer to the
fixed wall at δy/h ≈ 0.3 and the other at δy/h ≈ 0.6. The two negative peaks indicate
the coexistence of the two different scales. Within this coexistence-region, the strengths
(reflected by the relative magnitudes) of these two scales compete and switch their roles
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at a certain z+. It is observed that the negative peak with the largest magnitude switches
from the one at smaller δy/h to the one at larger δy/h as one moves away from the fixed
wall. This indicates that the dominant role is switched from the small-scale structures
(associated with peak at smaller δy/h) to the large-scale structures at a certain distance
away from the fixed wall.

The average spanwise spacing (λ+) along the wall-normal direction is plotted in Fig-
ure 8. In previous studies, λ+ is always determined by the lowest min (i.e. the minimum
value with the largest magnitude), which is shown by the green triangles in Figure 8. As
a result, for a flow with large-scale structures like the current CP flow, there is a jump
of λ+ as the flow scales switch from being dominated by the small ones to by the large
ones. To clearly show the coexistence of the two scales and their competing strengths,
the λ+ value obtained from the two peaks observed in Figure 7(b) is included in Figure 8.
From Figure 8 an overall increase of λ+ is observed as the moving wall is approached
or as the mean shear rate is reduced. For z+ < 40, the 1st-found peak (the peak found
at the smaller δy/h) represents the small scales, while the 2nd-found peak represents the
large scales. The small scales slowly increase while the large scales remain constant. The
2nd-found min becomes more prominent (now the 1st lowset) than the 1st-found min (now
the 2nd-lowest) at around z+ ≈ 30, when the large scales take over the small scales. It
is worthwhile noting that, there are more negatives peaks (the several top points in the
figure) found at even larger δy/h, but our focus here is the first two peaks which stand for
the near-wall small scales and the large-scale structures. Above z+ ≈ 35, the small scales
are no longer detected, and both negative peaks are associated with the large scales. The
1st found peak now represents the 1st length scale while the 2nd found peak represents the
2nd length scale of the large scales. This means the large scales now dominate the flow
field. The average spanwise spacing of the large-scale structures continues to grow further
away from the fixed wall.

Both Figure 7 and 8 show that the small scales are only confined near the fixed wall
and are local, but they are more intensive. On the contrary, the large scales are global
over the whole channel, but are relatively weak.
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Figure 7: Spanwise two-point correlation coefficient of streamwise velocity fluctuation calculated at
various wall-parallel planes. (a) At selected z+ planes spanning across the channel and (b) at z+ planes
in the buffer layer.
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Figure 8: Variation of λ+ obtained from evaluating the Ruxux(δy) curves. (a) Along the whole channel
height and (b) zoom-in near the fixed wall. Results from P flow [1] are included for comparison. The 1st

found min is the negative peak found at the smaller δy/h and the 2nd min at the larger δy/h. The 1st

found min is associated with the near-wall small scales while the 2nd found min is with the large scales.
The 1st lowest min is the negative peak with the largest magnitude and the 2nd lowest min with the 2nd

largest magnitude.
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4 CONCLUSIONS

We present selected results from a DNS study of a specific turbulent Couette-Poiseuille
flow (CP flow) driven by a streamwise pressure gradient and two relative moving walls
at Reτ = 180 based on the friction velocity at the reference (fixed) wall and half channel
height. The driving pressure gradient and the relative velocity of the walls were chosen
so that the mean shear rate at the moving wall vanished. This enables us to evaluate the
effects of zero mean shear rate on the overall flow structures, in particular the coherent
near-wall turbulent streaky structures and the global large-scale structures.

Unlike a turbulent Poiseuille flow (P flow) at the same Reτ , the wall-normal distribution
of the statistical flow properties (i.e. mean and rms velocity, shear stresses and vorticity)
is asymmetric with respect to the channel center. The maximum shear stresses occur near
the fixed wall, while they reduce to zero at the moving wall where the mean streamwise
velocity is the highest. The log-scale approximation applies over a much larger wall-
normal region for the CP flow than for the P flow, with a similar (although slightly lower)
von Karman constant.

The total mean shear rate reduces linearly from the fixed wall to the moving wall.
The coherent near-wall streaky structures can be observed near the fixed wall in the CP
flow. Nearby the moving wall, streaks cease to form, and the flow structures appear to be
‘patch-like’. As a result, the strong streamwise vorticity which accompanies the low-speed
streaks can only be observed near the fixed wall. However, the wall values of ω+

x indicate
the presence of the weak large-scale vortical structures.

Underlying characteristic spanwise length scales of the flow structures can be quantita-
tively examined by a spanwise two-point correlation coefficient of the streamwise velocity
fluctuation. The spanwise spacing of the streaks near the fixed wall is identified by the
negative peak found at the smallest δy/h for z+ ≈ 10, and has a similar value to that
in the P flow. Away from the fixed wall, the spanwise spacing increases, indicating an
increase of the flow scales. The switch of the dominating role between the small-scale
near-wall streaks and the large-scale structures is observed within the buffer layer be-
tween z+ ≈ 25 to 30 for the present flow. The results show that the near-wall streaks are
strong but local, while the large-scale-structures are weak but global.
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